feat: 1522 rename to chapters
This commit is contained in:
parent
a8a385633f
commit
9162dcb311
Binary file not shown.
@ -29,58 +29,19 @@
|
||||
|
||||
% ------------------------------------------------------------------------------
|
||||
|
||||
\section{Lecture 1}
|
||||
\section{Linear Systems}
|
||||
\hr
|
||||
\input{lec_01.tex}
|
||||
\input{ch_01.tex}
|
||||
\newpage
|
||||
|
||||
\section{Lecture 2}
|
||||
\section{Matrices}
|
||||
\hr
|
||||
\input{lec_02.tex}
|
||||
\input{ch_02.tex}
|
||||
\newpage
|
||||
\section{Lecture 3}
|
||||
|
||||
\section{Vector Spaces}
|
||||
\hr
|
||||
\input{lec_03.tex}
|
||||
\newpage
|
||||
\section{Lecture 4}
|
||||
\hr
|
||||
\input{lec_04.tex}
|
||||
\newpage
|
||||
\section{Lecture 5}
|
||||
\hr
|
||||
\input{lec_05.tex}
|
||||
\newpage
|
||||
\section{Lecture 6}
|
||||
\hr
|
||||
\input{lec_06.tex}
|
||||
\newpage
|
||||
\section{Lecture 7}
|
||||
\hr
|
||||
\input{lec_07.tex}
|
||||
\newpage
|
||||
\section{Lecture 8}
|
||||
\hr
|
||||
\input{lec_08.tex}
|
||||
\newpage
|
||||
\section{Lecture 9}
|
||||
\hr
|
||||
\input{lec_09.tex}
|
||||
\newpage
|
||||
\section{Lecture 10}
|
||||
\hr
|
||||
\input{lec_10.tex}
|
||||
\newpage
|
||||
\section{Lecture 11}
|
||||
\hr
|
||||
\input{lec_11.tex}
|
||||
\newpage
|
||||
\section{Lecture 12}
|
||||
\hr
|
||||
\input{lec_12.tex}
|
||||
\newpage
|
||||
\section{Lecture 13}
|
||||
\hr
|
||||
\input{lec_13.tex}
|
||||
\input{ch_03.tex}
|
||||
\newpage
|
||||
|
||||
\section{Reference}
|
||||
|
@ -1,3 +1,179 @@
|
||||
\subsection{Linear Algebra}
|
||||
\begin{itemize}
|
||||
\item \textbf{Linear} The study of items/planes and objects which are flat
|
||||
\item \textbf{Algebra} Objects are not as simple as numbers
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Linear Systems \& Their Solutions}
|
||||
|
||||
Points on a straight line are all the points $(x, y)$ on the $xy$ plane satisfying the linear eqn: $ax + by = c$, where $a, b > 0$
|
||||
|
||||
\subsubsection{Linear Equation}
|
||||
Linear eqn in $n$ variables (unknowns) is an eqn in the form
|
||||
$$ a_1x_1 + a_2x_2 + ... + a_nx_n = b$$
|
||||
where $a_1, a_2, ..., a_n, b$ are constants.
|
||||
|
||||
\begin{note}
|
||||
In a linear system, we don't assume that $a_1, a_2, ..., a_n$ are not all 0
|
||||
\begin{itemize}
|
||||
\item If $a_1 = ... = a_n = 0$ but $b \neq 0$, it is \textbf{inconsistent}
|
||||
|
||||
E.g. $0x_1 + 0x_2 = 1$
|
||||
|
||||
\item If $a_1 = ... = a_n = b = 0$, it is a \textbf{zero equation}
|
||||
|
||||
E.g. $0x_1 + 0x_2 = 0$
|
||||
\item Linear equation which is not a zero equation is a \textbf{nonzero equation}
|
||||
|
||||
E.g. $2x_1 - 3x_2 = 4$
|
||||
\item The following are not linear equations
|
||||
\begin{itemize}
|
||||
\item $xy = 2$
|
||||
\item $\sin\theta + \cos\phi = 0.2$
|
||||
\item $x_1^2 + x_2^2 + ... + x_n^2 = 1$
|
||||
\item $x = e^y$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
In the $xyz$ space, linear equation $ax + by + cz = d$ where $a, b, c > 0$ represents a plane
|
||||
|
||||
\subsubsection{Solutions to a Linear Equation}
|
||||
Let $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ be a linear eqn in n variables \\
|
||||
For real numbers $s_1+ s_2+ ... + s_n$, if $a_1s_1 + a_2s_2 + ... + a_ns_n = b$, then $x_1 = s_1, x_2 = s_2, x_n = s_n$ is a solution to the linear equation \\
|
||||
The set of all solutions is the \textbf{solution set}\\
|
||||
Expression that gives the entire solution set is the \textbf{general solution}
|
||||
|
||||
\textbf{Zero Equation} is satified by any values of $x_1, x_2,... x_n$
|
||||
|
||||
General solution is given by $(x_1, x_2, ..., x_n) = (t_1, t_2, ..., t_n)$
|
||||
|
||||
|
||||
\subsubsection{Examples: Linear equation $4x-2y = 1$}
|
||||
\begin{itemize}
|
||||
\item x can take any arbitary value, say t
|
||||
\item $x = t \Rightarrow y = 2t - \frac{1}{2}$
|
||||
\item General Solution:
|
||||
$
|
||||
\begin{cases}
|
||||
x = t & \text{t is a parameter}\\
|
||||
y = 2t - \frac{1}{2}
|
||||
\end{cases}
|
||||
$
|
||||
\item y can take any arbitary value, say s
|
||||
\item $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}$
|
||||
\item General Solution:
|
||||
$
|
||||
\begin{cases}
|
||||
y = s & \text{s is a parameter}\\
|
||||
x = \frac{1}{2}s + \frac{1}{4}
|
||||
\end{cases}
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Example: Linear equation $x_1 - 4x_2 + 7x_3 = 5$}
|
||||
|
||||
\begin{itemize}
|
||||
\item $x_2$ and $x_3$ can be chosen arbitarily, $s$ and $t$
|
||||
\item $x_1 = 5 + 4s -7t$
|
||||
\item General Solution:
|
||||
$
|
||||
\begin{cases}
|
||||
x_1 = 5 + 4s -7t \\
|
||||
x_2 = s & s, t \text{ are arbitrary parameters}\\
|
||||
x_3 = t \\
|
||||
\end{cases}
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Linear System}
|
||||
Linear System of m linear equations in n variables is
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\
|
||||
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\
|
||||
\vdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
where $a_{ij}, b$ are real constants and $a_{ij}$ is the coeff of $x_j$ in the $i$th equation
|
||||
|
||||
\begin{note} Linear Systems
|
||||
\begin{itemize}
|
||||
\item If $a_{ij}$ and $b_i$ are zero, linear system is called a \textbf{zero system}
|
||||
\item If $a_{ij}$ and $b_i$ is nonzero, linear system is called a \textbf{nonzero system}
|
||||
\item If $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$ is a solution to \textbf{every equation} in the system, then its a solution to the system
|
||||
\item If every equation has a solution, there might not be a solution to the system
|
||||
\item \textbf{Consistent} if it has at least 1 solution
|
||||
\item \textbf{Inconsistent} if it has no solutions
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
|
||||
\subsubsection{Example}
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
a_1x + b1_y = c_1 \\
|
||||
a_2x + b2_y = c_2 \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
where $a_1, b_1, a_2, b_2$ not all zero
|
||||
|
||||
In $xy$ plane, each equation represents a straight line, $L_1, L_2$
|
||||
|
||||
\begin{itemize}
|
||||
\item If $L_1, L_2$ are parallel, there is no solution
|
||||
\item If $L_1, L_2$ are not parallel, there is 1 solution
|
||||
\item If $L_1, L_2$ coinside(same line), there are infinitely many solution
|
||||
\end{itemize}
|
||||
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
a_1x + b1_y + c_1z = d_1 \\
|
||||
a_2x + b2_y + c_2z = d_2 \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
where $a_1, b_1, c_1, a_2, b_2, c_2$ not all zero
|
||||
|
||||
In $xyz$ space, each equation represents a plane, $P_1, P_2$
|
||||
|
||||
\begin{itemize}
|
||||
\item If $P_1, P_2$ are parallel, there is no solution
|
||||
\item If $P_1, P_2$ are not parallel, there is $\infty$ solutions (on the straight line intersection)
|
||||
\item If $P_1, P_2$ coinside(same plane), there are infinitely many solutions
|
||||
\item Same Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1: d_2$
|
||||
\item Parallel Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$
|
||||
\item Intersect Plane $\Leftrightarrow a_1 : a_2, b_1 : b_2, c_1 : c_2$ are not the same
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Augmented Matrix}
|
||||
$
|
||||
\begin{amatrix}{3}
|
||||
a_{11} & a_{12} & a_{1n} & b_1 \\
|
||||
a_{21} & a_{12} & a_{2n} & b_2 \\
|
||||
a_{m1} & a_{m2} & a_{mn} & b_m \\
|
||||
\end{amatrix}
|
||||
$
|
||||
|
||||
\subsection{Elementary Row Operations}
|
||||
To solve a linear system we perform operations:
|
||||
\begin{itemize}
|
||||
\item Multiply equation by nonzero constant
|
||||
\item Interchange 2 equations
|
||||
\item add a constant multiple of an equation to another
|
||||
\end{itemize}
|
||||
|
||||
Likewise, for a augmented matrix, the operations are on the \textbf{rows} of the augmented matrix
|
||||
|
||||
\begin{itemize}
|
||||
\item Multiply row by nonzero constant
|
||||
\item Interchange 2 rows
|
||||
\item add a constant multiple of a row to another row
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Recap}
|
||||
Given the linear equation $a_1x_1 + a_2x_2 + ... + a_nx_n = b$
|
||||
|
||||
@ -350,4 +526,88 @@ Given the augmented matrix is in row-echelon form.
|
||||
\end{enumerate}
|
||||
\end{note}
|
||||
|
||||
\subsection{Review}
|
||||
|
||||
\begin{align*}
|
||||
I: & cR_i, c \neq 0 \\
|
||||
II: & R_i \Leftrightarrow R_j \\\
|
||||
III: & R_i \Rightarrow R_i + cR_j
|
||||
\end{align*}
|
||||
|
||||
Solving REF:
|
||||
\begin{enumerate}
|
||||
\item Set var -> non-pivot cols as params
|
||||
\item Solve var -> pivot cols backwards
|
||||
|
||||
\# of nonzero rows = \# pivot pts = \# of pivot cols
|
||||
\end{enumerate}
|
||||
|
||||
Gaussian Elimination
|
||||
\begin{enumerate}
|
||||
\item Given a matrix $A$, find left most non-zero \textbf{column}. If the leading number is NOT zero, use $II$ to swap rows.
|
||||
\item Ensure the rest of the column is 0 (by subtracting the current row from tht other rows)
|
||||
\item Cover the top row and continue for next rows
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Consistency}
|
||||
\begin{defn}[Consistency]\ \\
|
||||
Suppose that $A$ is the Augmented Matrix of a linear system, and $R$ is a row-echelon form of $A$.
|
||||
\begin{itemize}
|
||||
\item When the system has no solution(inconsistent)?
|
||||
\subitem There is a row in $R$ with the form $(0 0 ... 0 | \otimes)$ where $\otimes \neq 0$
|
||||
\subitem Or, the last column is a pivot column
|
||||
\item When the system has exactly one solution?
|
||||
\subitem Last column is non-pivot
|
||||
\subitem All other columns are pivot columns
|
||||
\item When the system has infinitely many solutions?
|
||||
\subitem Last column is non-pivot
|
||||
\subitem Some other columns are non-pivot columns.
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{note} Notations\ \\
|
||||
For elementary row operations
|
||||
\begin{itemize}
|
||||
\item Multiply $i$th row by (nonzero) const $k$: $kR_i$
|
||||
\item Interchange $i$th and $j$th rows: $R_i \leftrightarrow R_j$
|
||||
\item Add $K$ times $i$th row to $j$th row: $R_j + kR_i$
|
||||
\end{itemize}
|
||||
\textbf{Note}
|
||||
\begin{itemize}
|
||||
\item $R_1 + R_2$ means "add 2nd row to the 1st row".
|
||||
\item $R_2 + R_1$ means "add 1nd row to the 2st row".
|
||||
\end{itemize}
|
||||
|
||||
\textbf{Example}
|
||||
$$ \begin{pmatrix} a \\ b \end{pmatrix}
|
||||
\xrightarrow{R_1 + R_2} \begin{pmatrix} a + b \\ b \end{pmatrix}
|
||||
\xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} a + b \\ -a \end{pmatrix}
|
||||
\xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix}
|
||||
\xrightarrow{(-1)R_2}\begin{pmatrix} b \\ a \end{pmatrix}
|
||||
$$
|
||||
\end{note}
|
||||
|
||||
\subsection{Homogeneous Linear System}
|
||||
|
||||
\begin{defn}[Homogeneous Linear Equation \& System]\ where
|
||||
\begin{itemize}
|
||||
\item Homogeneous Linear Equation: $a_1x_1 + a_2x_2 + ... + a_nx_n = 0 \iff x_1 = 0, x_2 = 0,... , x_n = 0$
|
||||
\item Homogeneous Linear Equation: $\begin{cases}
|
||||
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 0 \\
|
||||
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0 \\
|
||||
\vdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = 0 \\
|
||||
\end{cases}$
|
||||
|
||||
\item This is the trivial solution of a homogeneous linear system.
|
||||
\end{itemize}
|
||||
|
||||
You can use this to solve problems like Find the equation $ax^2 + by^2 + cz^2 = d$, in the $xyz$ plane which contains the points $(1, 1, -1), (1, 3, 3), (-2, 0, 2)$.
|
||||
|
||||
\begin{itemize}
|
||||
\item Solve by first converting to Augmented Matrix, where the last column is all 0. During working steps, this column can be omitted.
|
||||
\item With the \hyperref[def:rref]{RREF}, you can set $d$ as $t$ and get values for $a, b, c$ in terms of $t$.
|
||||
\item sub in $t$ into the original equation and factorize $t$ out from both sides, for values where $t \neq 0$
|
||||
\end{itemize}
|
||||
|
||||
\end{defn}
|
446
ma1522/ch_02.tex
Normal file
446
ma1522/ch_02.tex
Normal file
@ -0,0 +1,446 @@
|
||||
\subsection{Introduction}
|
||||
|
||||
\begin{defn}[Matrix]\ \\
|
||||
\begin{itemize}
|
||||
\item $\begin{pmatrix}
|
||||
a_{11} & a_{12} & ... & a_{1n} \\
|
||||
a_{21} & a_{22} & ... & a_{2n} \\
|
||||
\vdots \\
|
||||
a_{m1} & a_{m2} & ... & a_{mn}
|
||||
\end{pmatrix}$
|
||||
\item $m$ is no of rows, $n$ is no of columns
|
||||
\item size is $m \times n$
|
||||
\item $A = (a_{ij})_{m \times n}$
|
||||
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\subsubsection{Special Matrix}
|
||||
|
||||
\begin{note}[Special Matrices]\ \\
|
||||
\begin{itemize}
|
||||
\item Row Matrix : $\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$
|
||||
\item Column Matrix
|
||||
\subitem $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$
|
||||
\item \textbf{Square Matrix}, $n \times n$ matrix / matrix of order $n$.
|
||||
\subitem Let $A = (a_{ij})$ be a square matrix of order $n$
|
||||
\item Diagonal of $A$ is $a_{11}, a_{22}, ..., a_{nn}$.
|
||||
\item \textbf{Diagonal Matrix} if Square Matrix and non-diagonal entries are zero
|
||||
\subitem Diagonals can be zero
|
||||
\subitem \textbf{Identity Matrix} is a special case of this
|
||||
\item \textbf{Square Matrix} if Diagonal Matrix and diagonal entries are all the same.
|
||||
\item \textbf{Identity Matrix} if Scalar Matrix and diagonal = 1
|
||||
\subitem $I_n$ is the identity matrix of order $n$.
|
||||
\item \textbf{Zero Matrix} if all entries are 0.
|
||||
\subitem Can denote by either $\overrightarrow{0}, 0$
|
||||
\item Square matrix is \textbf{symmetric} if symmetric wrt diagonal
|
||||
\subitem $A = (a_{ij})_{n \times n}$ is symmetric $\iff a_{ij} = a_{ji},\ \forall i, j$
|
||||
\item \textbf{Upper Triangular} if all entries \textbf{below} diagonal are zero.
|
||||
\subitem $A = (a_{ij})_{n \times n}$ is upper triangular $\iff a_{ij} = 0 \text{ if } i > j$
|
||||
\item \textbf{Lower Triangular} if all entries \textbf{above} diagonal are zero.
|
||||
\label{def:ltm}
|
||||
\subitem $A = (a_{ij})_{n \times n}$ is lower triangular $\iff a_{ij} = 0 \text{ if } i < j$
|
||||
\subitem if Matrix is both Lower and Upper triangular, its a Diagonal Matrix.
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
\subsection{Matrix Operations}
|
||||
|
||||
\begin{defn}[Matrix Operations]\ \\
|
||||
Let $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$
|
||||
\begin{itemize}
|
||||
\item Equality: $B = (b_{ij})_{p \times q}$, $A = B \iff m = p \ \& \ n = q \ \& \ a_{ij} = b_{ij} \forall i,j$
|
||||
\item Addition: $A + B = (a_{ij} + b_{ij})_{m \times n}$
|
||||
\item Subtraction: $A - B = (a_{ij} - b_{ij})_{m \times n}$
|
||||
\item Scalar Mult: $cA = (ca_{ij})_{m \times n}$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Matrix Multiplication] \ \\
|
||||
Let $A = (a_{ij})_{m \times p}, B = (b_{ij})_{p \times n}$
|
||||
\begin{itemize}
|
||||
\item $AB$ is the $m \times n$ matrix s.t. $(i,j)$ entry is $$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj} = \sum^p_{k=1}a_{ik}b_{kj}$$
|
||||
\item No of columns in $A$ = No of rows in $B$.
|
||||
\item Matrix multiplication is \textbf{NOT commutative}
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{theorem}[Matrix Properties]\ \\
|
||||
Let $A, B, C$ be $m \times p, p \times q, q \times n$ matrices
|
||||
\begin{itemize}
|
||||
\item Associative Law: $A(BC) = (AB)C$
|
||||
\item Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$
|
||||
\item Distributive Law: $(B_1 + B_2)A = B_1A + B_2A$
|
||||
\item $c(AB) = (cA)B = A(cB)$
|
||||
\item $A\textbf{0}_{p \times n} = \textbf{0}_{m \times n}$
|
||||
\item $A\textbf{I}_{n} = \textbf{I}_{n}A = A$
|
||||
\end{itemize}
|
||||
\end{theorem}
|
||||
|
||||
|
||||
\begin{defn}[Powers of Square Matricss]\ \\
|
||||
Let $A$ be a $m \times n$.
|
||||
|
||||
$AA$ is well defined $\iff m = n \iff A$ is square.
|
||||
|
||||
\textbf{Definition.} Let $A$ be square matrix of order $n$. Then Powers of a are
|
||||
$$
|
||||
A^k = \begin{cases}
|
||||
I_n & \text{if } k = 0 \\
|
||||
AA...A & \text{if } k \geq 1.
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
\textbf{Properties.}
|
||||
\begin{itemize}
|
||||
\item $A^mA^n = A^{m+n}, (A^m)^n = A^{mn}$
|
||||
\item $(AB)^2 = (AB)(AB) \neq A^2B^2 = (AA)(BB)$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
Matrix Multiplication Example:
|
||||
|
||||
\begin{itemize}
|
||||
\item Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$
|
||||
\item Let $a_1 = \begin{pmatrix}1 & 2 & 3 \end{pmatrix}, a_2 = \begin{pmatrix}4 & 5 & 6 \end{pmatrix}$
|
||||
\item $AB = \begin{pmatrix} a_1 & a_2 \end{pmatrix}B = \begin{pmatrix} a_1B \\ a_2B \end{pmatrix}$.
|
||||
\item $\begin{pmatrix}
|
||||
\begin{pmatrix}1 & 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \\
|
||||
\begin{pmatrix}4 & 5 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}
|
||||
\end{pmatrix} = \begin{pmatrix}
|
||||
\begin{pmatrix}2 & 1\end{pmatrix} \\
|
||||
\begin{pmatrix}8 & 7\end{pmatrix} \\
|
||||
\end{pmatrix}
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
\begin{note}[Representation of Linear System] \ \\
|
||||
\begin{itemize}
|
||||
\item $\begin{cases}
|
||||
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n & = b_1 \\
|
||||
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n & = b_2 \\
|
||||
\vdots & \vdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n & = b_m \\
|
||||
\end{cases}$
|
||||
|
||||
\item A = $\begin{pmatrix}
|
||||
a_{11} & a_{12} & ... & a_{1n} \\
|
||||
a_{21} & a_{22} & ... & a_{2n} \\
|
||||
\vdots & \vdots & & \vdots \\
|
||||
a_{m1} & a_{m2} & ... & a_{mn} \\
|
||||
\end{pmatrix}$, Coefficient Matrix, $A_{m\times n}$
|
||||
\item $x = \begin{pmatrix}
|
||||
x_{1} \\
|
||||
\vdots \\
|
||||
x_{n} \\
|
||||
\end{pmatrix}$, Variable Matrix, $x_{n \times 1}$
|
||||
\item $b = \begin{pmatrix}
|
||||
b_{1} \\
|
||||
\vdots \\
|
||||
b_{m} \\
|
||||
\end{pmatrix}$, Constant Matrix, $b_{m \times 1}$. Then $Ax = b$
|
||||
\item $A = (a_{ij})_{m\times n} $
|
||||
\item $m$ linear equations in $n$ variables, $x_1, ..., x_n$
|
||||
\item $a_{ij}$ are coefficients, $b_i$ are the constants
|
||||
\item Let $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$.
|
||||
\subitem $x_1 = u_1, \hdots, x_n = u_n$ is a solution to the system
|
||||
\subitem $\iff Au = b \iff u$ is a solution to $Ax = b$
|
||||
\item Let $a_j$ denote the $j$th column of $A$. Then
|
||||
\subitem $b = Ax = x_1a_1 + ... + x_na_n = \sum^n_{j=1}x_ja_j$
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
\begin{defn}[Transpose]\ \\
|
||||
\begin{itemize}
|
||||
\item Let $A = (a_{ij})_{m\times n}$
|
||||
\item The transpose of $A$ is $A^T = (a_{ji})_{n \times m}$
|
||||
\item $(A^T)^T = A$
|
||||
\item A is symmetric $\iff A = A^T$
|
||||
\item Let $B$ be $m \times n$, $(A+B)^T = A^T + B^T$
|
||||
\item Let $B$ be $n \times p$, $(AB)^T = B^TA^T$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Inverse]\ \\
|
||||
\begin{itemize}
|
||||
\item Let $A, B$ be matrices of same size
|
||||
\subitem $A + X = B \implies X = B - A = B + (-A)$
|
||||
\subitem $-A$ is the \textit{additive inverse} of $A$
|
||||
\item Let $A_{m\times n}, B_{m\times p}$ matrix.
|
||||
\subitem $AX = B \implies X = A^{-1}B$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
Let A be a \textbf{square matrix} of order $n$.
|
||||
\begin{itemize}
|
||||
\item If there exists a square matrix $B$ of order $N$ s.t. $AB = I_{n}$ and $BA = I_{n}$, then $A$ is \textbf{invertible} matrix and $B$ is inverse of $A$.
|
||||
\item If $A$ is not invertible, A is called singular.
|
||||
\item suppose $A$ is invertible with inverse $B$
|
||||
\item Let $C$ be any matrix having the same number of rows as $A$.
|
||||
$$\begin{aligned}
|
||||
AX = C &\implies B(AX) = BC \\
|
||||
&\implies (BA)X = BC \\
|
||||
&\implies X = BC.
|
||||
\end{aligned}$$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{defn}
|
||||
|
||||
\begin{theorem}[Properties of Inversion]\ \\
|
||||
Let $A$ be a square matrix.
|
||||
\begin{itemize}
|
||||
\item Let $A$ be an invertible matrix, then its inverse is unique.
|
||||
\item Cancellation Law: Let $A$ be an invertible matrix
|
||||
\subitem $AB_1 = AB_2 \implies B_1 = B_2$
|
||||
\subitem $C_1A = C_2A \implies C_1 = C_2$
|
||||
\subitem $AB = 0 \implies B = 0, CA = 0 \implies C = 0$ ($A$ is invertible, A cannot be 0)
|
||||
\subitem This fails if $A$ is singular
|
||||
\item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
|
||||
\subitem $A$ is invertible $\iff ad - bc \neq 0$
|
||||
\subitem $A$ is invertible $A^{-1} = \dfrac{1}{ad - bc} \begin{pmatrix}d & -b \\ -c & a \end{pmatrix}$
|
||||
|
||||
\end{itemize}
|
||||
Let $A$ and $B$ be invertible matrices of same order
|
||||
\begin{itemize}
|
||||
\item Let $c \neq 0$. Then $cA$ is invertible, $(cA^{-1} = \frac{1}{c}A^{-1}$
|
||||
\item $A^T$ is invertible, $(A^T)^{-1} = (A^{-1})^T$
|
||||
\item $AB$ is invertible, $(AB)^{-1} = (B^{-1}A^{-1})$
|
||||
\end{itemize}
|
||||
|
||||
Let $A$ be an invertible matrix.
|
||||
|
||||
\begin{itemize}
|
||||
\item $A^{-k} = (A^{-1})^k$
|
||||
\item $A^{m+n} = A^mA^n$
|
||||
\item $(A^m)^n = A^{mn}$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{defn}[Elementary Matrices] If it can be obtained from $I$ by performing single elementary row operation
|
||||
\begin{itemize}
|
||||
\item $cRi, c \neq 0: \begin{pmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & c & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{pmatrix}(cR_3)$
|
||||
\item $R_i \leftrightarrow R_j, i \neq j,: \begin{pmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 0
|
||||
\end{pmatrix}(R_2 \leftrightarrow R_4)$
|
||||
\item $R_i + cR_j, i \neq j,: \begin{pmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & c \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{pmatrix}(R_2 + cR_4)$
|
||||
\item Every elementary Matrix is invertible
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
$A = \begin{pmatrix}
|
||||
a_{11}&a_{12}&a_{13}\\
|
||||
a_{21}&a_{22}&a_{23}\\
|
||||
a_{31}&a_{32}&a_{33}\\
|
||||
a_{41}&a_{42}&a_{43}
|
||||
\end{pmatrix}$, $E = \begin{pmatrix}
|
||||
1&0&0&0\\
|
||||
0&1&0&0\\
|
||||
0&0&c&0\\
|
||||
0&0&0&1
|
||||
\end{pmatrix}(cR_3)$, $EA = \begin{pmatrix}
|
||||
a_{11}&a_{12}&a_{13}\\
|
||||
a_{21}&a_{22}&a_{23}\\
|
||||
ca_{31}&ca_{32}&ca_{33}\\
|
||||
a_{41}&a_{42}&a_{43}
|
||||
\end{pmatrix}$
|
||||
|
||||
\begin{theorem} Main Theorem for Invertible Matrices \\
|
||||
Let $A$ be a square matrix. Then the following are equivalent
|
||||
\begin{enumerate}
|
||||
\item $A$ is an invertible matrix.
|
||||
\item Linear System $Ax = b$ has a unique solution
|
||||
\item Linear System $Ax = 0$ has only the trivial solution
|
||||
\item RREF of $A$ is $I$
|
||||
\item A is the product of elementary matrices
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem} Find Inverse
|
||||
\begin{itemize}
|
||||
\item Let $A$ be an invertible Matrix.
|
||||
\item RREF of $(A | I)$ is $(I | A^{-1})$
|
||||
\end{itemize}
|
||||
|
||||
How to identify if Square Matrix is invertible?
|
||||
|
||||
\begin{itemize}
|
||||
\item Square matrix is invertible
|
||||
\subitem $\iff$ RREF is $I$
|
||||
\subitem $\iff$ All columns in its REF are pivot
|
||||
\subitem $\iff$ All rows in REF are nonzero
|
||||
\item Square matrix is singular
|
||||
\subitem $\iff$ RREF is \textbf{NOT} $I$
|
||||
\subitem $\iff$ Some columns in its REF are non-pivot
|
||||
\subitem $\iff$ Some rows in REF are zero.
|
||||
\item $A$ and $B$ are square matrices such that $AB = I$
|
||||
\subitem then $A$ and $B$ are invertible
|
||||
\end{itemize}
|
||||
\end{theorem}
|
||||
|
||||
\begin{defn}[LU Decomposition with Type 3 Operations]\ \\
|
||||
\begin{itemize}
|
||||
\item Type 3 Operations: $(R_i + cR_j, i > j)$
|
||||
\item Let $A$ be a $m \times n$ matrix. Consider Gaussian Elimination $A \dashrightarrow R$
|
||||
\item Let $R \dashrightarrow A$ be the operations in reverse
|
||||
\item Apply the same operations to $I_m \dashrightarrow L$. Then $A = LR$
|
||||
\item $L$ is a \hyperref[def:ltm]{lower triangular matrix} with 1 along diagonal
|
||||
\item If $A$ is square matrix, $R = U$
|
||||
\end{itemize}
|
||||
|
||||
Application:
|
||||
\begin{itemize}
|
||||
\item $A$ has LU decomposition $A = LU$, $Ax = b$ i.e., $LUx = b$
|
||||
\item Let $y = Ux$, then it is reduced to $Ly = b$
|
||||
\item $Ly = b$ can be solved with forward substitution.
|
||||
\item $Ux = y$ is the REF of A.
|
||||
\item $Ux = y$ can be solved using backward substitution.
|
||||
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[LU Decomposition with Type II Operations]\ \\
|
||||
\begin{itemize}
|
||||
\item Type 2 Operations: $(R_i \leftrightarrow R_j)$, where 2 rows are swapped
|
||||
\item $A \xrightarrow[]{E_1} \bullet \xrightarrow[]{E_2}\bullet \xrightarrow[E_3]{R_i \iff R_j}\bullet \xrightarrow[]{E_4}\bullet \xrightarrow[]{E_5} R$
|
||||
\item $A = E^{-1}_1E^{-1}_2E^{}_3E^{-1}_4E^{-1}_5R$
|
||||
\item $E_3A = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5R$
|
||||
\item $P = E_3, L = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5, R = U$, $PA = LU$
|
||||
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Column Operations]\ \\
|
||||
\begin{itemize}
|
||||
\item Pre-multiplication of Elementary matrix $\iff$ Elementary row operation
|
||||
\subitem $A \to B \iff B = E_1E_2...E_kA$
|
||||
\item Post-Multiplication of Elementary matrix $\iff$ Elementary Column Operation
|
||||
\subitem $A \to B \iff B = AE_1E_2...E_k$
|
||||
\item If $E$ is obtained from $I_n$ by single elementary column operation, then
|
||||
\subitem $I \xrightarrow[]{kC_i}E \iff I \xrightarrow[]{kR_i}E$
|
||||
\subitem $I \xrightarrow[]{C_i \leftrightarrow C_j}E \iff I \xrightarrow[]{R_i \leftrightarrow R_j}E$
|
||||
\subitem $I \xrightarrow[]{C_i + kC_j}E \iff I \xrightarrow[]{R_j + kR_i}E$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\subsection{Determinants}
|
||||
|
||||
\begin{defn}[Determinants of $2 \times 2$ Matrix]\ \\
|
||||
\begin{itemize}
|
||||
\item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
|
||||
\item $\det(A) = |A| = ad - bc$
|
||||
\end{itemize}
|
||||
Solving Linear equations with determinants for $2 \times 2$
|
||||
\begin{itemize}
|
||||
\item $x_1 =
|
||||
\dfrac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}
|
||||
{\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$, $x_2 =
|
||||
\dfrac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}
|
||||
{\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Determinants]\ \\
|
||||
\begin{itemize}
|
||||
\item Suppose $A$ is invertible, then there exists EROs such that
|
||||
\item $A \xrightarrow{ero_1} A_1 \rightarrow ... \rightarrow A_{k-1} \xrightarrow{ero_k}A_k = I$
|
||||
\item Then $\det(A)$ can be evaluated backwards.
|
||||
\subitem E.g. $A \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{3R_2} \bullet \xrightarrow{R_2 + 2R_4} I \implies det(A) = 1 \to 1 \to \frac{1}{3} \to -\frac{1}{3}$
|
||||
\item Let $M_{ij}$ be submatrix where the $i$th row and $j$th column are deleted
|
||||
\item Let $A_{ij} = (-1)^{i+j}\det(M_{ij})$, which is the $(i, j)$-cofactor
|
||||
\item $\det(A) = a_{11}A_{11} + a_{12}A_{12} + ... + a_{1n}A_{1n}$
|
||||
|
||||
\item $\det(I) = 1$
|
||||
\item $A \xrightarrow{cR_i} B \implies \det(B) = c\det(A)$
|
||||
\subitem $I \xrightarrow{cR_i} E \implies \det(E) = c$
|
||||
\item $A \xrightarrow{R_1 \leftrightarrow R_2} B \implies \det(B) = -\det(A)$
|
||||
\subitem $I \xrightarrow{R_1 \leftrightarrow R_2} E \implies \det(E) = -1$
|
||||
\item $A \xrightarrow{R_i + cR_j} B \implies \det(B) = \det(A), i \neq j$
|
||||
\subitem $I \xrightarrow{R_i + cR_j} E \implies \det(E) = 1$
|
||||
\item $\det(EA) = \det(E)\det(A)$
|
||||
\end{itemize}
|
||||
|
||||
Calculating determinants easier
|
||||
\begin{itemize}
|
||||
\item Let $A$ be square matrix. Apply Gaussian Elimination to get REF $R$
|
||||
\item $A \xrightarrow{E_1} \bullet \xrightarrow{E_2} \bullet ... \bullet \xrightarrow{E_k} R$
|
||||
\item $A \xleftarrow{E^{-1}_1} \bullet \xleftarrow{E^{-1}_2} \bullet ... \bullet \xleftarrow{E^{-1}_k} R$
|
||||
\item Since $E_i$ and $E^{-1}_k$ is type $II$ or $III$, $\det(E_i) = -1 / 1$
|
||||
\subitem $\det(A) = (-1)^t\det(R)$, where $t$ is no of type $II$ or $III$ operations
|
||||
\item If $A$ is singluar, then $R$ has a zero row, and then $det(A) = 0$
|
||||
\item If A is invertible, then all rows of $R$ are nonzero
|
||||
\subitem $\det(R) = a_{11}a_{22}...{a_nn}$, the product of diagonal entries.
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\subsection{Recap}
|
||||
\begin{itemize}
|
||||
\item If A has a REF
|
||||
\subitem If there is a zero row => Singular matrix
|
||||
\subitem All rows are nonzero => invertible Matrix
|
||||
\item If A is invertible, Using Gauss Jordan Elim $(A | I) \to (I | A^{-1})$
|
||||
\item
|
||||
\end{itemize}
|
||||
|
||||
\subsection{More about Determinants}
|
||||
|
||||
\begin{defn}[Determinant Properties]\ \\
|
||||
$A$ is a Square Matrix
|
||||
\begin{itemize}
|
||||
\item $\det(A) = 0 \implies A$ is singular
|
||||
\item $\det(A) \neq 0 \implies A$ is invertible
|
||||
\item $\det(A) = \det(A^T)$
|
||||
\item $\det(cA) = c^n\det(A)$, where $n$ is the order of the matrix
|
||||
\item If $A$ is triangular, $\det(A)$ product of diagonal entries
|
||||
\item $\det(AB) = \det(A)\det(B)$
|
||||
\item $\det(A^{-1}) = [\det(A)]^{-1}$
|
||||
\end{itemize}
|
||||
|
||||
Cofactor Expansion:
|
||||
\begin{itemize}
|
||||
\item To eavluate determinant using cofactor expansion, expand row/column with most no of zeros.
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\subsection{Finding Determinants TLDR}
|
||||
\begin{defn}[Finding Determinants]\ \\
|
||||
\begin{itemize}
|
||||
\item If $A$ has zero row / column, $\det(A) = 0$
|
||||
\item If $A$ is triangular, $det(A) = a_{11}a_{22}...a_{nn}$
|
||||
\item If Order $n = 2 \to \det(A) = a_{11}a_{22} - a_{12}a_{21}$
|
||||
|
||||
\item If row/column has many 0, use cofactor expansion
|
||||
\item Use Gaussian Elimination to get REF
|
||||
\subitem $\det(A) = (-1)^t\det(R), t$ is no of type $II$ operations
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Finding Inverse with Adjoint Matrix]\ \\
|
||||
\begin{itemize}
|
||||
\item $\text{adj}(A) = (A_{ji})_{n\times n} = (A_{ij})^T_{n\times n}$
|
||||
\item $A^{-1} = [\det(A)]^{-1}\text{adj}(A)$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Cramer's Rule] Suppose $A$ is an invertible matrix of order $n$
|
||||
\begin{itemize}
|
||||
\item Liner system $Ax = b$ has unique solution
|
||||
\item $x = \dfrac{1}{\det(A)}\begin{pmatrix}\det(A_1) \\ \vdots \\ det(A_n) \end{pmatrix}$,
|
||||
\item $A_j$ is obtained by replacing the $j$th column in $A$ with $b$.
|
||||
\end{itemize}
|
||||
\end{defn}
|
12
ma1522/ch_03.tex
Normal file
12
ma1522/ch_03.tex
Normal file
@ -0,0 +1,12 @@
|
||||
|
||||
\subsection{Euclidian n-Spaces}
|
||||
|
||||
\begin{defn}[Vector Definitions]\ \\
|
||||
\begin{itemize}
|
||||
\item $n$-vector : $v = (v_1, v_2, ..., v_n)$
|
||||
\item $\vec{PQ} // \vec{P'Q'} \implies \vec{PQ} = \vec{P'Q'}$
|
||||
\item $|| \vec{PQ} || = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2}$
|
||||
\item $u + v = (u_1 + v_1, u_2 + v_2), u = (u_1, u_2), v = (v_1, v_2)$
|
||||
\item $n$-vector can be viewed as a row matrix / column matrix
|
||||
\end{itemize}
|
||||
\end{defn}
|
@ -1,177 +0,0 @@
|
||||
\subsection{Linear Algebra}
|
||||
\begin{itemize}
|
||||
\item \textbf{Linear} The study of items/planes and objects which are flat
|
||||
\item \textbf{Algebra} Objects are not as simple as numbers
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Linear Systems \& Their Solutions}
|
||||
|
||||
Points on a straight line are all the points $(x, y)$ on the $xy$ plane satisfying the linear eqn: $ax + by = c$, where $a, b > 0$
|
||||
|
||||
\subsubsection{Linear Equation}
|
||||
Linear eqn in $n$ variables (unknowns) is an eqn in the form
|
||||
$$ a_1x_1 + a_2x_2 + ... + a_nx_n = b$$
|
||||
where $a_1, a_2, ..., a_n, b$ are constants.
|
||||
|
||||
\begin{note}
|
||||
In a linear system, we don't assume that $a_1, a_2, ..., a_n$ are not all 0
|
||||
\begin{itemize}
|
||||
\item If $a_1 = ... = a_n = 0$ but $b \neq 0$, it is \textbf{inconsistent}
|
||||
|
||||
E.g. $0x_1 + 0x_2 = 1$
|
||||
|
||||
\item If $a_1 = ... = a_n = b = 0$, it is a \textbf{zero equation}
|
||||
|
||||
E.g. $0x_1 + 0x_2 = 0$
|
||||
\item Linear equation which is not a zero equation is a \textbf{nonzero equation}
|
||||
|
||||
E.g. $2x_1 - 3x_2 = 4$
|
||||
\item The following are not linear equations
|
||||
\begin{itemize}
|
||||
\item $xy = 2$
|
||||
\item $\sin\theta + \cos\phi = 0.2$
|
||||
\item $x_1^2 + x_2^2 + ... + x_n^2 = 1$
|
||||
\item $x = e^y$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
In the $xyz$ space, linear equation $ax + by + cz = d$ where $a, b, c > 0$ represents a plane
|
||||
|
||||
\subsubsection{Solutions to a Linear Equation}
|
||||
Let $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ be a linear eqn in n variables \\
|
||||
For real numbers $s_1+ s_2+ ... + s_n$, if $a_1s_1 + a_2s_2 + ... + a_ns_n = b$, then $x_1 = s_1, x_2 = s_2, x_n = s_n$ is a solution to the linear equation \\
|
||||
The set of all solutions is the \textbf{solution set}\\
|
||||
Expression that gives the entire solution set is the \textbf{general solution}
|
||||
|
||||
\textbf{Zero Equation} is satified by any values of $x_1, x_2,... x_n$
|
||||
|
||||
General solution is given by $(x_1, x_2, ..., x_n) = (t_1, t_2, ..., t_n)$
|
||||
|
||||
|
||||
\subsubsection{Examples: Linear equation $4x-2y = 1$}
|
||||
\begin{itemize}
|
||||
\item x can take any arbitary value, say t
|
||||
\item $x = t \Rightarrow y = 2t - \frac{1}{2}$
|
||||
\item General Solution:
|
||||
$
|
||||
\begin{cases}
|
||||
x = t & \text{t is a parameter}\\
|
||||
y = 2t - \frac{1}{2}
|
||||
\end{cases}
|
||||
$
|
||||
\item y can take any arbitary value, say s
|
||||
\item $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}$
|
||||
\item General Solution:
|
||||
$
|
||||
\begin{cases}
|
||||
y = s & \text{s is a parameter}\\
|
||||
x = \frac{1}{2}s + \frac{1}{4}
|
||||
\end{cases}
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Example: Linear equation $x_1 - 4x_2 + 7x_3 = 5$}
|
||||
|
||||
\begin{itemize}
|
||||
\item $x_2$ and $x_3$ can be chosen arbitarily, $s$ and $t$
|
||||
\item $x_1 = 5 + 4s -7t$
|
||||
\item General Solution:
|
||||
$
|
||||
\begin{cases}
|
||||
x_1 = 5 + 4s -7t \\
|
||||
x_2 = s & s, t \text{ are arbitrary parameters}\\
|
||||
x_3 = t \\
|
||||
\end{cases}
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Linear System}
|
||||
Linear System of m linear equations in n variables is
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\
|
||||
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\
|
||||
\vdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
where $a_{ij}, b$ are real constants and $a_{ij}$ is the coeff of $x_j$ in the $i$th equation
|
||||
|
||||
\begin{note} Linear Systems
|
||||
\begin{itemize}
|
||||
\item If $a_{ij}$ and $b_i$ are zero, linear system is called a \textbf{zero system}
|
||||
\item If $a_{ij}$ and $b_i$ is nonzero, linear system is called a \textbf{nonzero system}
|
||||
\item If $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$ is a solution to \textbf{every equation} in the system, then its a solution to the system
|
||||
\item If every equation has a solution, there might not be a solution to the system
|
||||
\item \textbf{Consistent} if it has at least 1 solution
|
||||
\item \textbf{Inconsistent} if it has no solutions
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
|
||||
\subsubsection{Example}
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
a_1x + b1_y = c_1 \\
|
||||
a_2x + b2_y = c_2 \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
where $a_1, b_1, a_2, b_2$ not all zero
|
||||
|
||||
In $xy$ plane, each equation represents a straight line, $L_1, L_2$
|
||||
|
||||
\begin{itemize}
|
||||
\item If $L_1, L_2$ are parallel, there is no solution
|
||||
\item If $L_1, L_2$ are not parallel, there is 1 solution
|
||||
\item If $L_1, L_2$ coinside(same line), there are infinitely many solution
|
||||
\end{itemize}
|
||||
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
a_1x + b1_y + c_1z = d_1 \\
|
||||
a_2x + b2_y + c_2z = d_2 \\
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
where $a_1, b_1, c_1, a_2, b_2, c_2$ not all zero
|
||||
|
||||
In $xyz$ space, each equation represents a plane, $P_1, P_2$
|
||||
|
||||
\begin{itemize}
|
||||
\item If $P_1, P_2$ are parallel, there is no solution
|
||||
\item If $P_1, P_2$ are not parallel, there is $\infty$ solutions (on the straight line intersection)
|
||||
\item If $P_1, P_2$ coinside(same plane), there are infinitely many solutions
|
||||
\item Same Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1: d_2$
|
||||
\item Parallel Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$
|
||||
\item Intersect Plane $\Leftrightarrow a_1 : a_2, b_1 : b_2, c_1 : c_2$ are not the same
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Augmented Matrix}
|
||||
$
|
||||
\begin{amatrix}{3}
|
||||
a_{11} & a_{12} & a_{1n} & b_1 \\
|
||||
a_{21} & a_{12} & a_{2n} & b_2 \\
|
||||
a_{m1} & a_{m2} & a_{mn} & b_m \\
|
||||
\end{amatrix}
|
||||
$
|
||||
|
||||
\subsection{Elementary Row Operations}
|
||||
To solve a linear system we perform operations:
|
||||
\begin{itemize}
|
||||
\item Multiply equation by nonzero constant
|
||||
\item Interchange 2 equations
|
||||
\item add a constant multiple of an equation to another
|
||||
\end{itemize}
|
||||
|
||||
Likewise, for a augmented matrix, the operations are on the \textbf{rows} of the augmented matrix
|
||||
|
||||
\begin{itemize}
|
||||
\item Multiply row by nonzero constant
|
||||
\item Interchange 2 rows
|
||||
\item add a constant multiple of a row to another row
|
||||
\end{itemize}
|
||||
|
||||
To note: all these operations are revertible
|
@ -1,60 +0,0 @@
|
||||
\subsection{Review}
|
||||
|
||||
\begin{align*}
|
||||
I: & cR_i, c \neq 0 \\
|
||||
II: & R_i \Leftrightarrow R_j \\\
|
||||
III: & R_i \Rightarrow R_i + cR_j
|
||||
\end{align*}
|
||||
|
||||
Solving REF:
|
||||
\begin{enumerate}
|
||||
\item Set var -> non-pivot cols as params
|
||||
\item Solve var -> pivot cols backwards
|
||||
|
||||
\# of nonzero rows = \# pivot pts = \# of pivot cols
|
||||
\end{enumerate}
|
||||
|
||||
Gaussian Elimination
|
||||
\begin{enumerate}
|
||||
\item Given a matrix $A$, find left most non-zero \textbf{column}. If the leading number is NOT zero, use $II$ to swap rows.
|
||||
\item Ensure the rest of the column is 0 (by subtracting the current row from tht other rows)
|
||||
\item Cover the top row and continue for next rows
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{Consistency}
|
||||
\begin{defn}[Consistency]\ \\
|
||||
Suppose that $A$ is the Augmented Matrix of a linear system, and $R$ is a row-echelon form of $A$.
|
||||
\begin{itemize}
|
||||
\item When the system has no solution(inconsistent)?
|
||||
\subitem There is a row in $R$ with the form $(0 0 ... 0 | \otimes)$ where $\otimes \neq 0$
|
||||
\subitem Or, the last column is a pivot column
|
||||
\item When the system has exactly one solution?
|
||||
\subitem Last column is non-pivot
|
||||
\subitem All other columns are pivot columns
|
||||
\item When the system has infinitely many solutions?
|
||||
\subitem Last column is non-pivot
|
||||
\subitem Some other columns are non-pivot columns.
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{note} Notations\ \\
|
||||
For elementary row operations
|
||||
\begin{itemize}
|
||||
\item Multiply $i$th row by (nonzero) const $k$: $kR_i$
|
||||
\item Interchange $i$th and $j$th rows: $R_i \leftrightarrow R_j$
|
||||
\item Add $K$ times $i$th row to $j$th row: $R_j + kR_i$
|
||||
\end{itemize}
|
||||
\textbf{Note}
|
||||
\begin{itemize}
|
||||
\item $R_1 + R_2$ means "add 2nd row to the 1st row".
|
||||
\item $R_2 + R_1$ means "add 1nd row to the 2st row".
|
||||
\end{itemize}
|
||||
|
||||
\textbf{Example}
|
||||
$$ \begin{pmatrix} a \\ b \end{pmatrix}
|
||||
\xrightarrow{R_1 + R_2} \begin{pmatrix} a + b \\ b \end{pmatrix}
|
||||
\xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} a + b \\ -a \end{pmatrix}
|
||||
\xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix}
|
||||
\xrightarrow{(-1)R_2}\begin{pmatrix} b \\ a \end{pmatrix}
|
||||
$$
|
||||
\end{note}
|
@ -1,92 +0,0 @@
|
||||
\subsection{Homogeneous Linear System}
|
||||
|
||||
\begin{defn}[Homogeneous Linear Equation \& System]\ where
|
||||
\begin{itemize}
|
||||
\item Homogeneous Linear Equation: $a_1x_1 + a_2x_2 + ... + a_nx_n = 0 \iff x_1 = 0, x_2 = 0,... , x_n = 0$
|
||||
\item Homogeneous Linear Equation: $\begin{cases}
|
||||
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 0 \\
|
||||
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0 \\
|
||||
\vdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = 0 \\
|
||||
\end{cases}$
|
||||
|
||||
\item This is the trivial solution of a homogeneous linear system.
|
||||
\end{itemize}
|
||||
|
||||
You can use this to solve problems like Find the equation $ax^2 + by^2 + cz^2 = d$, in the $xyz$ plane which contains the points $(1, 1, -1), (1, 3, 3), (-2, 0, 2)$.
|
||||
|
||||
\begin{itemize}
|
||||
\item Solve by first converting to Augmented Matrix, where the last column is all 0. During working steps, this column can be omitted.
|
||||
\item With the \hyperref[def:rref]{RREF}, you can set $d$ as $t$ and get values for $a, b, c$ in terms of $t$.
|
||||
\item sub in $t$ into the original equation and factorize $t$ out from both sides, for values where $t \neq 0$
|
||||
\end{itemize}
|
||||
|
||||
\end{defn}
|
||||
|
||||
\subsection{Matrix}
|
||||
|
||||
\begin{defn}[Matrix]\ \\
|
||||
\begin{itemize}
|
||||
\item $\begin{pmatrix}
|
||||
a_{11} & a_{12} & ... & a_{1n} \\
|
||||
a_{21} & a_{22} & ... & a_{2n} \\
|
||||
\vdots \\
|
||||
a_{m1} & a_{m2} & ... & a_{mn}
|
||||
\end{pmatrix}$
|
||||
\item $m$ is no of rows, $n$ is no of columns
|
||||
\item size is $m \times n$
|
||||
\item $A = (a_{ij})_{m \times n}$
|
||||
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\subsection{Special Matrix}
|
||||
|
||||
\begin{note}[Special Matrices]\ \\
|
||||
\begin{itemize}
|
||||
\item Row Matrix : $\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$
|
||||
\item Column Matrix
|
||||
\subitem $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$
|
||||
\item \textbf{Square Matrix}, $n \times n$ matrix / matrix of order $n$.
|
||||
\subitem Let $A = (a_{ij})$ be a square matrix of order $n$
|
||||
\item Diagonal of $A$ is $a_{11}, a_{22}, ..., a_{nn}$.
|
||||
\item \textbf{Diagonal Matrix} if Square Matrix and non-diagonal entries are zero
|
||||
\subitem Diagonals can be zero
|
||||
\subitem \textbf{Identity Matrix} is a special case of this
|
||||
\item \textbf{Square Matrix} if Diagonal Matrix and diagonal entries are all the same.
|
||||
\item \textbf{Identity Matrix} if Scalar Matrix and diagonal = 1
|
||||
\subitem $I_n$ is the identity matrix of order $n$.
|
||||
\item \textbf{Zero Matrix} if all entries are 0.
|
||||
\subitem Can denote by either $\overrightarrow{0}, 0$
|
||||
\item Square matrix is \textbf{symmetric} if symmetric wrt diagonal
|
||||
\subitem $A = (a_{ij})_{n \times n}$ is symmetric $\iff a_{ij} = a_{ji},\ \forall i, j$
|
||||
\item \textbf{Upper Triangular} if all entries \textbf{below} diagonal are zero.
|
||||
\subitem $A = (a_{ij})_{n \times n}$ is upper triangular $\iff a_{ij} = 0 \text{ if } i > j$
|
||||
\item \textbf{Lower Triangular} if all entries \textbf{above} diagonal are zero.
|
||||
\label{def:ltm}
|
||||
\subitem $A = (a_{ij})_{n \times n}$ is lower triangular $\iff a_{ij} = 0 \text{ if } i < j$
|
||||
\subitem if Matrix is both Lower and Upper triangular, its a Diagonal Matrix.
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
\subsection{Matrix Operations}
|
||||
|
||||
\begin{defn}[Matrix Operations]\ \\
|
||||
Let $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$
|
||||
\begin{itemize}
|
||||
\item Equality: $B = (b_{ij})_{p \times q}$, $A = B \iff m = p \ \& \ n = q \ \& \ a_{ij} = b_{ij} \forall i,j$
|
||||
\item Addition: $A + B = (a_{ij} + b_{ij})_{m \times n}$
|
||||
\item Subtraction: $A - B = (a_{ij} - b_{ij})_{m \times n}$
|
||||
\item Scalar Mult: $cA = (ca_{ij})_{m \times n}$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Matrix Multiplication] \ \\
|
||||
Let $A = (a_{ij})_{m \times p}, B = (b_{ij})_{p \times n}$
|
||||
\begin{itemize}
|
||||
\item $AB$ is the $m \times n$ matrix s.t. $(i,j)$ entry is $$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj} = \sum^p_{k=1}a_{ik}b_{kj}$$
|
||||
\item No of columns in $A$ = No of rows in $B$.
|
||||
\item Matrix multiplication is \textbf{NOT commutative}
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
@ -1,121 +0,0 @@
|
||||
\begin{theorem}[Matrix Properties]\ \\
|
||||
Let $A, B, C$ be $m \times p, p \times q, q \times n$ matrices
|
||||
\begin{itemize}
|
||||
\item Associative Law: $A(BC) = (AB)C$
|
||||
\item Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$
|
||||
\item Distributive Law: $(B_1 + B_2)A = B_1A + B_2A$
|
||||
\item $c(AB) = (cA)B = A(cB)$
|
||||
\item $A\textbf{0}_{p \times n} = \textbf{0}_{m \times n}$
|
||||
\item $A\textbf{I}_{n} = \textbf{I}_{n}A = A$
|
||||
\end{itemize}
|
||||
\end{theorem}
|
||||
|
||||
|
||||
\begin{defn}[Powers of Square Matricss]\ \\
|
||||
Let $A$ be a $m \times n$.
|
||||
|
||||
$AA$ is well defined $\iff m = n \iff A$ is square.
|
||||
|
||||
\textbf{Definition.} Let $A$ be square matrix of order $n$. Then Powers of a are
|
||||
$$
|
||||
A^k = \begin{cases}
|
||||
I_n & \text{if } k = 0 \\
|
||||
AA...A & \text{if } k \geq 1.
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
\textbf{Properties.}
|
||||
\begin{itemize}
|
||||
\item $A^mA^n = A^{m+n}, (A^m)^n = A^{mn}$
|
||||
\item $(AB)^2 = (AB)(AB) \neq A^2B^2 = (AA)(BB)$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
Matrix Multiplication Example:
|
||||
|
||||
\begin{itemize}
|
||||
\item Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$
|
||||
\item Let $a_1 = \begin{pmatrix}1 & 2 & 3 \end{pmatrix}, a_2 = \begin{pmatrix}4 & 5 & 6 \end{pmatrix}$
|
||||
\item $AB = \begin{pmatrix} a_1 & a_2 \end{pmatrix}B = \begin{pmatrix} a_1B \\ a_2B \end{pmatrix}$.
|
||||
\item $\begin{pmatrix}
|
||||
\begin{pmatrix}1 & 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \\
|
||||
\begin{pmatrix}4 & 5 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}
|
||||
\end{pmatrix} = \begin{pmatrix}
|
||||
\begin{pmatrix}2 & 1\end{pmatrix} \\
|
||||
\begin{pmatrix}8 & 7\end{pmatrix} \\
|
||||
\end{pmatrix}
|
||||
$
|
||||
\end{itemize}
|
||||
|
||||
\begin{note}[Representation of Linear System] \ \\
|
||||
\begin{itemize}
|
||||
\item $\begin{cases}
|
||||
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n & = b_1 \\
|
||||
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n & = b_2 \\
|
||||
\vdots & \vdots \\
|
||||
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n & = b_m \\
|
||||
\end{cases}$
|
||||
|
||||
\item A = $\begin{pmatrix}
|
||||
a_{11} & a_{12} & ... & a_{1n} \\
|
||||
a_{21} & a_{22} & ... & a_{2n} \\
|
||||
\vdots & \vdots & & \vdots \\
|
||||
a_{m1} & a_{m2} & ... & a_{mn} \\
|
||||
\end{pmatrix}$, Coefficient Matrix, $A_{m\times n}$
|
||||
\item $x = \begin{pmatrix}
|
||||
x_{1} \\
|
||||
\vdots \\
|
||||
x_{n} \\
|
||||
\end{pmatrix}$, Variable Matrix, $x_{n \times 1}$
|
||||
\item $b = \begin{pmatrix}
|
||||
b_{1} \\
|
||||
\vdots \\
|
||||
b_{m} \\
|
||||
\end{pmatrix}$, Constant Matrix, $b_{m \times 1}$. Then $Ax = b$
|
||||
\item $A = (a_{ij})_{m\times n} $
|
||||
\item $m$ linear equations in $n$ variables, $x_1, ..., x_n$
|
||||
\item $a_{ij}$ are coefficients, $b_i$ are the constants
|
||||
\item Let $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$.
|
||||
\subitem $x_1 = u_1, \hdots, x_n = u_n$ is a solution to the system
|
||||
\subitem $\iff Au = b \iff u$ is a solution to $Ax = b$
|
||||
\item Let $a_j$ denote the $j$th column of $A$. Then
|
||||
\subitem $b = Ax = x_1a_1 + ... + x_na_n = \sum^n_{j=1}x_ja_j$
|
||||
\end{itemize}
|
||||
\end{note}
|
||||
|
||||
\begin{defn}[Transpose]\ \\
|
||||
\begin{itemize}
|
||||
\item Let $A = (a_{ij})_{m\times n}$
|
||||
\item The transpose of $A$ is $A^T = (a_{ji})_{n \times m}$
|
||||
\item $(A^T)^T = A$
|
||||
\item A is symmetric $\iff A = A^T$
|
||||
\item Let $B$ be $m \times n$, $(A+B)^T = A^T + B^T$
|
||||
\item Let $B$ be $n \times p$, $(AB)^T = B^TA^T$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Inverse]\ \\
|
||||
\begin{itemize}
|
||||
\item Let $A, B$ be matrices of same size
|
||||
\subitem $A + X = B \implies X = B - A = B + (-A)$
|
||||
\subitem $-A$ is the \textit{additive inverse} of $A$
|
||||
\item Let $A_{m\times n}, B_{m\times p}$ matrix.
|
||||
\subitem $AX = B \implies X = A^{-1}B$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
Let A be a \textbf{square matrix} of order $n$.
|
||||
\begin{itemize}
|
||||
\item If there exists a square matrix $B$ of order $N$ s.t. $AB = I_{n}$ and $BA = I_{n}$, then $A$ is \textbf{invertible} matrix and $B$ is inverse of $A$.
|
||||
\item If $A$ is not invertible, A is called singular.
|
||||
\item suppose $A$ is invertible with inverse $B$
|
||||
\item Let $C$ be any matrix having the same number of rows as $A$.
|
||||
$$\begin{aligned}
|
||||
AX = C &\implies B(AX) = BC \\
|
||||
&\implies (BA)X = BC \\
|
||||
&\implies X = BC.
|
||||
\end{aligned}$$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{defn}
|
@ -1,72 +0,0 @@
|
||||
\begin{theorem}[Properties of Inversion]\ \\
|
||||
Let $A$ be a square matrix.
|
||||
\begin{itemize}
|
||||
\item Let $A$ be an invertible matrix, then its inverse is unique.
|
||||
\item Cancellation Law: Let $A$ be an invertible matrix
|
||||
\subitem $AB_1 = AB_2 \implies B_1 = B_2$
|
||||
\subitem $C_1A = C_2A \implies C_1 = C_2$
|
||||
\subitem $AB = 0 \implies B = 0, CA = 0 \implies C = 0$ ($A$ is invertible, A cannot be 0)
|
||||
\subitem This fails if $A$ is singular
|
||||
\item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
|
||||
\subitem $A$ is invertible $\iff ad - bc \neq 0$
|
||||
\subitem $A$ is invertible $A^{-1} = \dfrac{1}{ad - bc} \begin{pmatrix}d & -b \\ -c & a \end{pmatrix}$
|
||||
|
||||
\end{itemize}
|
||||
Let $A$ and $B$ be invertible matrices of same order
|
||||
\begin{itemize}
|
||||
\item Let $c \neq 0$. Then $cA$ is invertible, $(cA^{-1} = \frac{1}{c}A^{-1}$
|
||||
\item $A^T$ is invertible, $(A^T)^{-1} = (A^{-1})^T$
|
||||
\item $AB$ is invertible, $(AB)^{-1} = (B^{-1}A^{-1})$
|
||||
\end{itemize}
|
||||
|
||||
Let $A$ be an invertible matrix.
|
||||
|
||||
\begin{itemize}
|
||||
\item $A^{-k} = (A^{-1})^k$
|
||||
\item $A^{m+n} = A^mA^n$
|
||||
\item $(A^m)^n = A^{mn}$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{defn}[Elementary Matrices] If it can be obtained from $I$ by performing single elementary row operation
|
||||
\begin{itemize}
|
||||
\item $cRi, c \neq 0: \begin{pmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & c & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{pmatrix}(cR_3)$
|
||||
\item $R_i \leftrightarrow R_j, i \neq j,: \begin{pmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 0
|
||||
\end{pmatrix}(R_2 \leftrightarrow R_4)$
|
||||
\item $R_i + cR_j, i \neq j,: \begin{pmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & c \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{pmatrix}(R_2 + cR_4)$
|
||||
\item Every elementary Matrix is invertible
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
$A = \begin{pmatrix}
|
||||
a_{11}&a_{12}&a_{13}\\
|
||||
a_{21}&a_{22}&a_{23}\\
|
||||
a_{31}&a_{32}&a_{33}\\
|
||||
a_{41}&a_{42}&a_{43}
|
||||
\end{pmatrix}$, $E = \begin{pmatrix}
|
||||
1&0&0&0\\
|
||||
0&1&0&0\\
|
||||
0&0&c&0\\
|
||||
0&0&0&1
|
||||
\end{pmatrix}(cR_3)$, $EA = \begin{pmatrix}
|
||||
a_{11}&a_{12}&a_{13}\\
|
||||
a_{21}&a_{22}&a_{23}\\
|
||||
ca_{31}&ca_{32}&ca_{33}\\
|
||||
a_{41}&a_{42}&a_{43}
|
||||
\end{pmatrix}$
|
@ -1,107 +0,0 @@
|
||||
\begin{theorem} Main Theorem for Invertible Matrices \\
|
||||
Let $A$ be a square matrix. Then the following are equivalent
|
||||
\begin{enumerate}
|
||||
\item $A$ is an invertible matrix.
|
||||
\item Linear System $Ax = b$ has a unique solution
|
||||
\item Linear System $Ax = 0$ has only the trivial solution
|
||||
\item RREF of $A$ is $I$
|
||||
\item A is the product of elementary matrices
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
|
||||
\begin{theorem} Find Inverse
|
||||
\begin{itemize}
|
||||
\item Let $A$ be an invertible Matrix.
|
||||
\item RREF of $(A | I)$ is $(I | A^{-1})$
|
||||
\end{itemize}
|
||||
|
||||
How to identify if Square Matrix is invertible?
|
||||
|
||||
\begin{itemize}
|
||||
\item Square matrix is invertible
|
||||
\subitem $\iff$ RREF is $I$
|
||||
\subitem $\iff$ All columns in its REF are pivot
|
||||
\subitem $\iff$ All rows in REF are nonzero
|
||||
\item Square matrix is singular
|
||||
\subitem $\iff$ RREF is \textbf{NOT} $I$
|
||||
\subitem $\iff$ Some columns in its REF are non-pivot
|
||||
\subitem $\iff$ Some rows in REF are zero.
|
||||
\item $A$ and $B$ are square matrices such that $AB = I$
|
||||
\subitem then $A$ and $B$ are invertible
|
||||
\end{itemize}
|
||||
\end{theorem}
|
||||
|
||||
\begin{defn}[LU Decomposition with Type 3 Operations]\ \\
|
||||
\begin{itemize}
|
||||
\item Type 3 Operations: $(R_i + cR_j, i > j)$
|
||||
\item Let $A$ be a $m \times n$ matrix. Consider Gaussian Elimination $A \dashrightarrow R$
|
||||
\item Let $R \dashrightarrow A$ be the operations in reverse
|
||||
\item Apply the same operations to $I_m \dashrightarrow L$. Then $A = LR$
|
||||
\item $L$ is a \hyperref[def:ltm]{lower triangular matrix} with 1 along diagonal
|
||||
\item If $A$ is square matrix, $R = U$
|
||||
\end{itemize}
|
||||
|
||||
Application:
|
||||
\begin{itemize}
|
||||
\item $A$ has LU decomposition $A = LU$, $Ax = b$ i.e., $LUx = b$
|
||||
\item Let $y = Ux$, then it is reduced to $Ly = b$
|
||||
\item $Ly = b$ can be solved with forward substitution.
|
||||
\item $Ux = y$ is the REF of A.
|
||||
\item $Ux = y$ can be solved using backward substitution.
|
||||
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[LU Decomposition with Type II Operations]\ \\
|
||||
\begin{itemize}
|
||||
\item Type 2 Operations: $(R_i \leftrightarrow R_j)$, where 2 rows are swapped
|
||||
\item $A \xrightarrow[]{E_1} \bullet \xrightarrow[]{E_2}\bullet \xrightarrow[E_3]{R_i \iff R_j}\bullet \xrightarrow[]{E_4}\bullet \xrightarrow[]{E_5} R$
|
||||
\item $A = E^{-1}_1E^{-1}_2E^{}_3E^{-1}_4E^{-1}_5R$
|
||||
\item $E_3A = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5R$
|
||||
\item $P = E_3, L = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5, R = U$, $PA = LU$
|
||||
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Column Operations]\ \\
|
||||
\begin{itemize}
|
||||
\item Pre-multiplication of Elementary matrix $\iff$ Elementary row operation
|
||||
\subitem $A \to B \iff B = E_1E_2...E_kA$
|
||||
\item Post-Multiplication of Elementary matrix $\iff$ Elementary Column Operation
|
||||
\subitem $A \to B \iff B = AE_1E_2...E_k$
|
||||
\item If $E$ is obtained from $I_n$ by single elementary column operation, then
|
||||
\subitem $I \xrightarrow[]{kC_i}E \iff I \xrightarrow[]{kR_i}E$
|
||||
\subitem $I \xrightarrow[]{C_i \leftrightarrow C_j}E \iff I \xrightarrow[]{R_i \leftrightarrow R_j}E$
|
||||
\subitem $I \xrightarrow[]{C_i + kC_j}E \iff I \xrightarrow[]{R_j + kR_i}E$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\subsection{Determinants}
|
||||
|
||||
\begin{defn}[Determinants of $2 \times 2$ Matrix]\ \\
|
||||
\begin{itemize}
|
||||
\item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
|
||||
\item $\det(A) = |A| = ad - bc$
|
||||
\item $\det(I_2) = 1$
|
||||
\item $A \xrightarrow{cR_i} B \implies \det(B) = c\det(A)$
|
||||
\item $A \xrightarrow{R_1 \leftrightarrow R_2} B \implies \det(B) = -\det(A)$
|
||||
\item $A \xrightarrow{R_i + cR_j} B \implies \det(B) = \det(A), i \neq j$
|
||||
\end{itemize}
|
||||
Solving Linear equations with determinants for $2 \times 2$
|
||||
\begin{itemize}
|
||||
\item $x_1 =
|
||||
\dfrac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}
|
||||
{\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$, $x_2 =
|
||||
\dfrac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}
|
||||
{\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Determinants of $3 \times 3$ Matrix]\ \\
|
||||
\begin{itemize}
|
||||
\item Suppose $A$ is invertible, then there exists EROs such that
|
||||
\item $A \xrightarrow{ero_1} A_1 \rightarrow ... \rightarrow A_{k-1} \xrightarrow{ero_k}A_k = I$
|
||||
\item Then $\det(A)$ can be evaluated backwards.
|
||||
\subitem E.g. $A \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{3R_2} \bullet \xrightarrow{R_2 + 2R_4} I \implies det(A) = 1 \to 1 \to \frac{1}{3} \to -\frac{1}{3}$
|
||||
\end{itemize}
|
||||
\end{defn}
|
@ -22,6 +22,7 @@
|
||||
\let\implies\Rightarrow
|
||||
\let\impliedby\Leftarrow
|
||||
\let\iff\Leftrightarrow
|
||||
\let\vec\overrightarrow
|
||||
|
||||
\newcommand{\HRule}[1]{\rule{\linewidth}{#1}}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user