feat: 3234 WIP

This commit is contained in:
Yadunand Prem 2024-01-24 09:23:50 +08:00
parent 3544a28a2e
commit 6bdba703a6
No known key found for this signature in database
2 changed files with 420 additions and 151 deletions

View File

@ -10,42 +10,42 @@
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* name:
e-mail address:
student number:
*)
*)
(* ********** *)
@ -125,7 +125,7 @@ Compute (fun m : nat => S m).
in OCaml and
(lambda (m) (1+ m))
in Scheme.
*)
*)
Compute ((fun m : nat => S m) 3).
@ -147,20 +147,26 @@ Compute ten.
(* The following definitions are all equivalent: *)
(* This adds type definitions to the definition*)
Definition succ_v0 : nat -> nat :=
fun m : nat => S m.
(* Without Type definitions *)
Definition succ_v1 :=
fun m => S m.
(* defines the variable m as part of params *)
Definition succ_v2 (m : nat) :=
S m.
(* defines the variable m as part of params and specifies return type *)
Definition succ_v3 (m : nat) : nat :=
S m.
(* infers the input tpye and return type from function S *)
Definition succ_v4 m :=
S m.
Check S.
(* Note: the definition of succ_v3 is the recommended one here. *)
@ -219,9 +225,9 @@ Definition test_add (candidate: nat -> nat -> nat) : bool :=
&&
(* associativity: *)
(Nat.eqb (candidate 2 (candidate 5 10))
(candidate (candidate 2 5) 10))
(* etc. *)
.
(candidate (candidate 2 5) 10))
(* etc. *)
.
(* Testing the unit-test function: *)
@ -277,50 +283,74 @@ Compute (test_add add_v3).
* induction step: given a number i' such that multiplying it and j yields ih
(which is the induction hypothesis),
multiplying S i' and j should yield j + ih.
*)
*)
(* ***** *)
(* Unit tests: *)
(*
Definition test_mult (candidate: nat -> nat -> nat) : bool :=
...
(* etc. *)
.
*)
(Nat.eqb (candidate 0 0) 0)
&&
(Nat.eqb (candidate 0 1) 0)
&&
(Nat.eqb (candidate 1 0) 0)
&&
(Nat.eqb (candidate 2 1) 2)
&&
(Nat.eqb (candidate 2 2) 4)
&&
(Nat.eqb (candidate 4 3) (4+4+4))
&&
(let x := 5 in
let y := 6 in
(Nat.eqb (candidate x y) (candidate y x)))
&&
(let x := 5 in
let y := 6 in
let z := 7 in
(Nat.eqb (candidate x (candidate y z)) (candidate z (candidate x y))))
&&
(
(* Testing the inductive step *)
let j := 10 in
let i := 3 in
Nat.eqb (candidate (S i) j) (j + candidate i j))
.
(* ***** *)
(* Testing the unit-test function: *)
(*
Compute (test_mult mult).
*)
(* ***** *)
(* Version 1: lambda-dropped *)
(*
Fixpoint mult_v1 (n j : nat) : nat :=
...
Definition mult_v1 (n j : nat) : nat :=
let fix visit i :=
match i with
| 0 => 0
| S i' => j + (visit i')
end
in visit n.
Compute (test_mult mult_v1).
*)
(* ***** *)
(* Version 2: lambda-lifted *)
Fixpoint mult_v2 (i j : nat) : nat :=
match i with
| 0 => 0
| (S i') => j + mult_v2 i' j
end.
(* Compute (test_mult mult_v2). *)
Compute (test_mult mult_v2).
Compute (mult_v2 2 6).
(* ***** *)
@ -335,21 +365,22 @@ Definition mult_v3 (n j : nat) : nat :=
end
in visit n 0.
Compute (mult_v3 2 6).
(* Compute (test_mult mult_v3). *)
Compute (test_mult mult_v3).
(* ***** *)
(* Version 4: lambda-lifted and tail recursive with an accumulator *)
(*
Fixpoint mult_v4_aux (i j a : nat) : nat :=
...
match i with
| 0 => a
| S i' => mult_v4_aux i' j (a+j)
end.
Definition mult_v4 (n j : nat) : nat :=
...
mult_v4_aux n j 0.
Compute (test_mult mult_v4).
*)
(* ********** *)
@ -363,116 +394,154 @@ Compute (test_mult mult_v4).
* induction step: given a number i' such that exponentiating x with i' it and j yields ih
(which is the induction hypothesis),
exponentiating x with S i' should yield x * ih.
*)
*)
(* Unit tests: *)
(*
Definition test_power (candidate: nat -> nat -> nat) : bool :=
...
(* etc. *)
.
*)
Definition test_power (candidate: nat -> nat -> nat) : bool :=
(Nat.eqb (candidate 0 0) 1)
&&
(Nat.eqb (candidate 0 1) 0)
&&
(Nat.eqb (candidate 1 0) 1)
&&
(Nat.eqb (candidate 1 1) 1)
&&
(Nat.eqb (candidate 1 2) 1)
&&
(Nat.eqb (candidate 2 1) 2)
&&
(Nat.eqb (candidate 2 3) 8)
&&
(Nat.eqb (candidate 3 4) 81)
&&
(Nat.eqb (candidate 3 4) (3*3*3*3)).
(* ***** *)
(* Version 1: lambda-dropped *)
(*
Definition power_v1 (x n : nat) : nat :=
...
let fix visit i :=
match i with
| 0 => 1
| S i' => x * visit i'
end
in visit n.
Compute (test_power power_v1).
*)
(* ***** *)
(* Version 2: lambda-lifted *)
(*
Fixpoint power_v2 (x n : nat) : nat :=
...
match n with
| 0 => 1
| S n' => x * power_v2 x n'
end.
Compute (test_power power_v2).
*)
(* ***** *)
(* Version 3: lambda-dropped and tail recursive with an accumulator *)
(*
Definition power_v3 (x n : nat) : nat :=
...
Compute (test_power power_v2).
*)
Definition power_v3 (x n : nat) : nat :=
let fix visit i a :=
match i with
| O => 1
| S i' => visit i' a * x
end
in visit n 1.
Compute (test_power power_v3).
(* ***** *)
(* Version 4: lambda-lifted and tail recursive with an accumulator *)
(*
Fixpoint power_v4_aux (x i a : nat) : nat :=
...
match i with
| O => a
| S i' => power_v4_aux x i' x * a
end.
Definition power_v4 (x n : nat) : nat :=
...
power_v4_aux x n 1.
Compute power_v4 2 5.
Compute (test_power power_v4).
*)
(* ********** *)
(* The factorial function: *)
(*
* base case: the factorial of 0 is 1;
* base case: the factorial of 0 is 1;
* induction step: given a number i' such that the factorial of i' is ih
(which is the induction hypothesis),
the factorial of S i' is (S i') * ih.
*)
*)
(* Unit tests: *)
(*
Definition test_fac (candidate: nat -> nat) : bool :=
...
(* etc. *)
.
*)
(Nat.eqb (candidate 0) 1)
&&
(Nat.eqb (candidate 1) 1)
&&
(Nat.eqb (candidate 2) 2)
&&
(Nat.eqb (candidate 3) 6)
&&
(Nat.eqb (candidate 4) 24)
&&
(Nat.eqb (candidate 5) 120)
&&
(Nat.eqb (candidate 6) 720)
&&
(Nat.eqb (candidate 7) 5040)
&&
(Nat.eqb (candidate 8) 40320).
(* ***** *)
(* Version 1: recursive *)
(*
Fixpoint fac_v1 (n : nat) : nat :=
...
match n with
| 0 => 1
| S n' => n * fac_v1 n'
end.
Compute (test_fac fac_v1).
*)
(* ***** *)
(* Version 2: tail recursive with an accumulator *)
(*
Fixpoint fac_v2 (n a : nat) : nat :=
...
Fixpoint fac_v2_aux (n a : nat) : nat :=
match n with
| 0 => a
| S n' => fac_v2_aux n' a * n
end.
Definition fac_v2 (n : nat) : nat :=
...
fac_v2_aux n 1.
Compute (test_fac fac_v2).
*)
(* ********** *)
(* The fibonacci function: *)
(*
* base case #1: the fibonacci number at index 0 is 0
* base case #1: the fibonacci number at index 0 is 0
* base case #2: the fibonacci number at index 1 is 1
@ -481,31 +550,49 @@ Compute (test_fac fac_v2).
and
the fibonacci number at index S i' is fib_Si' (which is the first induction hypothesis),
the fibonacci number at index S (S i') is fib_i' + fib_Si'
*)
*)
(* ***** *)
(* Unit tests: *)
(*
Definition test_fib (candidate: nat -> nat) : bool :=
...
(* etc. *)
.
*)
(Nat.eqb (candidate 0) 0)
&&
(Nat.eqb (candidate 1) 1)
&&
(Nat.eqb (candidate 2) 1)
&&
(Nat.eqb (candidate 3) 2)
&&
(Nat.eqb (candidate 4) 3)
&&
(Nat.eqb (candidate 5) 5)
&&
(Nat.eqb (candidate 6) 8)
&&
(Nat.eqb (candidate 7) 13)
&&
(Nat.eqb (candidate 8) 21)
.
(* ***** *)
(* Version 1: recursive *)
(*
Fixpoint fib_v1 (n : nat) : nat :=
...
match n with
| 0 => 0
| S n' => match n' with
| 0 => 1
| S n'' => fib_v1 n' + fib_v1 n''
end
end.
(* hint: make sure to read the interludes in the exercise chapter *)
Compute (test_fib fib_v1).
*)
(* ********** *)
@ -531,39 +618,65 @@ Definition bool_eqb (b1 b2 : bool) : bool :=
(* Unit tests: *)
(*
Definition test_evenp (candidate: nat -> bool) : bool :=
...
(* etc. *)
.
*)
(bool_eqb true (candidate 0))
&&
(bool_eqb false (candidate 1))
&&
(bool_eqb true (candidate 2))
&&
(bool_eqb false (candidate 3))
.
(* ***** *)
(* Version 1: recursive *)
(*
Fixpoint even_v1 (n : nat) : bool :=
...
Fixpoint evenp_v1 (n : nat) : bool :=
match n with
| 0 => true
| S n' => match n' with
| 0 => false
| S n'' => evenp_v1 n''
end
end.
Compute (test_even even_v1).
*)
Compute (test_evenp evenp_v1).
(* ***** *)
(* Version 2: tail recursive with an accumulator *)
Fixpoint evenp_v2_aux (n : nat) (a : bool) : bool :=
match n with
| 0 => a
| S n' => if a then evenp_v2_aux n' false else evenp_v2_aux n' true
end.
Definition evenp_v2 (n : nat) : bool :=
evenp_v2_aux n true.
Compute (test_evenp evenp_v2).
(*
...
*)
*)
(* ********** *)
(* The odd predicate: *)
Definition oddp_v1 (n : nat) : bool :=
if evenp_v2 n
then false
else true.
(*
...
*)
*)
(* ********** *)
@ -597,13 +710,13 @@ Fixpoint beq_binary_tree_nat (t1 t2 : binary_tree_nat) : bool :=
Definition test_number_of_leaves (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
1)
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
2)
(* etc. *)
.
(Leaf_nat 2)))
2)
(* etc. *)
.
(* ***** *)
@ -623,33 +736,43 @@ Compute (test_number_of_leaves number_of_leaves_v1).
(* Version 2: recursive with an accumulator *)
(*
...
*)
Definition number_of_leaves_v2 (t: binary_tree_nat) : nat :=
let fix visit (n : binary_tree_nat) (a : nat) : nat :=
match n with
| Leaf_nat _ => S a
| Node_nat t1 t2 => visit t1 (visit t2 a)
end
in visit t 0.
Compute (test_number_of_leaves number_of_leaves_v2).
(* ********** *)
(* How many nodes in a given binary tree? *)
(* Unit tests: *)
(*
Definition test_number_of_nodes (candidate: binary_tree_nat -> nat) : bool :=
...
(* etc. *)
.
*)
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
3)
.
(* ***** *)
(* Version 1: recursive *)
(*
Fixpoint number_of_nodes_v1 (t : binary_tree_nat) : nat :=
...
match t with
| Leaf_nat _ => 1
| Node_nat l r => 1 + (number_of_nodes_v1 l) + (number_of_nodes_v1 r)
end.
Compute (test_number_of_nodes number_of_nodes_v1).
*)
(* ********** *)
@ -658,17 +781,46 @@ Compute (test_number_of_nodes number_of_nodes_v1).
Compute (Nat.ltb 1 2).
Compute (Nat.leb 1 2).
(*
Check Nat.ltb.
Definition test_smallest_leaf (candidate: binary_tree_nat -> nat) : bool :=
...
(* etc. *)
.
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Node_nat (Leaf_nat 3)
(Leaf_nat 2))))
2)
.
(*
Given an Binary Tree t,
* base case: If leaf node then the smallest value is value of leaf node;
* induction step: given a number i' such that exponentiating x with i' it and j yields ih
(which is the induction hypothesis),
exponentiating x with S i' should yield x * ih.
*)
Fixpoint smallest_leaf_v1 (t : binary_tree_nat) : nat :=
...
match t with
| Leaf_nat n => n
| Node_nat l r =>
let l_v := (smallest_leaf_v1 l) in
let r_v := (smallest_leaf_v1 r) in
if Nat.ltb l_v r_v
then l_v
else r_v
end.
Compute (test_smallest_leaf smallest_leaf_v1).
*)
(* ********** *)
@ -676,12 +828,21 @@ Compute (test_smallest_leaf smallest_leaf_v1).
(* Unit tests: *)
(*
Definition test_weight (candidate: binary_tree_nat -> nat) : bool :=
...
(* etc. *)
.
*)
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
3)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Node_nat (Leaf_nat 3)
(Leaf_nat 2))))
14)
.
(* ***** *)
@ -691,21 +852,26 @@ Fixpoint weight_v1 (t : binary_tree_nat) : nat :=
match t with
| Leaf_nat n =>
n
| Node_nat t1 t2 =>
weight_v1 t1 + weight_v1 t2
| Node_nat l r =>
weight_v1 l + weight_v1 r
end.
(*
Compute (test_weight weight_v1).
*)
(* ***** *)
(* Version 2: recursive with an accumulator *)
(*
...
*)
Definition weight_v2 (t : binary_tree_nat) : nat :=
let fix visit n a :=
match n with
| Leaf_nat v => a + v
| Node_nat l r => visit l a + (visit r a)
end
in visit t 0.
Compute (test_weight weight_v2).
(* ********** *)
@ -713,23 +879,38 @@ Compute (test_weight weight_v1).
(* ***** *)
(*
Definition test_length_of_longest_path (candidate: binary_tree_nat -> nat) : bool :=
...
(* etc. *)
.
*)
(Nat.eqb (candidate (Leaf_nat 1))
0)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Leaf_nat 2)))
2)
.
(* ***** *)
(* Version 1: recursive *)
(*
Fixpoint length_of_longest_path_v1 (t : binary_tree_nat) : nat :=
...
match t with
| Leaf_nat v => 0
| Node_nat l r =>
let l_v := length_of_longest_path_v1 l in
let r_v := length_of_longest_path_v1 r in
if Nat.ltb l_v r_v
then 1 + r_v
else 1 + l_v
end.
Compute (test_length_of_longest_path length_of_longest_path_v1).
*)
(* ********** *)
@ -737,23 +918,45 @@ Compute (test_length_of_longest_path length_of_longest_path_v1).
(* ***** *)
(*
Definition test_length_of_shortest_path (candidate: binary_tree_nat -> nat) : bool :=
...
(* etc. *)
(Nat.eqb (candidate (Leaf_nat 1))
0)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Node_nat (Leaf_nat 1) (Leaf_nat 2)))
(Node_nat (Leaf_nat 5)
(Leaf_nat 4)))
) 2)
.
*)
(* ***** *)
(* Version 1: recursive *)
(*
(* Right now I'm DFS-ing through the tree, is it possible to BFS? *)
Fixpoint length_of_shortest_path_v1 (t : binary_tree_nat) : nat :=
...
match t with
| Leaf_nat v => 0
| Node_nat l r =>
let l_v := length_of_shortest_path_v1 l in
let r_v := length_of_shortest_path_v1 r in
if Nat.ltb l_v r_v
then 1 + l_v
else 1 + r_v
end.
Compute (test_length_of_shortest_path length_of_shortest_path_v1).
*)
(* ********** *)
@ -763,25 +966,27 @@ Compute (test_length_of_shortest_path length_of_shortest_path_v1).
Definition test_mirror (candidate: binary_tree_nat -> binary_tree_nat) : bool :=
(beq_binary_tree_nat (candidate (Leaf_nat 1))
(Leaf_nat 1))
(Leaf_nat 1))
&&
(beq_binary_tree_nat (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
(Node_nat (Leaf_nat 2)
(Leaf_nat 1)))
(* etc. *)
.
(Node_nat (Leaf_nat 2)
(Leaf_nat 1)))
(* etc. *)
.
(* ***** *)
(* Version 1: recursive *)
(*
Fixpoint mirror_v1 (t : binary_tree_nat) : binary_tree_nat :=
...
match t with
| Leaf_nat v => Leaf_nat v
| Node_nat l r => Node_nat (mirror_v1 r) (mirror_v1 l)
end.
Compute (test_mirror mirror_v1).
*)
(* ********** *)
@ -797,7 +1002,7 @@ Compute (test_mirror mirror_v1).
the tree
Node t1 t2
is well balanced if t1 and t2 have the same weight
*)
*)
(* ***** *)
@ -805,15 +1010,26 @@ Compute (test_mirror mirror_v1).
(*
...
*)
*)
(* ***** *)
(* Version 1: recursive *)
Fixpoint calder (t1 t2 : binary_tree_nat) : bool :=
match t1 with
| Leaf_nat t1v =>
match t2 with
| Leaf_nat t2v => t1v = t2v
| Node_nat t2l t2r =>
| Node_nat t1l t1r =>
match t2 with
| Leaf_nat t2v =>
| Node_nat t2l t2r =>
(*
...
*)
*)
(* challenge: traverse the given tree only once, at most *)

View File

@ -0,0 +1,53 @@
(* week-01_getting-started.v *)
(* LPP 2024 - CS3234 2023-2024, Sem2 *)
(* Olivier Danvy <danvy@yale-nus.edu.sg> *)
(* Version of 18 Jan 2024 *)
(* ********** *)
Require Import Arith.
(* The Arith library offers addition, multiplication, and comparison predicates: *)
Compute (1 + 2).
Compute (plus 1 2).
Check plus.
Compute (2 * 3).
Compute (mult 2 3).
Check mult.
Compute (2 =? 2).
Compute (2 =? 3).
Compute (Nat.eqb 2 3).
Check Nat.eqb.
Compute (2 <? 3).
Check Nat.ltb.
Compute (2 <=? 2).
Check Nat.leb.
(* ********** *)
Require Import Bool.
(* The Bool library offers true, false, comparison, negation, conjunction, and disjunction: *)
Compute true.
Compute false.
Check Bool.eqb.
Check negb.
Compute (negb true).
Check (true && true).
Check (true && false).
Check (false || true).
Check (false || false).
(* ********** *)
(* end of week-01_getting-started.v *)