feat: 1522 l1 notes

This commit is contained in:
Yadunand Prem 2024-01-29 22:07:55 +08:00
parent 6bdba703a6
commit e790a1f29e
No known key found for this signature in database
10 changed files with 312 additions and 0 deletions

2
ma1522/info.yml Normal file
View File

@ -0,0 +1,2 @@
title: 'Linear Algebra for Computing'
short: 'MA1522'

174
ma1522/lec_01.tex Normal file
View File

@ -0,0 +1,174 @@
\subsection{Linear Algebra}
\begin{itemize}
\item \textbf{Linear} The study of items/planes and objects which are flat
\item \textbf{Algebra} Objects are not as simple as numbers
\end{itemize}
\subsection{Linear Systems \& Their Solutions}
Points on a straight line are all the points $(x, y)$ on the $xy$ plane satisfying the linear eqn: $ax + by = c$, where $a, b > 0$
\subsubsection{Linear Equation}
Linear eqn in $n$ variables (unknowns) is an eqn in the form
$$ a_1x_1 + a_2x_2 + ... + a_nx_n = b$$
where $a_1, a_2, ..., a_n, b$ are constants.
\begin{note}
In a linear system, we don't assume that $a_1, a_2, ..., a_n$ are not all 0
\begin{itemize}
\item If $a_1 = ... = a_n = 0$ but $b \neq 0$, it is \textbf{inconsistent}
E.g. $0x_1 + 0x_2 = 1$
\item If $a_1 = ... = a_n = b = 0$, it is a \textbf{zero equation}
E.g. $0x_1 + 0x_2 = 0$
\item Linear equation which is not a zero equation is a \textbf{nonzero equation}
E.g. $2x_1 - 3x_2 = 4$
\item The following are not linear equations
\begin{itemize}
\item $xy = 2$
\item $\sin\theta + \cos\phi = 0.2$
\item $x_1^2 + x_2^2 + ... + x_n^2 = 1$
\item $x = e^y$
\end{itemize}
\end{itemize}
\end{note}
In the $xyz$ space, linear equation $ax + by + cz = d$ where $a, b, c > 0$ represents a plane
\subsubsection{Solutions to a Linear Equation}
Let $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ be a linear eqn in n variables \\
For real numbers $s_1+ s_2+ ... + s_n$, if $a_1s_1 + a_2s_2 + ... + a_ns_n = b$, then $x_1 = s_1, x_2 = s_2, x_n = s_n$ is a solution to the linear equation \\
The set of all solutions is the \textbf{solution set}\\
Expression that gives the entire solution set is the \textbf{general solution}
\textbf{Zero Equation} is satified by any values of $x_1, x_2,... x_n$
General solution is given by $(x_1, x_2, ..., x_n) = (t_1, t_2, ..., t_n)$
\subsubsection{Examples: Linear equation $4x-2y = 1$}
\begin{itemize}
\item x can take any arbitary value, say t
\item $x = t \Rightarrow y = 2t - \frac{1}{2}$
\item General Solution:
$
\begin{cases}
x = t & \text{t is a parameter}\\
y = 2t - \frac{1}{2}
\end{cases}
$
\item y can take any arbitary value, say s
\item $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}$
\item General Solution:
$
\begin{cases}
y = s & \text{s is a parameter}\\
x = \frac{1}{2}s + \frac{1}{4}
\end{cases}
$
\end{itemize}
\subsubsection{Example: Linear equation $x_1 - 4x_2 + 7x_3 = 5$}
\begin{itemize}
\item $x_2$ and $x_3$ can be chosen arbitarily, $s$ and $t$
\item $x_1 = 5 + 4s -7t$
\item General Solution:
$
\begin{cases}
x_1 = 5 + 4s -7t \\
x_2 = s & s, t \text{ are arbitrary parameters}\\
x_3 = t \\
\end{cases}
$
\end{itemize}
\subsection{Linear System}
Linear System of m linear equations in n variables is
\begin{equation}
\begin{cases}
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\
\end{cases}
\end{equation}
where $a_{ij}, b$ are real constants and $a_{ij}$ is the coeff of $x_j$ in the $i$th equation
\begin{note} Linear Systems
\begin{itemize}
\item If $a_{ij}$ and $b_i$ are zero, linear system is called a \textbf{zero system}
\item If $a_{ij}$ and $b_i$ is nonzero, linear system is called a \textbf{nonzero system}
\item If $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$ is a solution to \textbf{every equation} in the system, then its a solution to the system
\item If every equation has a solution, there might not be a solution to the system
\item \textbf{Consistent} if it has at least 1 solution
\item \textbf{Inconsistent} if it has no solutions
\end{itemize}
\end{note}
\subsubsection{Example}
\begin{equation}
\begin{cases}
a_1x + b1_y = c_1 \\
a_2x + b2_y = c_2 \\
\end{cases}
\end{equation}
where $a_1, b_1, a_2, b_2$ not all zero
In $xy$ plane, each equation represents a straight line, $L_1, L_2$
\begin{itemize}
\item If $L_1, L_2$ are parallel, there is no solution
\item If $L_1, L_2$ are not parallel, there is 1 solution
\item If $L_1, L_2$ coinside(same line), there are infinitely many solution
\end{itemize}
\begin{equation}
\begin{cases}
a_1x + b1_y + c_1z = d_1 \\
a_2x + b2_y + c_2z = d_2 \\
\end{cases}
\end{equation}
where $a_1, b_1, c_1, a_2, b_2, c_2$ not all zero
In $xyz$ space, each equation represents a plane, $P_1, P_2$
\begin{itemize}
\item If $P_1, P_2$ are parallel, there is no solution
\item If $P_1, P_2$ are not parallel, there is $\infty$ solutions (on the straight line intersection)
\item If $P_1, P_2$ coinside(same plane), there are infinitely many solutions
\item Same Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1: d_2$
\item Parallel Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$
\item Intersect Plane $\Leftrightarrow a_1 : a_2, b_1 : b_2, c_1 : c_2$ are not the same
\end{itemize}
\subsection{Augmented Matrix}
$
\begin{amatrix}{3}
a_{11} & a_{12} & a_{1n} & b_1 \\
a_{21} & a_{12} & a_{2n} & b_2 \\
a_{m1} & a_{m2} & a_{mn} & b_m \\
\end{amatrix}
$
\subsection{Elementary Row Operations}
To solve a linear system we perform operations:
\begin{itemize}
\item Multiply equation by nonzero constant
\item Interchange 2 equations
\item add a constant multiple of an equation to another
\end{itemize}
\begin{itemize}
\item Multiply row by nonzero constant
\item Interchange 2 rows
\item add a constant multiple of a row to another row
\end{itemize}

0
ma1522/lec_02.tex Normal file
View File

0
ma1522/lec_03.tex Normal file
View File

0
ma1522/lec_04.tex Normal file
View File

0
ma1522/lec_05.tex Normal file
View File

0
ma1522/lec_06.tex Normal file
View File

BIN
ma1522/master.pdf Normal file

Binary file not shown.

81
ma1522/master.tex Normal file
View File

@ -0,0 +1,81 @@
\documentclass[a4paper]{article}
\input{./preamble.tex}
% ------------------------------------------------------------------------------
\begin{document}
% ------------------------------------------------------------------------------
% Cover Page and ToC
% ------------------------------------------------------------------------------
\title{\normalsize \textsc{}
\\ [2.0cm]
\HRule{1.5pt} \\
\LARGE \textbf{\uppercase{MA1522}
\HRule{2.0pt} \\ [0.6cm] \LARGE{Linear Algebra in Computing} \vspace*{10\baselineskip}}
}
\date{}
\author{\textbf{Yadunand Prem}}
\maketitle
\newpage
\tableofcontents
\newpage
% ------------------------------------------------------------------------------
\section{Lecture 1}
\hr
\input{lec_01.tex}
\newpage
\section{Lecture 2}
\hr
\input{lec_02.tex}
\section{Lecture 3}
\hr
\input{lec_03.tex}
\section{Lecture 4}
\hr
\input{lec_04.tex}
\section{Lecture 5}
\hr
\input{lec_05.tex}
\section{Lecture 6}
\hr
\input{lec_06.tex}
\section{Reference}
\begin{theorem}
This is a theorem.
\end{theorem}
\begin{proposition}
This is a proposition.
\end{proposition}
\begin{principle}
This is a principle.
\end{principle}
\begin{note}
This is a note
\end{note}
% Maybe I need to add one more part: Examples.
% Set style and colour later.
\newpage
% ------------------------------------------------------------------------------
\end{document}

55
ma1522/preamble.tex Normal file
View File

@ -0,0 +1,55 @@
\usepackage{amsmath, amsthm, amssymb, amsfonts}
\usepackage{thmtools}
\usepackage{graphicx}
\usepackage{setspace}
\usepackage{geometry}
\usepackage{float}
\usepackage{hyperref}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{framed}
\usepackage[dvipsnames]{xcolor}
\usepackage{tcolorbox}
\colorlet{LightGray}{White!90!Periwinkle}
\colorlet{LightOrange}{Orange!15}
\colorlet{LightRed}{Red!15}
\colorlet{LightGreen}{Green!15}
\newcommand{\HRule}[1]{\rule{\linewidth}{#1}}
\declaretheoremstyle[name=Theorem,]{thmsty}
\declaretheorem[style=thmsty,numberwithin=section]{theorem}
\tcolorboxenvironment{theorem}{colback=LightGray}
\declaretheoremstyle[name=Proposition,]{prosty}
\declaretheorem[style=prosty,numberlike=theorem]{proposition}
\tcolorboxenvironment{proposition}{colback=LightOrange}
\declaretheoremstyle[name=Principle,]{prcpsty}
\declaretheorem[style=prcpsty,numberlike=theorem]{principle}
\tcolorboxenvironment{principle}{colback=LightGreen}
\declaretheoremstyle[name=Note,]{notesty}
\declaretheorem[style=notesty,numbered=no]{note}
\tcolorboxenvironment{note}{colback=LightRed}
\setstretch{1.2}
\geometry{
textheight=9in,
textwidth=5.5in,
top=1in,
headheight=12pt,
headsep=25pt,
footskip=30pt
}
\newcommand\hr{
\noindent\rule[0.5ex]{\linewidth}{0.5pt}
}
\newenvironment{amatrix}[1]{%
\left(\begin{array}{@{}*{#1}{c}|c@{}}
}{%
\end{array}\right)
}