From 9162dcb3115baab98b7c2f93316c376586ba82d1 Mon Sep 17 00:00:00 2001 From: Yadunand Prem Date: Wed, 28 Feb 2024 15:53:52 +0800 Subject: [PATCH] feat: 1522 rename to chapters --- ma1522/1522 Notes.pdf | Bin 114383 -> 119191 bytes ma1522/1522 Notes.tex | 53 +--- ma1522/{lec_02.tex => ch_01.tex} | 260 ++++++++++++++++++ ma1522/ch_02.tex | 446 +++++++++++++++++++++++++++++++ ma1522/ch_03.tex | 12 + ma1522/lec_01.tex | 177 ------------ ma1522/lec_03.tex | 60 ----- ma1522/lec_04.tex | 92 ------- ma1522/lec_05.tex | 121 --------- ma1522/lec_06.tex | 72 ----- ma1522/lec_07.tex | 107 -------- ma1522/lec_08.tex | 0 ma1522/lec_09.tex | 0 ma1522/lec_10.tex | 0 ma1522/lec_11.tex | 0 ma1522/lec_12.tex | 0 ma1522/lec_13.tex | 0 ma1522/preamble.tex | 1 + 18 files changed, 726 insertions(+), 675 deletions(-) rename ma1522/{lec_02.tex => ch_01.tex} (54%) create mode 100644 ma1522/ch_02.tex create mode 100644 ma1522/ch_03.tex delete mode 100644 ma1522/lec_01.tex delete mode 100644 ma1522/lec_03.tex delete mode 100644 ma1522/lec_04.tex delete mode 100644 ma1522/lec_05.tex delete mode 100644 ma1522/lec_06.tex delete mode 100644 ma1522/lec_07.tex delete mode 100644 ma1522/lec_08.tex delete mode 100644 ma1522/lec_09.tex delete mode 100644 ma1522/lec_10.tex delete mode 100644 ma1522/lec_11.tex delete mode 100644 ma1522/lec_12.tex delete mode 100644 ma1522/lec_13.tex diff --git a/ma1522/1522 Notes.pdf b/ma1522/1522 Notes.pdf index cc71deee794b65faf6fefc76584f693eebc4eca5..b9cec555d7762ab97cab549d329e405f97282d1a 100644 GIT binary patch delta 91035 zcmZs?Q;;QG&@I^2W!tuG+vu`wyQ<5lY@f1i+qThV+qUQX@65y8nfsOxJ0fH6h|FAT z<=V4f5UGWbbpaqCY`{BcG5|9d2b+KZjEk$YnUNig$NE(kufrh+lK;miOtJ;oaRTcg z=B_O=5p+C*e<#`SL{B%3c*o(61(gzGVxqYB?DG+riP05?Y%R%6~3P=3+IF&=jhb*W%R+9pID?kROd`{8j=k+5y z$uUKlmip{2IB^G;kzC|QfA|GL0kHkE{^`1-QH{&k6`(lWWqkPjOKLQdJcF_0VDg3LhGS#*Mc&E#!6cxX?+^HECE_v z5XWHyayr#|n|IMT(JWO1L;iRZuhn`Q2&hAx$(qm>c}hT2iakkK3E@YENQ9rW#e>xy zU0yWQpWXYgx98QWJ&Lnx{!J|Uv5UE-Wf-;vm62&VT)cnqz zj4)Ijg0mAswX2?b;&-*lFs)IsnsrFB!pdXS`Q9>%laAl4w&N4W^@gJfN6H`V3E@<~}Xb31QP!ca3P!E)#IKj-2 ziupc;%=r|;2!QyP5T`G3=PCMLwn(J-cZB$6mz3j|=D{=hw_)u?$($yj+?d*m1n<<-Ksz(e+oNz|4qCTW4m`Zr@;)HSRGr+zBt-^W%gXr#qg?l ziN->_i-P5A65M*~aqLV@A8i3TF*}4Px$5~FIU!hw6c8<%XRhx^*n`e$7UrmET}QV0 zGR4~m>8)~!*MIcMnlY;Up#BS|(~^INqg!A@(b@Ak+zq7cg=yn?h7$e_^fLXA3fKT1 zldkjp?TQ<3Y1veiV8qdstkT(Ha=M0B!;4bTBYOn~aHb&sSK2X~gH64FBG+?}uG zqZu@>j!q*G`bsNCi#^2C;ty)n5UQ+WaVr0`NT;Q7kv@&$wl?T{k>1fHN~5($Gz(H> zgtIRKe*`M{r`_E?j?c;$Q*x;|b}?lT47pbx_Lz-VVaS0c0P)EkJv^mbdmQQh6w5*- z9B{gb5KiQ^bpTUCO@gB;O_*;qg5O9=dA|8nmWg*McN^4!$&}=3PA-afz+G6x$b`ls&M*4VEKO^H zJ?_4YR8+av3n(As4P|FD{4$CplW&)7bdh!mLSXsLuc2xA zn0FAfDh*MPh~EOQP1+B^Yg8#VJL7}7W9bPo?d&PiIJGK`%fISL>Yf;2nA$cFNF3%q zL9E4_LzU!|Lky6+E`JnE< z(i#Eqi|X@cQvRe=I3oNw1Ah`~P65FtyhUT;Y&+!NYfQpdHJy$P$XODpPAOL%7m4K$M~0RkSu0p^9RMY> z{TbD~pe{zqKkG}1of?sf^#p3#l#f$!Bq>T*DULM_;MUrha^O6to_Ylf*J0~N<|Oo8 z&FaNs@;Z}yDq_Qb#)`%xLiB?5a3>d25M8%XHNol55#)ghzXR|az^c{=_D-(GWoZT4 z-f-S%=9K=Dh0-~hDVLNuwg4Q`W>jj>OBSS{*>M&dt2iNA*A6NL z1j?jNcoHWEO#M>u4x5)7B;4=v(HLaSi{LdGxZw{DmMjxCa4%+7jzCO0ucwB4hvA^L zf}2hzwuD|xzfK!rN(HX`1)5#_*+c9NXT460@W!D*#nWoM@*$nYI05jC*(YcCO_0bs z=4Ciz4buGU`*6;#(78zJ%rT{RmOA35@>{}=-`nil0sCL%U~CP; z&P~Kb^gjXc6`IJB>3EqyH1$>O`R3*<+cz3Afx^cQJ2%t!n_A+fn$;2 z_+9rar5Rs_K--!4#zy97C=~X=3_sPC&I;MBQ3RfGKwjgj))`g?gPqrQ z@+{CF1|5JeMH~=)P7u4ZBVFz^OGN!v+3-muC`lb5xJOi+@PV&2-HStD1`oJr92rGE zXYRTI_`KG99Or+mLLcEHx%aAnAVW!l9OUwb{1c_!{kSIF^6ke8UcrgRHL*>)J^ckc z^4SKT25M67@tc3dAYq`^NOiA2C zj5bBVxQmOCbzKYYHMwJ!VLc$6Gr%T5Fu&D@G#Is~VyOHr&gwaK%*k$oCnyJ5P2%|* z1)Eq!eOA$@LPLE0W-dfrt>DZ=q(H6-3t8=}*1PHN9{*?L-?yPB=F30O=dF(5MW~7X zRz3h|osz~`sR=OHkO7`r$ZgAXDiiOCI*)C7B@4fAp+g~U0RX@Gka@CZs+PnmL1k>h zwlEpmqJU!s(ei`Fa-_HRmw#5B)Uw>;EML#2vnf1(O1*d&urF2}`VsmB;RJ>@1eyO* zGnREP;nJNdU0&Usz$UV3zAmgY+MP_vC;{;N*K_Z4ge1NP-4`g$%LF~8Leeoy3R(fG z6`D-5j436!%sey}EIof89wURZQW%0B=j-OKl8c{(D&r-tB;?@N)*e%MDU}-B7-@_1 z@R_=SkLB|4*3z7ZVH$o!TK(61Bd-lz23ROeEn!-Pusi@B3{m+2F`KJ{TW7GCR}NS= zGVili7tc&AqOO~eu%e6hwB21cH6&l*2mTflq8(gQgzM(e4i^|Gl3K8LBfesImoda|IMog zrA{=tyg{ZD*J>NSIo%V&lZpS2j1_Qx-@>8f#lnJ3l|&`Pn}u8U6c7koN)iqSe_V`_ zNj6Y9HMx(#zXg#{-tDaAEyj<5Z~Oz4zRMpbCM*DDcO0AOUY^$mKfur|L_z6K70*@j zhN%XoLdA{iQ)y#Ftu?Srna)<@?Del5m=PYA_RG$VY+sCTt2B@GNsL-63j@-@WFf@0 zWd7Y|BX1|FbT953j;9IG?MkU8T!e|pekLo9G%i&_3NTiUgYq}8;EmTHk04jfXVAKO z3@Y8C#|CQfO=NO9WIR)?9(P0?}_cD2J?J zu8E^x+R8sJ@(koXQ&e#w>)THnSlo_wPxqu}*Y9sc76kpmE+gq`5^OvbMk zItOz7@@M($kH@2sBUC3G0`o2)lx!I2SjXj`-cMr6Ub9{lY9{wC&dPQ3)&pVwFI4aM zIXLikAnLGuFS+zYdXJs&$(vxJ@q5kfkKSLxvoXOyg&)_S9OR^gm^FaVCLA^@r>M6GQke40DGZ)ees*)mf0<&!Gy6&RQ|h6cjZ&li z`YAwZNGy;TlQGBgoZq2+0!~qJ0C0f6O6Uucj2|y2=tbPJ?mKQfKVyWFIj{7BqQy3v z@hYfSW)7(Fpx2rNHc7)6B2tM8hD<5kk-UedeBkWYK1w3I{eYt9mU^6j!iu@lBfDeS zk?28AR>jk9XgL!!X+e#OKhhGgIa6I}@i`{CrOre4>}ul}M`jXlklyJwI)Bs4<2ftp0#g%{ zE)HClO<9o%bih1eX#+=b`65;jD4XIo!Wrw)gqlu2n6~0#+I&pJ*fUA3hl#f4gh(Q4 znp4}56)79ahb9?8_tB|~Ezepb?$Dm&TCDtFiLN^}#$_92TV*&CLZmRT&i}vegdhsV zl=}5?$hTw;WYmZrJz~nBsZu%-9+~*@>Q1|ZOrT-hdgNV z7(;i-Lxt>_!C(fOtGbyQ(q{BEp!MRz)l$PvK>|F=d3?(Rh z^ySGX01S-k&_3wNjwh=7kR?L0ext*J9W>6k=n{6ySSfx-k0CiOJl=lIxs?aZdTFZ1 z7ax@&yie^iSqj{LCQW_Ky0TPp5q8-Uj~}$ivkseRa}Y7!=_PDih&@Gbfop?myN?4? zEDKD}ULKv`(tmzKW%I@qX$dvt_&%H&Oz)GK$ei&hw}&RT5dpJOG2rF54{me+RFfwx z_4_}VNwZu*1&tTh;iIh{LufWcUWLw9gtBlKlhDS_(i9Vh5KaC2hq5 zSCG{J&;UW#yUEQ1s%I{Qs-yA97&vLy>4C$uZMf~!SuGYgjxpW^&R%v_I7ZD-dIWhJ ztWLIf@6$~kx317X*2n4UnzBVMInN#47jG}Zqg{y#%9kw(i26g0W$H>Uxp9PA$V)^~JEefNM=U_GX zZr6H<$~=zE(rg=riVB3{sB=?TwLW)9nZ~{4g*e{N0YCE_=U&&o-^o>%23_DVimR)D zI^H--y8IcxHx-p4?qAH?AL#4lfnQiVHqGP-?NbFo8?D2%_MLgs3TX?hz2G07s~nQO zp17-Xg{qpvt5T7&;!d%mO-|SBxSoEL2_Eo4U!xd}8q6!HW7ikyHso{X=e?D1G)$(L zvQE5VwtL63y5$srJ@9$(^@f&@JYN#qZ9=4~jwV~rCDOeR$qXrj4>=9=Ud)Y4d{6!P z^;-j7MK1VdwZChHk$|Oy#w>z=R*#OOOb(uYP95G2UD0C^)eU)_+4Wg)To*3KhT96I zJ3nW={&~_^|9{NJ!TO(ILf*)Wh6_a?$#~cEefhWb34#9qa1a;(LJq_mK?YXfp+O~- zSpEj{4Oaw?;H>~srK9eVY`;rCUIKW8vD2ZW)wHEhn-RoRQ|OGsBKcn?h>w~RI)z(9 zSeESapCeD3N8QC@E9$nnd5u|0(Q-k?n@aqXeaZ(4^#;iEz!iI_Yjb%a5co zwXUDc-&;joW2xH@j5jf{=9F8$J72FrUH63>-nXU#_$tK);ZBA!e<6yHQ#Q8V_H%t- z8xvRwr-I6j1f;PE){8m4E5EL}_08~=z-7E9iX`u!8T&R#uv$ih3r^b;%{pqLcCm76G%=nl&Bv*0GzL zV4?a~kku05rL){0DWQ=USzbHv~-eR zc>yP`-1Td43=M{Jz%^~$C32y9_nnubRTA}4P=akIT0=pR1d_HoQTT*HpyO=<8tGpx z@6RqY$nxpeh~abz%>oJGpu8Zup~`=nPaMOvt%ypLKx5D*_3ZKd6NowD>&`CF=N6+! zvv1TNzte^3>{E@##%rP(Pyi=dZGBsuOeADsE%?R7Wb&YW z6S#E&7Ls;Iy6?Aq)2leWw{|WmZIcCsz(6IESxES;4`{8ZBnaP6dccF=#73_QyQpGc z;ze=&=0x8b747onxh>-e<~mmW*$ZbBeYin1_#GGq8DlHTN;3FMXts%PqK~-$HyO6q zLG}Ux9$x)!7NJRx!vxWR^R6}MjG6-)P9RbS1UIsY58lX2npR|?2Z}D_`S$zhG+jA? z;^>G34zGpf-K=tyx>QNI4oVXo=FbX<7B_QSg4X%x*NXc0_v9BiISDlr!}UHi?NK*u zF-1`j;gZ4k-p?3(1~MgS+O$!1OHpH912ZirBBA{& zu^s;~`^ud7HW|w7p;3c4*0(fij>c>)FB-%$?P(4mSBuGy?I^Dg)<2@RKkyh3HeHT0 zI{cfxC-r|n--vy;lTSEX2Qhalg{k+N)kol4<3Kfy=6C??m;ccfIQUjX!JFcLeT0qKP(#z+CGSw{KM_jvN3x$BZ7M)PfH z5sIsvwvT;3gL^9*gy|M|FfMU);|N7{Gcw5@?AN=7g7(d#a657(1DD#Kzj&{cb}Bw@ z;a~3fg*O58jws?|4xs2Z`>eMZ;Ij@|d7<`5Fq?8zO$jl#zS>w43MJ1+sVLWy_&$Gi za*d0T4;wY|rs@`{islJ`#@AO5QS4CiV&|sJTg;G%N|GV0GCb^BX??u{Bk83qhg$wh z8cuq1YVnMdR$E139-#*rCe;zP#&T{&W}g_-n)HA<5Z$6QFZyzBMAQ>Uz9CfKDWCh7 zgH3@cr|jj(quQkDMnrGPYm&W;;Q(9@xZJ6WLwZ^TvfOLt7`oNjDGOCcpjB=AQdMI$ z6OWes^5?0$K#l}oz7jR~k^8UT$pLhnYr$X?-fp+ITo|VCKcF|#UOqZ_nUe8|DP@j^ z3u}N`!-j^`ye%%?sj-F_CgkVhuGEd$;xTW#U-6ODYbek%MFm4m(!sj?tr&)gyQ>2~ zV{q;BYLZZ`bzn<)xi4@5aS#;lb?_=dzXxr&1cAV!0T3-N^Q!N{7TJ1ow0F+&pHd~Ee4*i_goTb&( z(!@t+0S7R#J^pOdSc%jrrP3H8?vfI>2>fmGlVnsX$=xsrf#o8X*HZ%u z$RsN@9DTmltCKQ7FY(x;8yuw?b3t|?8TPNyJVW1p)&O~qGW4_+C{Cx=F>KX4d5d0y z(C|^x3dQs~NgoEPkFX85669cEYX|@!VCqd?%R4rmo~DvidYyWoi2kcfWddda4Fxiw zOlHaKpXz+rlU+sT`5{KBBGpNe0?VgPQ}>*ZfP1TWem8vbn0Ua!~FLoM6O-KRIW^Q}%^T>f8p)bJB?{gR< zy`Z|!>5|`{6OWb?@W1iAne5jDoM@I^D7I3V-(-q(BbLpMNP-u?_^`4dAL+sIaj56c z61&qn#Y;7*&b46@7IpKI7pPS+YcS2*ev?QB=hi72Zs;-b4A%{$H(u!AFRNQfTk}(H zZo(H=UeWkq+FeIu;AA~)o$>(~Znsz_V2Yc^=f3{2-tHp7$y!Y?b~()sT}10WnStH- zcpv?T$qG8^_a!jBuuzS$ONPI2=%9+7s!ZlG{8i;o;j(CF zT$H-p;qp{V(w}nfqWD(%C$!1EB7O~|54|Su`EM=`s9FzV4d}K4FL5==6i(y0?)z!B zh_&tt{bVnKqWWdCzVt1iK&GHkX5dMN$A*mb;9FV8s1VF`RW&-jb^VIYB-;FiPzq*$ z_iU8h`Is$Z-nC1m>zyJFCt$hkRNCNWk*3mCs#1ze)KDc2tGm@_-Ak&VdEu5nTj@9-cXdNt*RdoJV?s=IBpd7c*Um6S`1rNV z8Prf0U0cj<5=I%oruW4fK1UQ#kIijE*;LK8(nO4W`}W1UcbXJr30!C%kC^8|RTVBzp}9h1`2s^_L-{KB8HXRBr70ZL0D5~G+FO<$i|H+u z&9KF_`{0rle;r7d9YmWn@FL%9PtKcMO`Lk%2K0(>SrW@}`4f#9b{D34D4>vd__x~n z;JtdJTTQU8Dpw4a$R#a?GB!-#GM<~qfv5H#y+*!1g_!R;eOQHv)kjo!E~rQB7DFlg z$C-K_Fu0Xkt<&76l`UKS3zho2Xa7av7ZsWof->)*XRymMCfvWP`_|kqP~)oLIG_<8 zDhSK}0Ao;YHg;euV;I1SU0+z{;p45SC`rz%Pc}P3(A!raf%8@DRei^t#t6))0Gbcw z=H-FvZ>%e@9APqj;iLIP`-{`$N_ zNZ8Z+kp~v~88+_B^7>yT@gGat6^9E;u=-Yjp%fJ&pr(PiLIBWc*`&;KIu)-=A_`Ep z6Rpc~)2xFNClp0XPQegpL>r}LE2S0+l67A`|Dn(}nPG+sknTa!DVN@pmaIsBj@3T5 zBMeso7Uvp%YA1|uo9wb*vUP?n zTVRm}KGnR!eR*>L0J9}=m;#+?J5jubg@6yz=1Sp6fP^T?YE>Hn?+4CRRP8((rU9^w z)Idd|-DR%3mU`!QLcvVv7-N=V_Qb8~Km%kIU*n9(aMctuINz%_R(h+x$#@&7>oQWd z0Gyy^uIjA_EiRq_j_?SzLF{m6A|Qh?Sg5#Z;I}YzEDQU7qdtod1Ym!YzWwcv zg_12}lGb6}<9jtxB`hO#-2noOC1;W$y#NwA=y8rN4Wh$I7B=}PF3;M4WUj_j0 z`ME%;y{Rji!|W;2Zh`|$6^MeqN!v_K3tgDxBm7y8674t_(jKKDP5Iy5nO_QLl3HTi z^WF6(VB61FYP_3@A`ft_l&`Tmk)TJ4i}i8bi$jFa|GDqk7e8)R1OC-WdlECsk4#d~ zSDW0lZWL`|kNs3jV{6m=PDJ=<;4lmHnlxlsPipl^h`lr48rys;xO(2e3bmWcgr69) z)61y7s(>(yZJmMVIy@#=T|zukIHBnFX<5Ko=fk(!9WULm-W|7@hM#^|Y?w6@b+M8^ z&W%=6L0@h#_r-MG1H6a52pbX)P(gwht}n;-w3Z3sLV;u8k)k=KL;!i6XxTKhs3oek zn^}jDU-L$**J-V259yg{@K?TQHP~V`|4}VVe{|J!Jzb`{A3b3P{cFZCaJ}u8Db+7; zK>HxB925_e>X_Rcy8ZM^Vor0$ThNGL;>tIRpGDiVZc(zswVS1zT3e3A_qG2y%LsBF z{Y$Fbm2LDq>k#o$dn=t{6rNiFbB8dbK!ys>a7 zTSih1=klR$i3N}|XNx}iQ4>AoBz!ofisPOxglfLd047$Q?z#Al7Km3$eTs@Uup@Xv zV&UuoG+d#EY<8W3J!m%C84sZ!8)NFJYd^QjEW!9ln)wnKM&4-0JZQ&@d3hI#Y_<(O zOZ5ay!Fbd}HDI3Y2ZKr5CsK^Aaupf2D6=CGw@ba-f#do_$2km3#%>S7dSbD*`Jer%x|dUTM4iTGgx48sDs6 z2N5Loc2I*IYR4qjXdPp_k`P*t!GD77Q0Rl9J}Z?g^Hi+SDe#dBr2HQkl$8Qur|j_o zy~u7ddPUXBmH(5ZtPPV)ZH}rnl1UXmFY^3Ey{GUp#$Ir&mvilLQnKNRGZo)>RaSmS zVaGQv&fE190&t(W!_!wpXUt z1VL(iG|q?r6x&+JcZI)e$i?O1Uk)($>tEW)bOsH=gHYCC!Tme&rZs(ErS))|1RBC% z^XCu#$ruXjlv3vQMtz29w{Gj9y8O@a2$h)!Gu%narV<(Z;D=dRRY&#HGE%j`ATz_j zw*5{fD@D7>fy0F0{f%Jh=TVi}2$QTO7INadFEItCy~HS35E2KLq-nZwF&d!t?EQhQ z=Z<%P2E~HFOd4co?Nt>~J)__)Y23{o`k9NUJC zgTKVo1zn~%N0@fqwox*ah#)JW)maR7-O3kyD3P%-6CRD(YsFuLD);VkG6&xLzVTV8 zK}$w!$9^3T1ina29}~P1K_8H*+wTTW%5sa9-0puzN2%S<#a_xAGs=8VN>rU2lPKoY z>lKoaZSn;R{Ak?EEeM8zR!$*RrboR(4}(;Ig9LlGav;ng;%&PoP`JCGKymmjJk`7_fr}PlB2b?by{95OXK@v-CIe6PLNO4MenMfh}miRQ~O* zTx^JYt`aDOD67`pa~NC=5OcK0c$;pdznH)!j@jd;m~fteRI|8NW=|Rhtyq z#ErNAjKr;ZKv>Y*J;F|hLTRgSkk&gP$U!O<(qn0eM(lxrA$HGA3Wg|3p9|eA7#A5J zl$Wi=ApKCkskSFyKD$^F+k1HJDLMU2VN)K{xu`F$q;JAW1p9XMm&9(0Rl@P39{Ka+ zF743naG?lxYy*Ib5Owd)-MQV3r$GJlQ*m*%H*vm)ML0=c)$aQH0)_MH=^|24cCs*8=I82B<`hwb-d;a zZu}bir{v`R=0rj7gA;Ofh9XenN#`CK5#=FT{d3V$+Fed!0q4MYMBW{VVT%qqfKJx) z9d( z=mtYgKrIf_$20x?Fr189j69yS~%MTMe{00EQ)v`HF=`-)?t^0kCyIZgO4D||C< z83`gm2@E#J__F*tGc*=z1R(^5<7{w)X?BQD()*`%epyXgWc5tc)8cMQL1 zjQPKh%ppgrP7$OuZ>ypdJlm8!pQG;ua!+c5pA0ca3Zvd`=GHa5EJa%oes##d52enR zdI2PS5w={zx^xfTEY^`HNt^!;n;}wTr5_Ny3Wpu~GJ73ysTE)gBzY8HH}smvA#B^N zh205!&I7#GB z1FyMaCwA?&P$j&Dyp5`#akscEBL4u1W(mGuKZ5asJ#fa$g>CdB6a3y+mC>Obw=2&E zA7{_xfhaQWzdam)kuo`e9h6NNMLPe=*LDoGd^s|mo&>v5u<#VvaZxZ6-eV*QC#{H4 z?NAI&%t$qf|1^i9F9wuBGKtu9bO{LW!?3VNy=0o_w2`Ub!8qO+yZ0S)|Lwk~aUZIZ zQj32-)l`V8X(4{lLzu3L5UDW-j8yXn9Klu1m5hW{1+|@Pk3$v$LVHg|83yA%`YFr^ zW`gDoxK!8OYBklB6>dvm;&-;-3Sn3(yqw+~qgD!31It@D0ugj#{8&IKYK;%#RCmFM z^L|9MHKnFE@u?haY9-vz_36IZ{)PU_cMlECbX!d^s)K|fdG2kXb)hh+C}q`%qt2l; zs$fou@`^ooS38{nP)o6@klvAJ?dvQoyfXwFk^c6ux!u&Abjv*CcoHyizx!aO*%J{t zPeuEfIEI0qE>T~q=L$_~!c2Ko%%l!_ivW|U-ek24EUk7jLcE-c_1r`=f!C<$5^`~C z{4x!7pdESMWJheOusrvnj1MCJT^j2!RIy{c;q27m$YEjykds7=|JH0=CNW7DXG{Ez zuGKB2H4EF|XyfI{$w8Mf$G_we(#eqamzb8UlvNUSN_Eof`j+dmu%UCX1qiKAD$(OY zFlu&;qFwnnRGZv z4~hpd&!>Tz@)VQ8Ap2V)qa(kT8+OPIpW5D8GWv;d&dzHu!oIYB5W?^BTs~+_%O(N9-At11)z3Qbg+eWC*hk zAym=}L;5{FS(uBeV3d`c`-GOwm69@^%##74d6=`0L=)Yql3RAt6zxzSwp+q=xEPnQ>d8T z-;94%v&~M{X4ynl{7f_~)I&ZatU}5_ChQ+l?kHq(=!R7F8!2h8DgKQ$K9EPn3xAeC z=i=JE&?T!KOB`NZO8$<%MK$YoAk)!p<-rsp4V}e%N}#BX-aV$Uwzbl=`uLz#jd!FM zkkee~I!WM%64!A1wh&zbNZ&wVO{*;7XPA|&2=)>fkRIjOV-)y1i1KJ-W z_KHBT0M-s-NHa@|YWuXNCWY>h&GJ^HC`M9<=)JODYM%Pd3 z&kb^mvADL69lk4)!PdjahsQ}k?I+iLl;GWskA+tbQq!Eigim1raNwg+Mm%a1nXy$m9M7?I|<7`>IVA%!bYBqhjp4i(f8a-ZoAnj$XH5 zLxrx&apv;j>6HoS##%B?eI+7SxFHMFFv>WBqcQMNRJ*RL@E1Yr=&yjWRzbHcYSn{< z$Jr`&vhn(JgFap2uv|)uCS&4)PAY<@Atc=ZAn1L~g+v*}IA?g&Ytwh;72880G!qA> z92J8n0l$NRnUu1NR!spUPjkpk2Ix2zF}KZlqli?p% zCycz7ke^NJlFy-?X{!oU+U?REWY1kTyQZmRAI@O}Ff+Z;XAT(?S$Np(oo`9r7l`I|N=yXF-^r`6@ow<<3rNQ})@^OhwH(wI%|tT!Na6 zP73)OKXqf+3n)Cs&peW6IB{l@^W)$k@7VV4gZx)ldd&k|EQORD+htbc>-mW1O_k++)Xvd(#_scWe{qhQB%g11+Ikz}96KXj%Zq2%2t7 z-e#n`pao~;Vlh6*Bt?PRtw`xxscbQp2vnfs#9&(#*?XFAbs4Xb@ zlX8kkWu@{&S<))~t|It#!-3Z5M-Vz{U11JXh=9tMlGZ<2R%JH_L-++J@~Nzo;rC8fT@FP#k(L5<4n8KyBUy#*n|i>BzFhR zMx+)4DS%D5gDa?MPc!)%DuPenB&$}p*1jwEu5uCvK%5CLr zSOyl&AfLmrke-D>@nK0P9XmKfX_BAk@hM5Rn6g+H!2rTD0`^MP8bf|y`*=4#6B&9G zIb&LyQ;$hEq_KEdQ!;KaUxGhV;7c*UOjJx)o#-6-fh~>A%mL0Ija{KP*_a`BPe6?j z8=mOHUEbuW+`GvqE2)XAf6{Lvg<^z?yJsU&Jmo1%37HqRO6#OrU8eM4dAC&;>wm9O-( z@G)27MA6BZn1D$uX?^Hgy@s;VVE%7N*`4hsm|(p%1=7nG<))zW%_RDqzO=weW5EWm zr(Th_5In%7k{;u`yZ8&xwVPGPj*eKIW+^FktwSQnFA^n$A-yJ2AG$GhwNO~ifzBVd z)uUjEn;rk`GSx|}V=3`EL*U;E+UoRt7RSh^Kd^tQlLxgm6U&Dkxf&bjLn+~zvl?I+ zcgLl}GVXaQ`unsiev>`o^GHptHOjvsT_mz{THaeg!pOE;n4}({t`MLI?J{G5uKvR) zDA4qII)K)XEquwtUYeJK+8y360Q{&_B}(E?LB+-S>h4MVR>vXRq*!Z>g_}CSvBaE7 zvk7*#fOi%5f;n9uLI4W)(#q8&hTMx-p7zrGelU5XVqdz`l`bWD=90nbZc)1KDJ=bm zTyr5g65BJ|=&){tjmeT_!5;db<=&|M-`lH`ypeOojE4-JijkXvmX&dLTIr*v#v1CP zA`8h-*RR;sxM6Jh(}Ih$j~aw=Q6_Bc+T^4hMT6N?C$9N&UhvA~d2})(&PPzeZS5AH z;>pzHOdz5r&Tqn6Agv}oz(f{wSffItW+k-q8|?eH-kv$4wnb`;2S&(_0?oGJ?8B-*qMnsZii;~NPZ)2H%Yg#)!fy@hIvaQM%N!DDpaMZ!t0uPY z0*`J10*J>+vrSs(?Eh>8>|Fkhk~37v<+wZZ;aQG$gBys1^eu7dlc6B&%P-Iw9OQ~- zWM$Ximf9qxGLla>L)hU^64bS#qNMuyGXgI(sQ@oYN$cSfQamIb7CP9+NrxRC;D%7j z1Vy^gwPLxjNRjhL(8z2w9C_*7kafXxI7nH(%!c$;GINO}G%NE|Two7|sxpSW$D2`c z!t$ko&AX!G-r~Q|e2I4(-DnN^>9V+qRl>K`Is_OHgucrC_Hk6Ub8uJFs?AAJpl+>bLN83Z zXiQlrUjJMvWe`_0Zw)=@qZsacqdSkZWhvH<*AMD2OcMP{*7(OBF`HKt{0q#egTl>h zKso$;LW2pml&G_@%*JRXs?5e0o-)QA<4inK@22I&8N!Ww^0cc#7sb&1hxHsqNC80G zDw?sQ?RHbjv8`S`dGXG%X9~^G<=q_ zSX;3#*0?t}=MHO?Er5nOhGH~Ux0~h*ld|o+ z-Y?Aie}M!43wZp`7fK2MJIDXqsw?#c+;gHal~83$oHs87iZJM$6{&j{6Jg(i zxX+?`C{?}RGb_Rm8Mfe`EcD86r5d$zs$rzGE7eV8^5)6Ds z$aT0l+4A{1o_;)UPLEca=RO#GJa!^c+LmEjWT*g~jz2se?|tA_M@Diq#aJmot_9tlj3L=*1#aDKf_ zH&L}hNok`=?iKBqQrjdiWi&M~x1IH>P|!L@yq@pe5cF>Mvcrge1IN6K`B<3c2q&wd z6(RuUHzkNMNJ;MQzXjHRL!J`Pc=Hb|g&r;u*>OJ`=-Gk43&v}#RW_rU+J1?&OamKt0$@N?xz@AU+g zE5?{qvmvM{LA{PaOo=SRlH@38_7v>M7SQxBV1vrW5tm)mD489k3)A`cAUN_0{lcR9 zEyq2~wuEhgTczq9rWH+oPVe9UaihM$SNlmK<4M~FycA6&i9t|4VJ>f;@`y= z!To!G&z=27u+WfPrwMU-RJzpYBNTZEr6GBjwo?R37~;pjZ34PF1d*MToB+bM zkII#nljEv=r1UyXcyW8QzeqY&-CB}4+~;PSYVaJekbMR=^4l+m9(c}5m&p?B#s;w3Sgw#wPbWiwNJ*OSNZ zT!Jfa+|WI;D##igy~Xk7d?_DI_ke-)1yrr)_?thV#tD~j*od$z>fjgkqTtB53?Yxu zkO1674)Gi<5h7cA7#?ZD@%N_EwZIB;>9V#{f@*pWwu_l$o%QoDqwb{+G z*jj|-;s&!%V_4T-siV$>zV0e4T#G;5Rh~zOEgjL5Qd1`QJJP~|& z4)63M7uR_ORG)dJDEe)^u6Y{>F>wOk4FFKqQn=;PDV8<=ePrU8aqG>DaT3oE z!EYCnYsG!ECmMnCB4ZMhPd;*sAp{>asW~*mER%=OCL^fLJ=O|4#qm8hx&U9M=(^MosW_E=;RlVdyDvvy z^t>Dz7)nC>uc+DzIF+O7J|%~(Tsn&=*>R5;c+2iTes2)G`1bfNyH ze{!&C3RTtWJlV8$OgMiVOOy4%60Rvitw(fdmM{;{DkkZ@7-rM+3*NIfSOthSj-?ZP!x;^8(9)ebpz5GVv>AH zUJ%JnLXZuOV(~iS0?gp;3u`*YL%LjpCQ111z^`jtGj+MgENmzvKvW%jmTbEmmQJ(u zI0KTMHAe(;tO>MEk8kVIC(YnZ4^j&`H3VLK?Of}I9}A#9Jc|Z>G6bNi$+1hfRKmNc zy-Jcbjzlj|qw;LTak<(tY9g9zBeV<5m?f3v_J(czt?VC=0cF+BBtx$mBJMo?bS%BD z$9_-iX#|W-(*#B=zqyKIV%kZ17FMim8*G$jNboJrIb+U~(H(3l{CxFR-_bS5Zv|h8 zXc0Na~)gcfU(tLLlV3DyY6kAPyzhu*(Ag#$Qa)cJChj5 z>gH(7frao9fH2XnJw>t~kf_*TNCyO|jJ3-eV}b_Qs)8tY235V`^6(nOGKo<&lqj|O zWr<>~MFsL+b!r+>^~3~kxMv>opmrEFO|h1~)yabe``YieCJ=rga|Xx4j11oPFA=#v z@BWaay^-yvpy9QWp*lSzphivb4C<)3Ygf4v?jNHU09Y8UN^ETK?5A_|KJwwql%V!n z5Vp_D#t`*J`#8B2cORGgI&L$rRrFk^Z)JChma;e3c!QRkTDO<|L$x6VCn}vwzRtt{ zOnkOcPYX{(c1GSoaookN0pgkJR&lGO?bbH@Fd}6V+pZ(bnVgUc5Hm~)KpKR{>hiMT zP)bk>K&}k*D1STa?X)vLYAqb!LAZpl(V6N6Rm)7eInreP=r7gFgk&@ΜUp2u13p zKqkRXh~!;R+=r?&V70xJJ}sHc1av{?C{5oes~6-z3?dh*9OTsuMN5p4 zW?$#u-3umV13YAn8YMI#*F4$(Mb|e4X99HFPHfw@ZQBz}Y&#P>Uy_M!+fF97^ToDp z+sU2(oR@R;+*SS1UDbQ{+6z1>TVtKC)ci?UKhW23jO7yGzAxj+=be1?msvkgEj
L-1W$e;x(EWy8z zu~?a+vhXFZaO!O5ECjP0XE6JMXX62()2RZFvpbVXQwDRhqqH6kGF=1`yi|+5k7^ZN z#ujeJB^lKZR7Hmix7-EMjSZ;B(vdF=ysyH``=17=WPF3L78jW7TH*8I@dUv7-yfo= z`#?K4l;WaPbSxU8F01>)VF|z4R_Xm8{sNNaArbW{(>+<==O~J&&#X)0-bMgWp1nj7 zPZ=T2RmX{Jh{3m3QaH|84>Uxbww4=h;fOwvKYC^US)K{Xbie79gokobEN!82DDn1S zinAo8=dHGdVq68VEx{oO%(h+EdZ*jkwfW>>SD?=iql6QS7Jq3w>#n^bf9`9B59s{( z9_sW#&JAqE{928dM2G9r1@QxHjkhg&2hFax?f1yIP8C!+lm0O%UgQ3zU0g)fY!}r6 zLXgEt$OUDK_8`oZ**_Qn%OqiIzFyAHDwTaekuI#^T;4JBqV$Pqu`vb@3&$A6yNFoi zuOkvXK6|$Z);fFEVo9Mj`7V$DPz%k8Er$YHC1)8l24vwzwJAzVZQ%h+P7fH^-hPy4<2Lrr^M5E#n6tm!J+IBb$ zCt3|mn3AX$CZ4j_mbt&K{Gdk=WkfR%K48+BS>k)Z(+bm|ebsHOS~Va6qnkb9#8&W-8nsRfbK?tBFxBH)C*s zUj!njm@?sQD+qX5%w#6SXp9;ok4@M?(bzUf<$!YxY)orVO9naNzd69_2t>J9Z(B^2 zr(UY3{bg1E>0j=cz^U%1dGNdNp9t%xHFM24>sw!qw!J&wY@bJzMWXR~gxiWo?oefn z#vtj)M7Q{}N;!V``xUPF`Y)OzYSN?^aOVyy&Vr(!sY?LO3ipw@{O)dUh<5w9J}~kq zQ@ZF!UNy(m6Lh)->1sbaLvw@5V$j;vZXrDf(ZOpN(KTrYm3jmcQDbT7pH50;ZNplK zzyUSKoYZILS;_Gr{)@=@$BaMaG0A%N8m1GN9Da8DqRJThZpvsON$l$wF&zea+w$4V zA%iZ*_3i-lPJZQ0h14V`!BD%=PXQ2)+HriOrV*RU<|^g;N%pg~%c0}rxaui04T~sz zT{)nSmzzV4kX&tcdq~d+hfmTJ)bQ$tknRO89pVl1NRe!vQq;%-=&dd3I26`a>#7Axi)+ANhD^2N2x&=ClZvEK9<}Vc-l9E) zupkLpR9#tf<+!m$L(##)Uw_J^;_Tx41b?B!O(u19T!w1d%n(9GVsW0d;dVZ5EU*{6vk zHV6UeY)~bH@JdeU!x8u?gt{nO-N*rk16NQqfxnJI7F;|+pFTn5haXO_DfDO1-f0Gb zb+_6ja@`YcbIzjkxVZJ4i{wdk;}?7~-0Qj-+lS+i(iC+lekcDV88}Tolp@6+VG$3r z7A{ePGo0o>QfcIVr)T6duS7{)L$U_!8bjLyxJ`=~cFgWTx0;(HmXwTcGuh>_4b4&O zjUnZ&*J@9s3=NDv(*3w7kk2T*zc%l8SvHFYr}s9YIxl|j>wG+<*Rd@qwih`~LfP5k zP*Z^&6eOOh{NR*S4|vQX093!0Jh@?(d|vae7ucE9cgaj}TwT!5MfA(crxs~!F=jLa zEZDyDGF4euP9~WLmAi{q16e&4dpFXK$g4KvzU06JY%2IEnJ??)_-5H{TuiD}u79-= zXcErFF0OBhXV_U$PH585+O{=Y%Hb20==mKkAC>oi#(!I@PSvzDwQX72i;WP&iP_oo zl+V`#74kqXeh5?PJ$AnxLUXQ6ubHd>T(p*5rTH{AGrik3`R z?_d4B)H@1A{cwZ6nU~3XmWV;^Gg&fF<#pyBsNJ@F;cm_@RGbVwgDalT*1qfmn4>wy zp?H(NM}bjIw0GkO2rDI<1Mpvx-!Yc_;&tE;O?LLT4QN~i;!#VR!X`Xc&zEa!sV0#5 zBo3SCjU^pfh{w>&?UN{adNgp&vwoV`Qt4>+^yEN+O8T+Fsi^}qq<<(&LQJGh4fpZr zzU~{BX`|G1GsrE*!-wylslcl4I-2!L%&d zs?tnjBIVDmPtCWg_H>374~x4 z)yW!|Qe3h##^bQglkxK{pQh?s%*@7#<+4X6KhNHkMVCO+x;wznXv4gxkY}a0Y zIeCKxhJH}_9~QkT?QA}9`bwAuQ07#@a)bIox?ve(JVh->$nO>!~R#c|f6O4lX@F+~;0BN%vkrK5L;>(1gI&rh+_eE7_uAA7hHRh`I;AyisBN3n!5|Uq2;dKl@&5|yB0uE z)~b90b{oD31rv_lkkhL}#63GM$Oy_(U<7K(3<~>6q$+x>aO%CaNs1XIcvgF$YxFHd zW4rWHy~5>fY8@^tSFnYFR?uP#)g}<0I_Kk@Hu}^GLz~1VXQEQva~q<$?3a1|SlpPJ z39376YE@<%ww4?O*_F0_$fINuSRDWqM0=#@o0~LyG5gktg1|wltm;Q?QAHRhY|aN+ zAs7!zgEY_OUWKgmoUH<<&svvy%|AE_)Lk-;1#%ko#kf91KNU{Qu|>h!D^-oXPDNsq z=yIESH=EXA`*{BaCScTV^tT*_?#pPV~pqEYJ0DC?hdj#-kr=ZE^0 z(4JWFVZLQTc`DvbY#m%$y}Iw8(?^H&O4tK4@zwL9q^e##9J0+)s$i znW9$Z6#v2r#CK8AN0KS*_b$e3T-Gn&r_(?tGoKS~oPrN^c&JB8URCT09H}L-2)04~ zs+0S(xE$k}y}TWGw>%u|8C_I;q^X*~t2B3c;jH;Jk`SUqW%VaD-em@mHc#Hw2vrnJ zISexm8P7)3Ur#aA+-tr!@FaVpRfxz*QVqpCfjs?+Ph=T@*pO6OX%u#(+bC=s$y}u6 zc%pzmrU^fVBT^6BQ8}BStx2aREh(mQk}&htYE3G_Mvh5F9UA_Bh4l;CeJ4%=Gp8S+1NL+CT zf<@G*!Io&adq$pD3RAU%4u9#1s+*-s7r2x(vJ-}u5!B^);SOdIGYgKWoo1n*T>+bL zuQA$o<098?-WdqI(j=3 z=kO}of&7@E5-nKfxum%bzy8xK`iuU-ZZrg0)f1Mqu z`swWU5(5vK-Skm309at*nMma-GTImP7xX=QY;?o9)b9b5%DDYh=lM4o0Q7&0KPdGGpD$|HPJoz$q9NuMCG|lO51*_>s1ypd51U2!@Zcpdi zR&@b;RKg(3!841$v9U0`Q1!?kWuMJp`4)p7{XJxWyTSBV5Ot)0lLF=uxXVvM!N z{XVS(+@pXWLldrxKZbfjTox|ovfiKBn_TpSq7l?P)3J;CcB+Ky{A#=jRk3$l<^3JU zHcd>+s7mAo%nnL17SO%9iMbnCJF|Qf$fJbFVG@vJjjLl|Z$o@>C?Az&@9NoW`X3ez z@_9BJ^lpz!F|zn)h%|Uz$R`IL$q_013DWp{>0SUZ&4E}OV+|J5k}DqQOjRd8Wt;kw zBz$-d#yU_05pTIAp2TW4#CQ$IJ7y*EGX)kK4l668_rg?TKs9fC+C@?XK0R9<5PMf8 zR``!hT;mWL5On#4je9y#^reQ0Lj63OKngHu1H)E;r(_Qn@{;WhNY8)^0nF4VlRK5Q zJa536=J*~}2jx#wRcmflLD_=d_;~F*xavu80vku3JLfqq*PJ1}2|wNKWz7wVU-U^% z@Ro>zJV>mjDo^{Q|Bj>1lQesZDV&RuC*BC;DE-0{(SWI)*9w zo{EnR+hj2VECtTHp`k`faTU%luuJ!@!UC|F?WoT1d5h7{R*)Plqqh^MTj3M;tFaBHF@c9U`jtu~7 z3Vf|W^y1Lgsl2z~FI-`V!yh-8+%XoTtjQh|z@JJoS8zh4~#8)C6LLW`5Q@i+({(e$LH_}cGRyr17vin zl`{Rvg296EbC6LL*GoD7xIyzy-35SjvV4J(QkxR?JLfK9Zfh0xU4lTTq56%gqtP6z zn~Rw+JML;7c(g1L`a(`J4MpAr8uz)5+|Y9`PVA*trRIxECc1H2H-9PmaYlvsON~$K zVoY>-gYwLa;jWFHD0OEhcW#|IU945413_4g*R&uiaBYSP6roR_Cgr11rU3xr^39$2 zdWmi}U#7K#t3Y;f6rN@OhEXQ2^j{mh>unu#JQud}<6%D%I*!e-9nb@R-*LSrt@442Q zW@l7V?s+xitpfBVDm@0*qbt1LXLmoPN-DspHu<5J-!XtVl0jiy9)H&DS}HKDYT5o| zKEZ8dW=YP2Y|d?TfDbSwAKI#U2sQEuPy6kQy}OqO1MfEShIxg0IX$^z3le2D1%7!> zmT^}yyQC3AhC~|d?7Y3C&@Hlh_@20qk}fSuTK<}?08@s`F%ps&bfBlgw%3S`Y0b40 zdb>}!&v5Eo&EuFd8h_@w%rw3_i+^z+Pm!j@JO-mF#@)ji3IT|<^|(mL=h2P4t~Pc; zPd!7$=wEU(;yhjTOCDs4_9D(6UC}8Xzqj=>sH3YXas;zy_zfvLU8}U}rl9YePg$j> zBG5&L{!32F0PUCYA5)j+I9Lm@=)c2NJaC>L0r!b_+cQg2J0Aiq^>hA?|43TRumJ2H zY_%d^m~Kn-%Mrnk;iiHSN4)?&p_wwe8(}XCyPh>pxSi`r6AGvy)(tx(8hW<^r|cR+O-p2i z5+wc*zCFv0rZ9B4Wq|9M;>$URM|dUWa378OJHA0l&PYph0?BP-Vk0)s?;Sm^hMzm(7_x8F2eUk#t}zb; zH+$o|iLa-IIZ=-^p!u&Ij{BWcRRA0M zI*F;B)!b+I>sT&B*AW98H{iKOTtQ8Ti^xm`pM3if$W2NYlBLUPOp<$?VOK15;bjnh zbbe74i^v~A(*>R1JLLg15S5WGf76SGtjUM0g3q&%7&OH)%}4WN;}2qZ%S+lSj~1!j z$7M792rATjaGfpK-vwf0ia(AMA^<{P5;U4f1*)8l>Xwq1;0eh;X7L(HLi&+(q!?dA zwjw4@t1a^b=|$i-deh;T7)B?_88{1D`q{kbG{tPpar$!$aQs7#V9P5V?OYcJyu%%4 zx_4e^0PSDQ@U`{twO{XHRoXoFqds2+wTZZX3l=H`qa<~Q2ZLpA#BtY$HUNp{m8ds% zv}#j{WNP>`|DK0>@=~Av_xWz8vuVb1*I`p%c|zCbErk2_v+(8X{vBgX6f1F52uiHK zXX9s1=J$!#T*Tmqv47rRvLKnHw7gD-P|bHu1P}CAe>`wfBd+=!Kdo|FNYE$7P@jZG z)GLtgP8!w~dFR5u_-(6_+5t54&agqx&8Hr`t}Y!y@<+iRWoNP4j`<=H%nbwq^|tYI6(E0pc2Qd$-Fh$^cBU^h22LNtQ%X zPVK4FJb)Xd8^6v7HMD;Acu9u_SDVXIEgTj#X4HRM8T;H0`l|l|Z4sU6SG=w;(GiCod-B#%p;`~i(500X)_?fFRBd< z`KExvOY~o9V|BX)z8z(qrK;?>-b*roY&EZHpBts->V+IeR{@$R5&C?4u78@kcdh>f zm7Th0e&X1>U%$3VwBSIHXESTta{7dkZt z48D9gd`-s|KEV(HSa`VD z{^uifsV(P#&jtSvr7vsI%c~4q;B$;3mq26Z0_z^);ojm^$iV&&OwUvtZ%!U~3AZ1;70?Xy%`p_%mRZs&J ze*1tT23I+?t>10lqgy}vGzyB4!6!yJ1K(X|>C%`1!`L-{;ea`W?}{w=cK>qnp&)f-@NozCvJdr5k3qj`MG z{;LCIg#0(DnK?yzH#z#b18cjRHXU5%azUQ7VRecxW}g+lHH(kj#gvsv(d68~&MWE! zGj$@0uM7B(6Cid`(yu9kpD#|_3oVq;IKjewRu>O zOZZC93Lep>VqllK!`7Uc+^7DmMZ|{;5zVariZCd&3WAFxw*vJ*G^^ljP{EI7X7IK_ z?2TCcv5L}tXjqx+8L{(lkr_!y5_6vOx-ebic)$$nO$^M2>0DlN+mdrqP`H&^YIrH% z@|dxVI4pFC9e#kgM>@|fuvzvfn*)`E8lqw9jnm_dUvbqqjgT?XG=qPuXcQ#L1p8nM zWt5c|-^#)i+t`)jXI1D?Nqw02p#Z8Hbmp8&W9U+Aj7xW*%cS0Ud=Y7{=R?(*99f@N zEr5!WD{y8bkJBT8Xno5=Kv+>(omHnDa>Lerm%=RD%?X)QxX=V|pbxEV{{T`dXrx|O zj+I2#z_fgK4i}sMtLoT(m;vQSwZiXg(ag^5WLm~#8NZ;K#vas&6n^o_#tqq0-@?4c z$K#yp=~!)MIUJ3=&`r1!EX=A?g2K}X`x3OZnBiI!uT!Cj z%BukqIp{~W-D#$rykS==1C9MpX+&hodXVAbqM}SH)A_t^zOq9_l;L8Q+~@v)3xKF> zv(?PvJV$)Do?f*VA(GKf@Lc(&DrUUjBS| ztBFAS>FCnAuBB*?qO0LpqG1O&nENo@{0gbI4xQgQYD=e1Y4)EDXlyEwxj62q-z{Cw z#z!OkJCG6X7=k5f+VWf-XMY~pGa3SO3N$ch`>o3*{uue>N9G1))RW2VOPqEsBNinjW@Rjz)VPw$kR%i;E3qYK zj}2Hb_ae0>c;*_Fp+W1c@i|ITzFtF~{fvlx#G_`?OtC_W3!!B7QV6-t*DY&`iciro z&9L|Z%a0Y!*XF4V8Q z%_q+W)5?J^{UkX*tB7FD6n@3t{3cDx+*(p^+qL9mjli==*7d*OuLmei<@&8HQV&&& ztf@_-9zW6(#2A(-Hk6q1WUWQTh1vZLQvbWKs6L-a7SEk?qd-tJ$*1_Yxe?**Z;MsF z%5>uJz?1J8sTW4^;h6CjI{)dZN)c(+TDa(FJ~Zik_LdG9;|1Q@mUl#bHi>%j_ajU0 z(cCJGdcaq;jFjkWTpfUy`yxNF*Pfmp?aZ$j$CpMtOboGbn(!Cs530ak$d>P>P1nK{ z=-9pOCmI4%v2Vg(jCy1H>5`@SGqBKT?{|OJvWXBO6fjoS9JMEG50vym$);C2p&Y!| z(9u@t9E9|qp9gWHe*YtQId;vuJ?2ky+z;i=d z2NY#-31cV}#~th((6)@rj;hV+GmHz^t~SmaU{KoR6T)XASS#J7q2r5ox)TgSp_*WK zgEa{Z6w=3rstDkIuKP-n#e*eLF@`4lzCYEPFy=VoOT^Ccb}GJ2IU@BtuEXr?>wB(Y zBvG%!UA<8YbQS0C8&-6LNp%?teQ<)h9OLKa}H* zHoJ2NG3~h@guRneW9iY}lEBbX6UbO+WpOJNEmF|rU4uRh#3${B6rlGcE)2w}jj6sO zcn+w(xbg>QH4{^R_wc)_->DUPgKeQnb~@jaZO|^c6CtTAj&tOY#PS`T&TL%ijK0dK zYW>O1D%g|TozvbH;`++CpWafQ7>fCBIsN{gl6ZsZakqV`&(cPQ;93jfY7D9Wn04KxlXJ3B9Cn(XWZyQ5YqGxT(bz(uZ}G z8YcvDqS_b41Z9SWHy9`6ya%M`{DkI-H!bUIY&`k$mCZ$Y6Yod5bzjF3`ChXAtlTeA zzAVnn%`oswZqYe?DeQz?CxQf5L2q;z+(L=E#FrdW{+TEsdP-TPv4$11-D{;+L%Z1f+Th%IL zSMKm$;sDm}Nb51s{CHF}!}GfUvw&vl_xjT_z`beI46jeQ@^9PWdE{FiB`^Emw%Ix& zRUI~Ky8ZSYFHVEVz=cp3*x+AR>%J8X=}8h76HH2Pv5^eiEp0Usi3PKs+9XqY*)o5P zmF9NO(T_!%I1`wDNd7V^)Fnpj(!Tz5%p_JbtqzvTj$R>_Ioh%3TW`$b@2Bv3-HM#u z19Y1+sTX8NrQ7a$0rfTEfqvO|J_g%6*oUdtHvggcqBfLHS>F;aYRZ%Dcmzf_;yiq|GFlcDY>^MU@ zvGyQrNRLK8X4~h}U-#{WsHa0drK6R00f1zXTNbdr_H8PYwrK>;o@d7IP1IaUN{WX3 zlV{vg&P#-jDev7)ibjVfc8jII%8jzuh+5il7xCO2uR03Un^GR6&mM?fqJ@{1&PtlY z&-m^jLs%ro@?QBdie7vt1vM9cWJD89gEwZY=Zd*$tF04}ykO{yv4b0*ZGjhSO{% z(nuib%Rk^Ew{>gPWXjiWRGsHG=8CWHaSHaGUUn6^x<2JadhF<&X1(kgaCFuV$qf?8 z(i%kCb)pAJ$rt-%b5+2xNH0T=oK?pw;#)GK{JTwtq!>)=trWL3;U3BX>R|f{k*DnG zpV_ct7h8H+@Ik|l5p{6ISlUBAq^Z2C?ty)jqE{xzM3gHED0m_kN>>v1A!epD+$|#` zXlPg2O_S^1i`@+i>JV8o;Dis0FSpwcn?qt&U`m*9p?bUB(9-m0$C=?Tx?rC9#6!ah zs!CEf)S15EV&tK=;6No}^p6cu&##YH`JKo#BW{8bZSqZP_S><7+kDz~)s3&u4xCo4 z3dyqmqC{m1e$PqX95FdUb8MhJkz|S#EO|A&vB#K7FX!>fhc1x^fbO*u5>ta-S94oL zAoH2c+NfB1gap+*&y=Yo<`M!~^5~H7rn?)AkfVCb{~2}qlGOu?;uH%Cc%Ii_<tOY!lqJ~=(? zxRPfW*5#jwc_DEE2+IHFVH1ptBj>|84o`omV}R7zmG zj3AZNUJ@&^dlvQhP2c5Ngx!&n`n05aKr!`e>h#f!FSBp_*UfmD8b5{~35^xItf(XB z3k7W~Fm4u$DJJSiq?}s8C2z`o+k#>c3V&Rf$q9ur+yS`~;OCqdWjDr7G4h#kA}H`L z1EX>{xv5Tht9UYv$t>j=w%6zZsKsbvQlm=iHsb>;YcvyN7q+AKNJ16`f0kW4ymtc)g@5qbV{z<8#@@U?0>x+Lv$MZ&Xn?(wy1d>K4h4Y+=k^WChWCPb&{ zpm1~JAEb{XfEhzc`V+q=G6Jqv6@Wz}B~V!$=+vrAqC4vNfvjnnjg<{Q~9%z>w-7fE*aCSIwnd2lFE^XMq~`i$Cl+l z?NOBq=GRgXeN`o|x#@lQJk5x3=>U^OU9Cqo9+Yk#0HQ}5KFR_z)k!2Jnd8M8QH|_C zWS=pn;nhhdg3+v44SCRQv02eu%5v>#omYj2%~TIys-Z2^y0{LBxBddol8QYQ^_R2y^)jnQXzuvI!aItW}+)BQo< z@)NuQaB=kO^?iP!a9rS7Zy3V(e)vV``mzopK_I?Cl_7-OHrS*aaI}+u(Yd|YPl%J=1|Lc`OE7ls{bId%uk_|Hpn8_kf3%xtlnLp zWU`9cYgkQ$ACyCYbvKb{Mxgr$&)7;2EYZqOhbfiuAaWBSQCn4(p1^YPD#k0fz5|od zV#bV&7TzR(!Xb=>j?;8;Bl+7JW_a@}BF?4hDq`QA6S7bckPacx^|3H-6Hk+37>eEgvRU*w(K>R>dUMz!b;(Emuh1PVO<#kXFKyQ_JZThh^K)%$M0a* zF;%q5kQc>ktA6!Uw5_;QS6*z%I1vtNEay!+wM#%O&7J~A|1$rypQvWR!jKwvd>aSM z%XD^t{ex1KQ?mNjqzM}NNOk(t5Z2=Q!IkQ=_TkrAui_aRVZiFiO}0=mz!X{T6rZvd z0@g+d%A!};GZ>VUw`f#g*nZ>5h}*R+JZWFcy%E-7jrh%NE8O~fW!ir2iS%GAIvoXj zzRKD=m~J_@N%}$3$F*D5PeLC=IzIsvJ^ie5KKjQ{enuVNxs?R*qj(@4-A#_G9^Y^s zLuW@iWZip>I*%MqN^_@Weve zPqE}2%sFR&FMKHt(oYZKa(>anH*S?gyBMB%)TZD(1$448{VBkI@O$L(sbL)@b@l85 zRSC3AmYIHepSj9(n60Pga=^5QH|Gij@a zd2d(e;mf5dzPau;MAtALMIDiztB#y?FZ;tLqE>Q{ST9BQM2myu@3H62<%AR-O(GYyI)R-T z`vX23Jo`~Pi)xGgR(4FTAIB#gyEK~mDINwwtT-pihf)UnATAmo8o4*AH^z_PS~`mV zh=yM)SD^S)N=oD=0Fdy4XW`1#=Zh_Fb{|-}9-9R0SlP=qBam);Ad0@j8GI=7fj1VuqDhL4G`MUG0Cj`q)qnNaQ#eF zpKw6!@=Ec9I4C0E$abvDaJRoQC;SF>CQ&1!3w2G-^m3r49rA8ZFV{geH7>upPrnP| ze6E zTHl@Wc;KeM7%upKgfKYS>B0{I|+~AQwYiB7e}fz z{&*(a?=wh6ynJxnC1RWQ&QcT&6aX$TR&)m$^TY#3*D)~ z*g9xVTgp>i2I@BRAkk}-n;a+Z4*V$?w03RPmB6Nv2o79@&{qXLu_$5jQ6B90B~y>m zC~bTx2zqxsMmEQ4E{yob%VzSWZR(pt3Xq%r$w@c>`+#8p!eiQMlJRDSgh*=le8yaAje-fpJ^hxG z|0ZH}q5PC2m5|i7bWejVuRta$6h&LDMiQG)ck!VffkG48GUCsGAmm+llsA7M|ykK$C+BbQo&9ngS2U>^4+ z5OdYoEl>v??7O$>UR_=}D!ErCGO!1@ZgufENh2OlJA|<3B4C$(_cG(gj7E?n9vv0V zZJi#6e%;%9*n1PNOVb;2_Qf9tk+$ty%r{*EaPcf?WSD!>V{BPW_gcO^-Jdrnb?Vj* zdeSeVmUD^2UsnJMqma|+lcA!}h*d?skhV_fT{L2pcFG<0G+e-+pyL6C;-7KlTY+Fo zWUR%O*>H-@Cblx`o-X`QPC^HvEPtnL`J{7RnBzYr(idu8E8S|d@0LGs0JRED%RNzm zHnyXBX=Omr%(ul?7nx!mp(Yf5xC?RgkaoD|>W{RMyl7Ou-8>2rDY8}dF}3F8HJCv9 zfI((b3uSO4#6pqg#`ND%cbcuqnx)MI#fpG51&XL3U74{8*0Q3vta+>;!Nl9+j~1Gc z86n=u9-kHdjIONL*^iG%LHnkCq&F+TDjqmqf=QySD6v75i*?qvLAt{?j#FemJu_d&hA_GM6xBbf zX^s7sY{a6F&c4>66?x*xHF-Oa6PDWX6v&VQ!K9U6a_21W4_l?`s z=1NsV5%_!LCl-m@^Ep4yx4z)lTVWDLGjaw?cyXp0w z8@=K3Ljvij*B9hb41Ni~@^c00y*&EuxNEoli21;~A%_wk8rFg0cqHTQ{9lq~bgw6| z*`{(&?Lr>iQELV^gJTfrOOH-mQ-#D#QAQOO(T5dtOUgL+sD%fY4ff1Q zNa7%fud)tuM5SOdE>QJEEpxN5_S{|{+?_}1@Le>y3usIaOhmV<_ih zyn^|K_>>#;L2z}rqV5||1*x~^6mMM-e7?D51`e$8-Xs}RtDoeZ)gmCWafL9sAL4lQmF~JX&D4{nUAL-l`YyN%8y)v*j&1X3ZR% zq2g&|5DXt1z%l&OB6Fy|S70S6x6`MeK!!)FG6KU40zC z$DgSRMd)gX<%SC&_v@&PyRUN4+ESN-H3MWTNFNt7{Rx{K-z*N*wZ~O# z3Fn~o*?)}+vRrV;#ETP>$A3FqqK0~Ek^wc?c>zG02#+pdPU-2Bz@FMM_RA4N5G;{C zzdj3j(K!!b>k%6rSJ12edUw`&w}buqkL)3?a)xXKpAi9Rt9Il$x{9`mAe{e~dvbdQ z!a&ON^Ia4%hZ>C1-So*f4~%5NKS1z~7K-&$plqrWH}H(fO0yR--JsL+ufI4A50QG3 zgr9HEP8a)WDNMcZy%P-!>eJvfxK(-XNYjmz^zRQqca%3$WF8K=`>Y)9l#%m^uHfP2 zR3gSZaDA!GvH5Mc(L;GxqN^CGmFaQf6zl!6Xhkn*X6Ox$+W_`?=(tfJ>`ju&Z{-ih z%4Of#{x-XE1dE0ICLR+B6#XKUl}M;q6KMq%V$^y6XVEk7c|p1rnrB*DFYLJGOjs5h zL7Ft+a(yg~o~n8unv}Ez!2kv`FN8aSysYV zum~q8S$mXush75|6}vxElW3ho2xw6j^V1J6L-H34^KJNz4a9Kh?lurzBy|5+C$Z43 z&ms`wPJib-_-FiN>$pNAz6G0Gp}jikyXZ0?*KLezrk9rKCP+I*@W(B~Q0kKwJR#k8 zCvI1P(fZ2TXMC7?1tI?o`0kc~!-KV1VUHfd$6T}==5y{;3G+!XwPc2(47f}^uy8$I zb#h)@t(Lao63#OxA(^s$411ds^yN$66O>@A+cV#2Xb-O|IeFcYC^E6VKFMqKm*M+# zg}D7#Ana-UrCTEW^RIJ6Aq+MDo^G)cH_H@zCH7#Faq<JJGAtX(S>41d{Iv zQvvK(EN~&8G{Hc!L($${-!EGX>|ygC80=b}Kn$GUM_DjP1H%6%^?|`Jf~e7;2qBoX z5S5MQiS2o`fLJ3B+>rGmkxBcH@qL_+`*cLg=^4CxrYu4x1kHBm0C30T|h$!)DO3*eAmzP)!inDNqrJ0ou;5|Dr~K z*Zt@NAVSH}a?@$DDctR>$>gxH(Q+y?Ff=$O_HvR3=#4@udW!MNgBoLqYSfG z=!#hY?dW!`ku6xMU9VC8MVwi{uQ;GTVU@JR){C-c@DeaOq6t#W5C46Bx@#zV&d{^* z-1A_4{Hw93lkMQlO6cIPT6D6fU7gHC%Re`XPnv2`l*LjQmoxT2uJcQs@jKS{XeAXY(vG7+wRXXW3wgPziU9Jn?syA7E4Whsep}wQrT+G2#C-WEJn=)i4+VoDvgkdA}ZFB~q0i?X5K9Dl5|B zpfl@PmOkvin7z2q2zhV#R|a#IJs<*fR}MIO9=a&aS*{MdN^EZal8b%|8Qx|B>}u0% z@Oqx10@lgQOnd0N6ohV{_nEs+Z%0asg=2or!MS=un>py4PumfShPR=&aC50allyzE z+8*gqn{gTEt7qo~cRpCBNXTlZ9B|E@m#cLkcl8E%yw9ni=y`xEM0#1s7H_3%b9iIk z%~fk*(pV*X0XjBw#v}v{I;7?RDx^?PhwlRBxPl@0rM1Ijp72(0YMG%v^u(_kZk|OC zsw5W^#&}0|dO1S+guQEinv$b21i^lqDWrqC3c*sg{0qTS33-=1=)vRvVlZmgu(=)i zdN7}cK*`JgfIotHus{g=^nKi4Z~lfKvw1KQ%Xe-_81ODnlgC@q7_V6dq(Ej5j#BW< zl|J691n*3)@dt|==n^73$`tw}e#)G{l@_^=;m9P!$Os)0OvbC(ggZ-ou#S z+8qBHp$QYo0(F21F#|u6KIrnd**ulC75LIKZD=nK9iZQe!0c zXXsWSxyvDvPAcONaOEQJ8QNTkIf};@Swc1lJ*4ugnny9z@c8O^TXNsv_f*&GiXm)T z#NF6D{Ax)8@HL3M4d4tu+|Gd1Ox;5TuFC;A;P7o@i`1zS?r;~0ndP>|h=4 znUNn2KJv;4U!{)RHd|LnwHIP0@seI$)AYAJys{87AmXtmhDZ^e9erzuM@Fx=G5fy6 zIYYv_?jUTslZ`hDF#^lV` zZ2FTRLyjL+!kXf+!Z&snfA_`moa6(~EhAd|79YUwfI#t^&amMQsPYYyc@tdPrtjlVIvqtfum?O7=zstE``>?uxagncH|PJRE`I=8_FL@#VI$Q2 z7zWHoKM;iZB@5&xASaf;+KEB#aHWEm`Qiw#@1K+rT2du$>NuOOAliDCqBHMOwH+#I zSRWc>MWm#7#>lnot^U3Pk1d`2k9nJTq}+9)m1?nF^6XyYI5(<|Et*x)C#cL+&65Qy+El5>32dSw#-8y(Xf=IlioD|x3wQ@d-vNgJRwt7&tA`#dauk0ss zNQ5SBLgOoRi$drX8{>Z<4r-xs#D0P%kT~V75D3fK{vpkDDFc49azL<4I)Z}#X^g&R z5123U&)@2P={EnF^JVP;^au!6bVhrX?f`~H(b#*2e@Ag%G%JX!2HpU)+-%ch2k#$4 zyl%s0X@L9V=xZQ!_F}7@)pT{b0hY4iBmdaw13|QTvz~UUXVq}IYBdh!rt-`Q7PomQ1x3hSQtqSO0P2nLs(L}l8bq{c-t#kkhh|^aBfQ7 zdhJ*CSX_K!KwHSq4B!CkbjJ0X&+o$;aysfsK`P*v=j=S^n38x*SV$;%cvS6PpLVa!8yRhs-@Q>KEd1k>CUDe3S$arE4{Y!51iy zWRj@QvQNiefV0~T*e5(1%_XnhDXnDLluQ0`&)9?y1!K68)0 zclY-#iGKKW{~39N1{*0nfOK+Ono2D*{dOG%C<77o&ku|Lieo2+h7Czf#N~)M8gjE9 zL~P6_1y>q$?ac+KJ(hICSujsI4J=j1ctZj>tCh*=hIL#k3c3;EsIGt;R7F}R^unMO zpjw3_;OE&Ycc%zjK;3I6S%fc}U?N6=yDOmJ10a26<`0R48TMjQ@6g@mt!2yb=63v zRpMbnbTM$7cF-qFzMJI!(Ac-zyTeE-?-tcC>R8}_`SDZ`2Z{SkG0I3(RgM`eX;@ha zXCPo&_X+{ziic+o99RE5bo*;A6t7`6C-6cLESAW+6D*tJCk9tnlj9i-5y~%A{cfiG zHBQOi2tDNKVw0*zjJ^L#abXta7N{CRCf^9tVws`9K8?)PUg7NTO-iA>B->LjXDOhj zk~vvE=V@n#9{PJ5C1g~S%+;fm2u-DQH}BarcCr#+1sn(gaU(1xNT@Hew3CY3wxg;f zM6u&2gk~jg2tU?J10%artix@9`XsARWxoFBbO4n5&C$?BSTf6j+rpq=!Vzv*P>?8@ zn@7J9J(S*Kl{WfD`~pOW0_$tD66sqnS`HXd1q zUkI6~b)GDcojt?a8*4goMS3`xLPi{#M|{4^x*|tKs(E@o~5z268|UnKtILHP3<~lp&aa%Of*b4TDep zstGSMuc+2qA>t!Da!LqdCaUduP!bNjK| zc5=a;hq>nK&$`=Jdg(f2j);C3%0ZwC+Q6SiykG+|d~-rzJo!a8jNE*5e%ba9|C)bd zD#?Yd<^I%*lo0;%Ik!-NVSJuG?r;U1edOhp;oCN4Cdomk!R~|dt3lgagow)OKwm#+6dx$@~7tK$)HY z@4u%mMcNOKh>`1mUHWOKE%u+P1C`5Jf9?!3sSvWsh1Y`1g1ocyNGmDCO^19Ed5)Qv z1wpUBq;yegr(SjShX-?u8VxN}Ab}ua@SN|ND#f{iYZ;G=kO#q>Th_Cvx7=#&xfkEo zC_Z)w$U}v;B}ItH4XXRc+@tL~U?c|>vFqyV%Bx{6H6rfI&-dQLxfqn~HEg_r&K@Yj@As11o^ora~g+TzoY4Lfe{iFS6-?4@9;QLR)f|WfPV%%_kIb5SFI# zWs;PdOni`K;fi~$AvK#HQPOx2LiQshZ>JGZe%^{8c%{yBR{8rVvAXR7*cKa5(z+C| zt&J3DCHy@=SwsY*!BQURMp^*buQd>&=olRbC(Ltr33($}zK2)Fhe{~u>4iBC8~PaD zf>~7b`=6N;*v%Y!1bb}aFhS9HFz|^iv08=@Ib37joO>UC{|m@>?SYYG>&_d4oj&oj zUW4~aw})7(_1_m7-D#oOq> zp+n#%2~(Q606!x`4Z%$Dl3%{}=CmY9mzu#+gPanDB+0xmzDYd5BV14UHH%$!$V!%f zs$3oQD0*|){UrkWCD~+ihR$#Cn3~NH8R5r3?(_NjE`+;W(PRGLmup6Jhl8e~^aqk| zB_kPR53st_?tm=A0rF?>9+LXFRWw`Z{xtrUopPv+3}~S*Mw9w0 zCP0V>A+ocQRI6%&u%+^3yKb0YCz$xOM3G@7Cg>7|nDfg88sK$sm|E2Yln4WgpUcj8 z7qF#_^s5Lx)yHYpNbImqYVD;mb6G2w9UV+@DBpDss!vYF=-|Xel8!hng=rv&n4;dg z>a8ZTg3(4vkbh7*HjLJkrN-Tvg3e^mk-$@lD z#;y2+ds)!`o_AT&DM!wBDfMK|w9?^@Ll|#pn#H`e3`ZOF`Rl0{KGh607nAz(#GEiH zEFkMaS7uMuoYBFF9kQ*qvEiN!x!DSsthY&}Gwi}O12EogtC#U~wt^fITo{yquYT znetv714Onxkh1}9HpS3$|7znEt~z`swlqTT3^EW>d<=f@?ZdPTPe*!gq|WpU1mEAw z!wj1|!9;ak!bLOv(DvDz_WjtveM9;ylQs_N1heD&)$-RBmJ@0gr*FnWhWXNLtw0R0 z=U~*@xr4tM2GF#0)SG~_SwFc{VC*%!S+Fj|0D^N-{`qOZKw|0m0ZU+Kadn2XIpy(`S}Tx!>&`oV?fQp zUopWoq%zJu+i_W;wI(hIL!@dxZsm+&HHJYq2Kc`{#wnc@)3ipgJVt0w(g6xp1XLP- zSj;X+rAig|$31t|_hEav>UY4WLRcbCF!~;r;p^)}HFxY1GGWP(L5iy`G0T7NPf5~4 z>xT;cM~VqRol%{O74@@KNRJjH1)vAdCxT+_PbXvV$W}v}i{ELyFvBY^P(Hs3~RhG6^$%aEv@AqZEBRFz=-Lb!JJO1<%IVyF|tPKDSChmI_7&;0Z1fb_>TtC zb%KM;HAQO-m9l`)LxX~ySB>$JMz;1kQY0?XM8gnS0-AsEnEXZ635~3+Zz!&*k3h7O z0S?LTM!nnGSaKSR(UU+UyM&)Q3M|#=o2QAWhDhz3A+e~(Eg^Yw^p*H)k3rlpmdNp}}9ltQsfqaC{N7FxAwV09P z@>iQF+p1gFdt^33wLyGA>Ibv+JXv(+STPlOyI{dkj&U>7a;biV0M_5ivDUJFTwWrF z<0&9*D@IgZ3$7v}v)4aQ%n8z29esC-l<}%%x|ntU8tc;?6fd4OD{WJ>e<)xh)Kb1E zY?I!M7?oNXeJ?yu{$;}dh$kEu2s4q7t%RV)F*Fhzv@#)`!dyXa?G-#{0V z0iyq}{+Q%F3zgKL_p_S8{Qsj@Z^z-X!2(We(?@ywOX_ntBPc1fpb+QM3JxRg=C+L| zC8EkaetmgoXN;3({A_N*uBr)lUtM|~4!ypTv@~vS!gJGo=R2=)!B4#J*|>XW86S6+-m+miCX9WLMA56bMH>wRL4 zcd*={f$nx=@fVmMCsbePQ3xyU$@;^q&JC5|tUNH2-kMGPxsc@Nlu=aFm#9$6?^hHm z>65mu^sSeal1Y3>B6rfdca@SYIR0I5mPC3RB%7#lC}F4|du!~IlDDY1|JHsHtNRS_ z8B&Vky#;Jm9<+iL<->AnHu$q8P+PFfM-?D~stxCo@CSmi}#YO zLxR1?X&fdds}AHypz$cJFSPJXA^jqiBSvMUNR&+>mn^b;W_g2JGsog+v51jJ~?~dv1SH_h zA2|_|z=vaRg`Y%KUVtC{=>LEtv+#GP@U`4*qd|XtZRdQaOW0_Uo*ug~qm*<8(&3&q zJIfU+NJI-|8`13gW|n#&I-z*=%gc+E8LM*oHSGb2GGjDc&qEgBq9Kt8h=d`dk@`Q_ z6VM6karZ(nG=;Db$ojS9Ho`3+#2H&a(k6mXyV2u|XQdW6h06+Rc+~*SvJmq<%(BEV z(m29f)zKu5hvcDABWE>X%-tCNf~3RS^PGLe!{y)x{bs@w?6x2o@eK$ru-05d6WYIjgAe0CRP zfuD7nhe@n$1j5=y;(Y*;uG@HRe+_AZiJLSY9qQ>!B_%IKae!7B`d+8hN!Yr6GD)X- zA`ZrThY1E!8a|CDcb=ToiT)vNKecdSYtFs%b(nK%dR-A}*a#L$>R=VY0N17EX}AbN zy-kFs!DQMT&FtO`z6_7TM1GJh&RIej&|&n;`)%n0a*Q9~YZO`sLj6{uE#hsq^E;;*idr6T=Al@V82QY92o(>^oqC@`Qgjr8g$ zKp7cpT7x`UW*B?IE;-?qrBFhlp#7S>h60W=#d+4KmPzrVX}~9NU^bqbhB|5N&>Vwa z5F4R7c_S9m{{nC=p7vHc2sJ6H+dMU|_={rtc7Ln?@!pNI)0D0OVM^!iSN4QqSsKqK zYz2@iFBd&uIl)i*Wj1U+IFv640Cj#D?Ox?WOC%rcHFMJ^8=8@6Qr z_WE%ZLv?7-iH*7R9WRdJLx}w|w zAB~luRRgkalo!QjGwD-fVqOcF`xWhd)O(w<6x4`?Z!#A9;%@32bT2jnr>b=!^% zN5G(8*}r${-BLFuHlaO}tM_ln>9u}4wV?Wufn*_Bu`OC3853uw>9T_7ER|Fd6EY_1 zFg-JYS*@o*BYtcf&zCsEqAq5ePL2fO{)ySk`)p@@<#T@R(@k_zVXG23-{{EB7{$Cj z9*BFH{Bnk*6>aJBW5hZWY-RCH+8SYKV*rgd992(gLFc?R?`}6Q6_y800T{f@{03F| za03!scwTU()4uT!X~}b_ub!HcGZ8oi#0CbM#ZF~Mf_-M!707KJT5nSoy(shRNW%@$ zo9l7j@%pH3D6hxfJr<91Fo0F+tglufK+g!fP_WqsvqF~*tXNfmgefI#} z{R$THDB07LE@su#Wyj?R#9jiJ2l$4{d%pPqe5r%3V8B7OD~YHcf$_s zuI)UdQ40^aRWc*W-i>b;xC3(J^nhu9ggZNT#XfJA16nj&o+n4?5 zbgG60o9gXQ^w6Heeq9DkW!#*k-FbEx2Dqe|b5d;G3^Xxx`cz~dRZo^KR!A&G(&3D6 zt&dY3Y$u2=5zR|{18?T-UH&)p$ozkyM-G<%)i`iAo$y+(y7lWbZi85-4I%wW zC0FNJ&)YIg?hxB&R1zU{iCbHe%1d*k1bX|foziq1UFlO%#R}_V-7#bW2_gO496Ay3 zT-3gVM%NrA$w!8II$y*L?2n$8U%Xj#Pw~gd5hc#p5&IYkxvyUSTmUwoVtA}6#dbee z9u0!@0`flJr4X_#vtigZ(;Mc}Aj+XvFF+E%+ z3`^_$bMvU-;_36kk0%Q6R}ef7h@)*_-KQ5qQ(jk8i1aRT0KoG=L**%*fsd5Zg-0p_Mmtv zXS`S#Ng`Obf`{F#rsrOc4MYXNOu2F44}ay^G4)~n{io+gu64SKD`DYoK{aS9@rh6k4t}||mz&)_+b2H5)XFS@h#hi- zNu1$8xbZswkjEcq@MGLNG$v=XF_C5vG6nRa?-9t5n6M;w78ySa3F2bI#C7BrMcsys zv($}I>U0r1s5*X{8!vmH^WsaiT#>$;fEZij2>B`t7r#b57{SD@dY6u(*PA_4wyr_)NG7Gfhs57VH8GQ1>UzkU ziVRWUxByNyo1B9{VXjE@cv0gS_WWGvC7_<*c1fWP&!o-QVF{tnLRyT`g_*N=Q)HHZ z4g4=d$SgI({Hd!<`XFF*=kFHT@Q|$OTis>@cG*1xJH*CMx{$<^9?SP4VFuxdYqmK@ z2kKfJ#%E|Y)3H?!9Ynj{p_QYw5Lcps z2>|NiBQFX!qVX>+_O98C4v29;FU#+DDxC3}MVdjO3ALx4mVd?Ou7?9@aPBGwOtD=D z*^ylNCOP_)ceV>JCb)LfoJ}tTEw=!tMf-5+T-Y&PEX3)*9t7}F)D=4tyVaDP?y%?n z+i&bC9}J^7ko#wwwrS-R*AyD-BuO3ED3=n%ddkeH_=apokxJodSbAu>MM5$g(xdt%OX!gqMgTj% zaC#;2M8p{#MoK1>^0F1Vg>H35pO~W=c2RK3lyBE#rZk^ltC!rYEzur06I01eq$xLLa@L)|>D zne_`4#}k|w+^gHXxYbF=XjbzVF2K=OO<#?@3#c1KwJI6KVLTB}Y+j2SlcOk;R#C*o zyNc>6#f0ZI;g9a&3=$nm5(wRtZkHX=fevL_+?~VJi$8Pg2ISek&cqSf*gvmBW6^~*wMmHZEF@UB3#`w4j zLvFdeQG_k~T79q(ML^!YsdM?CcKs(!CcPd5$z9><1H*<@`8?#r$*08XBi`?H*4zEp zzHQI-O}NaJboHLSf7G6Tt8wla0hf|T{pRWnE1i*J`9r{BiSFFL)fHMB4!MIh?Og|@un)wA!Z*oeW+!|Cc^ zD@%ltJhYCI&D7rJHI=m5G|tA-3%U{!fr15L$lcC3k4h+%vD)F=Eq!Jfs~z1jm?<97QAukbw%Yx9Y+w`zT2v26(+27GRrC4DWPW9g5-{8}1~ zlIv6YG3^Wk%mGN2Mv<2AakE;M<;^zy2@%W}ai7ow^@{yF146HXruLsFCK?H9Wl%Oo z`y7|fh^YA)uSn4ao5rv!&2D0J#LjuAD?tMV*1n64#-8XHXI(c&xXyV~2?pa}nAy=$ zJx~O?EmZN|>(upwJE}t(q*HEFOCB^%sHmec*$B2X>VWPzdcfDs#5_8>Iog&St~uXg zM#!rNC&j(zVsR1@pR-%o4tt>@l=gbRQCAzg-hCrNJ;#wp-qP;6X_8(wt0#t;So3IQ zMwRT{tC)-mStjI!U8R&$ay6lWJSgsqk(Ul5$#K&v=wdLx)-4{4a zEj(LbCP3?=_oIPMB%J-x^w@ZiSyFTB2SE#@J=1VDGb6elht+BPS)LGKJh3h zAS8{(F{6eVP1HwR3^%Rw3jR2U?}&|Th@bvk3_!mL)EYYBmN?7~wZ|OdsK>o_&v^Hc z6v4&F0p&Vq4F^j`o+qB?IeRbM>Y=?uBNCNXmtz79g&3F&w5$WmFrbpz$d(cU@k+r?MIBk26yi?jT) z_PbknF@D@r=D7e1;u7tV8v#uFo3V;patkJXYoUswekm5po%sSSk)rd1u*pkf;2g{Cdhi2OY=tYEP9$Ve;FDkl!m8uHKe#OaL7Mz<*O@pt|HsAC z-j3U9`Kk5j6M^{t>(>Zn5rLO_wrT?3>I1qnShbhJ?{eo~jW}GX4)}P-Q!XHND(92x z3EC#EdoDV@bLPCyLV)j#!*kL45<0DO#{Eg*u3!IEr}C!Bvk#lyyya>ZEKSc2yEf3I z89b7+c>&bRxT+k>(?IXI^}3d8{D}$K{kXWA*00eEN~Hdd82*v)P(XJ-HvrA4Xu@+f z-gz)x4VSPk`GMr@y4Z^WEykPWM->;8{!Xa|YH$3h*kIVO(~(ql3maAfI3{|j=84?X z!=6*m_XE7mmdTutj^wvdE{RzqwF|r)k@|<`UjRP!6t(ZOj;tDQra2|;w6BdOwBGD^ z)MOwEk(sf~DChNpMXoW7=e-RFg?sriGweU)+ouwl*a=I;Dd;J1h0&(pg$RsEDc4}Zq&Wfz7*T@T|6=qF9wR@7oGKPf2r9O6zHboeAVl%+oZSu zbY5OK;0A_WN3Ao{uw$3(_*Oh#{`M{&1}sVbf<=V9Mda*B+E9)z-Vg5!#r9YN5Jb4$RX6@L6lAdvqG|4F+408ZzIGX7yS% zVTk3)5a_Y1g2ao^>JG9MX$K;%0m4}F83tnv3S(5HZrfdY&QqevhC@GOuGS7@>M=Dl zyYB8RusaU3FPR!Cv7aC$)L4}a_65%~Cq;9Z4!_t=X>W*{x1iB5= zVsn-}xjnZW*_B+Y^yHo)$8Fn|+X*2pYwgSFNvNf1fNROleH2_G^ajlez)+QZld#2Z zx~H#dq(E_swhu|UcGu_a*3enb$n;lwWFnd`F&@N7hlOFI3L@bgv&~23BQrFAroZo(@FlD3k6Ea+gf^pS)!JgPb4}99JhvDB3rVki#zrS@Dk+N0A;edJHJKMQmAQS z=YDf*cmFXIHXO4CHsXl_JJd_7e&ldNx*5fj1okc{&m5xGpGpl>c3&^A&!#kD6p00X z!lRJ0UE?`JI`)i*+iwCg>oH&uEh1GP@%9Wal;+#|sD5A)`UQKuKXbyojs%*zv_L3< zC=97X0Zb#<*%-YyfG_%M6=ilbiWzRA>aqH=5V5v+IZ~1e#f|u8Mp_ai`}r3{Ra5g| zDtrBS54k|J)C#Z&1>8>)z1Dn9iWso!-&^G2K{Vh4{KLAmurh0N^Er@>wltTg*a>EvM)fJ)minb`RwX13K5Q#ec) z^k(OC-W_3~ zVRGi<;YZes00+GnP!`=0Z%i}^Hig@DYg9s#LYO)&$4YinqOHNhlbAm zYT^&VnXlnAaM!xTdP-s-+SFy+EekNZ9vLEp&KdGTiAn!Nu`IX}?u^)RMWS~4z>7bw z6)+$S?2^<_%gGj=s@|0trp~0S#!Y+wP(_? z9f-#hsg}7&h-x0%`dYwQ4zGRYK~#QST1tT zO_0dh?F`#~txR0`Z2TQ9E$)L)?zVCcWBkcoqXju1^PgFGkmazzxX0LdW6LrcT>_fB z{@DazaIWE6bn)nUtdM&O&UR`VR#AfTy)Zyd3Ih&mRwf2>jq19hzcwj`MSKEgu zslkW2goW9LtQ)1c!|VgBIfqz>md31tE%QoBuck=%AJbaww(pXKUtD`oH3zF>xJ<;iC%P=tBx3i!@NFmMtl#Jji;d2A2jipQ}o^{cPlZrwqK zVbhA{vfl0y?eBQ3QHi*h3V@N&e&U>@qmsAY2-BrvI3jF}rQjXSo?N?$K4c0qUF%$9 zITT%Gehdk1ENl{3=Kpz)J-M76G8rNG&$t0X+|YUlsjM0O(Fz5oXI-`Dk(v#e8bM&Hs?bDR0h)~Q)hmUjTrPZhFF>JP11k2k^Cm&5fX0UJ;M8Z+%jIf0 zh3DZTgnKOad>K7yrg0SD!azyJ6*}Fwuz1}HYE2bX{ zEAqG0os=L3U6f?NfYyjB?D@P4sSTPD>&ru-f3gvc#JKe`7&XdJ`s}s#BBgEI{qkK^ zt1$4WQ~_NZE?PPMPk)-Pn9j*TEhy(S|5~lsnE_`GZJa}|yUJtO(g<~B4EVTYW0sj; zy*{=O!&aILsoUr-`8l4DzYi?GU<~%Ye2c91lEV6*Wr14<0DL`5x54Y@iFQ^Ay2=k7 zFyzr`F6Owp!WZfI=hJWmrIULSuLt?fYwfy0l}}kE(ePs=^evd~(q&4a=Ptcp2i&2; zH(8f4z0v|KjYKKY9FQJXPem3j<+vF}OoaO#`D*M2`epwa0c|!7q)UEzISQGtgD{n> zIdxTx%tUxzAdNWao9J`5Gk+f-e1lCKbJ_pj<>WsgATj_8*Z&aR|KBdQtld%oB6gge z;2+J1N~1I%l}HXTh(v2@H4`;erQctE*g?;pI@U&0gG9Ul&l zix1D0aC()&Y$JV%tNzKE^s~(?AD|qsX-dikR(Vs`%1Gbjp5?fJi#g%D(a~q=`_?Fz zW|-_q?S0!biswH2NyxX%Q5bvodNCI4XA`2QnrkDPMj9W)(G2gd4E3)!2%A-CJt&eK zQ>A~zvtOQ1)a(WF=>vd-`Q(icIyOgJ6y#72I`$XVzamh=%<-9BzHI4HX#T(W6^@rJ za8WG?XOCtJ_539kBxp~sEYkg`A!sRKz*rULliWsr*INV_u#HgNiWj%^SVsy|iKe{; z%`ZeVo;Bypbix;Av$J(*1*r)q+*@tp8UQ2iX!UtoMS@y6*&qVSJVx><>kr|q_2-P; zJ!dM&gM{_eLzaZ(#`Q#-RWtMUh`Zr4FYm1%og0w!ZHKp1WhAw#2Y>y6y8vXmJz}{g z{#@W0%YrUmn5Sj3R@tTg@Ljxpmt@c;!ws!|zj{2cZdxO59rXs#YR*jrx-Zt=D%DF6 zGIq7*vGhad2LAy>43o0KXlm}rnB-7(r8x22g8LIz{`uqg1Ktu0oQKo&Mx`Y_&lJ+q z${pXbBtK;mXdU8h=9W(P%8>HdlV`T}FnO9n#UCv7osrA9&|h@nkh@95EiQfq@YoOc zK8r#J+Nz1rtjPWq)sEOoYj1@K9f%%FZ!MyrG0Z!);7gnoYZ}8dUh|;qC zGIs!bwRkLFV|mz?)?t0hk4|n8&`lABUWlo-r>v8-yij3fE_bBsAanFuT}o_P;DG)W z0z4yv@@4?zOcts~pmjY2PZF2lEWHJMkJ@OeA)__@Y?!0BA3VzdYnGkkFJ(^SrkX`Z zk!NY+gkNDlR;de6u{Hxj-^`{FR=xt?9{cw|U1Zjo+366G_hCBgk;?$ZIcR^@B*_4z zeOuiGk?klFZs~8l=k@E;+CxsbA#f-&Btu8Kt380AM@{%l4~+h`Z0tb?^X2T^nrW<% zHP#T-=G>`+BZ@FOI>!Mele30F%-s_!Q|p!j)k)YLGwvhN;^fT%JzOh9_MW~;uB&&f z%v{_C{T-1#t^C#4l~sG*B(++nY0^(lnC@QlRgmACE%VoD!w`+9Y(WL-s9oX86uSu=GKi?bdU?gA*|Zrdi0(0G=b-5XbSIQdE<;&y|mwk za;Ue{ih7(C-0H~Z7WBE0sY@|8TK_(mKQ4*N))z;@es?L-Cyyoga}iYi~@6H3xVb zY`q=yP-3!nj?+|Yb<`Q)6e??{m`jQdgtzxVByP|t;-$%N6J{4I})!vwmL(~PZ z!? zi)j-o#kjsZ4N<>*mA_CpXKE6?!VTkJZlhCM#h@*C2bKzp5oOQ$C-4^*2m&HuFxdvx zk=Q_)i7g^(F*W`)_30M7m06H+l$l`_{YlC2At|$<*bpW~%;Z&jVHyLDA+h<%baZ>L zG=qrKv=e8!#)qy%J#UJM^PqS#nIy+3S=7|ASzBrd5s(`V$!wDQ`i@!%sKC zk`bmkRgh^&-RiBR&SH;yP$`DLdYI1QST&B0Hno^{Y^*tbe=lrG}g!P*+Z`T#`~aPlxOP+ImM5w zkCu|HJ-rhr7}~v41WMkbkn9Bb%>-MrdkySldcd-rm$m!6(2-XZtp+>4vLqq?nd^`Q>CmMiwWxR93f zmz+UQ6 zL9SLr?7pqY9RTp_WRx(6WdL{9n5k_hiDLkA#$0OyQ8sGYkf^&jzHw0;x0lN_;5KvF z?ryl%t^7R)D#Bg8Od|BNRJ9K7nL^Av+6t=`x&sFS6{sp)#uk%OQF2nmRN!b z@3?@=P^!<*mlFQO09!w5NJdhcCu0Rs@-jx&G1Av%N!4UTMfYs)>?A9E8yRj?y4_p$g5r0?ji z_}`dklG`jiFw1{}5TpPmCYJxviF4G1?6rS}EpF7$&Ty+Di%6vfv0dm|fV;u&tFQjJ z{e{)Wrd{*DI*nUO+F5iyDx$hH*Yqip^ed9gga8>Chkz~IPq&rM2;%ZV*{J5dxp3yG zjRI|m8G@QZKVqmykOCu+-KU!x(VU=42gng=17M|n9#^k!r}tqr3}3a!XFNQ?xH9Y) z(c@|JC0N~K5Ub2#=l!Q+3pkQyC~4)~{@_OcflUPwlIT{cXx-~mkto5fcJ42hmr}4! zO%}mvKkvGTm~Ik_%H-EBz~L&2_^URQ6>k?+y4_PBxpXsv8`ECH+0l2*k*xUf3aMO& z571C`t7Bh)-UvCfO&)6$(lqX;Si@Dmo~sUK`$0N65X!_GX_P^WN>2SznOjtwW50vm z5VtXNm999CqDz?*+LClyx>Ub!t0{e8iO<`6&)>arLHeuA{QdTN!IbQD67>3_nTmtt z!!Uc+BUDGk!@h0?dbdcXt3T7qbN_cWAApNQ7UniO1I-591<}~~>T!j?BjFatOQv;oSujy z^<{eibCx#Ve3?VGnyb$4+viwDJb;dSMVVXdycfHqZ3ZR_Y#O^{`XUO6dImha2Cs=A zBQ4p;erFWw(_(JjbA?VNYd4lo^G&p{5lkZ0iwmj;Zit=-%MgtwL9s#g zUZU_czYJ1DYH?l~#~kx%zeU{hxJ;UP@}*J24te>ra#djyzGaA-Rogw@BVgu(+_YAs zW1$C^Foa)1noOUaL;w4=2}@jl5$j`|PnV#aubbJYqYU>KUsT7j;v3qAC{yY{y<^C4 zn&#kK&>msm&9X$bsoP*o*OFhxm z=NypjLX4piMgP1HP}2MO!WKUz3#0wRx#AqPN~eofaTJuplwCnXE${7;*>A)xSuWY6 z?7m|7+VY8Cp0>~yH2mVeOdg} zu2vPzqA=tLq9#2@c!zh@gN z=Qg@mh4Xg`G_r!|5u68MT4*FNaYg>OAE43t#tXq-l8~@@!nTXYdUn))gyrzJdSr4x zLHQVUXqC#ueB~g|oZg|APR;87N7Xk42NG@VPLc^Gw#|uc+fF97ZKGq`wryi#TNB&1 zGk4DY|66s>Lsxa}hkn?*Yu8%q)56PoddJ@|R8AY6Jlw_A;=QuK=q_fn8a%$ELn)v&3H0@fQ|iEVh_h2cFrT8c%4PeQ9Fp{~EX zkB7CPYDJ8Pc0@RbHxZ7Yhyx@Z^K=gSehN_NWoZ{^_6&QJce>&)j+$IZ@KUQXT%OX* zx7CQ*-O9n#pqlW9_!U+6P}bGb&*#4%2vI8!*=Ly(yGlWgLvQ?jlGq#!fV*5Z3e}F-S17 zCy1C0Mxr#IZlJH2RB2Si@C)uoAM#HF{Z=O#D!_(L7wSG~qK*e(95p;mb8=~Rd-Pr! z6go}*ZmpmkW69thQ8ic3<3vrw2*?hSaU43DDkY|Gaw3)j?eCTGXxns%%EZXD3C&*Y zw$9==OjY%pW^2!{;>hMm46Oe7Yr4dM>hTZfr4R(_<)B^*H?%>p%WwUu3S`Ht_Z%YBrEVW?}}+U=(fQ>stMMU1BNZ$w3w6-WA`B1Dmi z*yNmPhMoVpPH+v1D;-nZC)bvYioFzpAY}|jO^N$MP$sc^d)%2E3u%Iqm@SUy9 zD_`VCy|KquC?4LNet}2e;a_gE4d+(UNL<^}GpC8o`I@aR4`zvwZQ8fc&gZLnr$1u& zvJ$tp@jj@al3D`?vBZ95IG{g_`nl8J47dppXDK@mW~meXcMsyTT~X&ih(;uELZJ(? zjYzXXHgJ)F6v5RSb-$Hb1asfQ#-&lUP24Ni!fzqI@Ot{_vnm>{69-iArxN&fr%wsx z$6>mUKg)O0ELhVS$rCY_gK}6qU5|KGv{vgrEve0ZlnWOs9#b!+6e3)8_ItpLZ6i$M zm_o5B)xiR)Zp(CA-r5!^KQk2k+W*Z8ui6gZ+K^WPB#H-bFtvw(9rRz`p>nl$Nb|TF zXX1|tY+-hI^D75~B!#JC=z_V4&HUsvzHvYgQkgupz-mz94e&MUs9a>5@oq0OlUGtJ z?R$B~&6|7l&u^^$wzm7!_i6C;Q9A>y1! zXRNzZ ze@`;siS3F|v&!3S?e-Y&YUCzbByoe+dJ6d+2m( zOgAMZ<$`xT(@RG;I1+rq=h8VWTsIzivf3>%O==hP9d9&(pLi_K8dV$~aSY zsShMpTd9>_0$2(*uB&M7Tvx1;d!#FvnTk|5AZfO!a=c&r`D>qb`MhxBtP|0Sh)(*W z=<&2xmifkrItdDb*Nro%QOZanbNK5{qAxzup1ed5#P9hRB9(_7b$G1 zmz!%o9}e~b!*8;WqJrXcCKam#KEvp2{_JW(EQp%9GWVf9VAAbmkZaVr(dJEP*lD)Y z;Jx=;3XHOMuEiZKS%l|A=|V(3)$~pHQ{Y&KV%#bjv$Tp(KT^&`uq9T8ffZL=hMSZ> zV+>Zm80{PqgETjZCsu|wN;*Jc`Qcb^9oPEo;1cWpZ&d*`v<8q{Sr*6kviE9 z9lS2H`z~p8^J!*2nJ2_N+$(j=4S9=$SMo zfd*^uem**Dr*UNaqQGq?SKN~Mo(h*w30ycv-ZU{(KcOxkD%{&7bsL!hBm#S~x184q zZsWI%9A4G5`O*mHmw`4%6it> z*x+X?CgnJXjh*s95aDa8AHqDRjotbLw`#y+`p<+t5q^vOUlj#Hi36}OGW?gZ@09lT ze;7c%*LwLQ+WwYfSYO|vNn|&Q1Op4g?q`>80-f4RLWg_KO>{{A`t-&oxOybCb;i(k zBD9o|ao#%|W$r3e@>+2%Xlxg6tj>l@W=CgNxU#uS@6);QC)i|R`s<@LGw>&lz6Z32E{hs<*NGJ!;qiEPj1^vH&>^q1E!=T6rfWH|)UkjZu3_;Q`2|72l44~#3gnmat zZwVUDs}pxc{NcmtO0;7ceJX^kKBUlQ05(sPq7OG{MF+ydQKA zFws{S85!=(-Ia`@Z4AOlL9+-UF;SNlTv*58=sz39Y7C-g%*;Q4OM(koX|Q=9vBxoT zsNC%kPisHvj_ubdv(qL6CaSDHh&~KuZY~?}k6j@1MB12;OG-XzG55VzU%u&^3XP5A zccG6IsKJCe_z<)YVQOJ~SsPw&`hJIepf0H!sX@Z4iHRQ!U)nQVNs8R7PrL1hDTY02 z_2|qA!J4$WH>LmnDUUri?Gsm}xk<}!e?zhlGb}i3(G#d73|^A&Yl!HW7@Tw{Ahf0A zhGIcH_DOwG=n{so@erDtxW`hF-91g1Lrpb)wdQlb(v_4f9B_G}3B~FA#b=cofFD1T zU0ugHNbIs;tm{|IhNr|UEXNPrHU~O1I(;VshKk! zttZJYsk9!zZE|5>N9)Jz;U0vT!Y~Bs0!i<2aQ|##yJHAgRCn$2JY9rPB zEYHWlv>*fhjnxF2=xz+dwWJh*vX-;2T~GR$LMr=3hHy>!8j4s1_cQoC1Yp`jNi0h- zho9^|Aid+5Ly;!+Tx01=GItOgG|zWIL61UrA-zIrvY=8-DWm;|ys;}msF6C@nyQeV zjsB*XBwK|_mxaM8;$SQeX6&y@xNLe%4*K~ZZmNsizyY(L`Ze009V*Gf+#fVK4ej0g z_w(w$li(UZXS27fM-ZQN6JYP8ztX+FeZ^?GAK+Eu#*xpt_;1e^s&~=T z{p!*Cezr70V9Q59mkXC#tIOkYhXeKUl=_~zNub-?vwoe^{c1bYS!<{F*Xwz8bKsdB zVP@j#)9|@;Q>}9*S8F2;qmy5Mt#LEeZF}o7$MhbI8%EhiW4|v7d;F)Ph_(NML zMNmZ3QA$|=!`t=Tv)J=`mDfHWowermLcO+#(SvnbxCT1h-WBYqLB+mihR!zrnr@S&F7&{rY3Y~ z1=+-XvbyF;m?7_sW|h7qWJgd@QqtvQCcZr(UrXh#hU`|{+V!4*sUJ1fif*P3ANJpm zAHjUMbG{brwQd!z+qkrk6LCP&sC&c`rAK#WPqNz z+sH(#1?%*6a#AB{rQ*81BGp4RcAsK-+{o$d)labT+cboBYI22ceRaCRwD_SEgT!0r zV8?^in3zt;lAzmA$#kQqg6S7+N^g|2Y7T|FwaD;35D4ohxVJ6z$~3ELAGP0D5hca+ z3Oa1N_iU0@DM*PIYZ7gk8|{H|IPnuBPIf|=Wg(Qo&wE?p5S(OtIt42mnPEjB@%ui zNWRV?*2WnGmtEtFUU$%6|9!Old-`mr+x>Rv`FA!|Ob3emGWw1ZEMj)FvFG&lFnQ-+ z*<DDPZ%q8?tL?A;3=8>UWfe}oZP}jP${CVA z>j9gkeQJN}GnMG3zs~f?l6v)xJ{4_N#*NtD%^&b8H91@6v&yGPJPaR_9Mw z;bzp+jwnrGHMx(?_O^P*zpb@JQLR!1CMy3-KbP{Ud^+qV#w-lij?cwr@wSX(tuJAi zowaAs65J1dwQyYnFUOw)2-^lX6Q5s4yN_3=Q-EEqUC--X3Ck&1YzY_fxXQMDr7ADlD%Nz{x-NpNPG z5N@z03LZE>8~Rx?`>lLQt*U|VgT>-pX<}Wodj;vY4PLeqPcV-~YSX+8jxhch^>G}o zDbk7r*2kOR-9pT9Nm)*SX>6_?_s?pE6#S0HdeT1mKP|8N} z^q~G-AKHh{pgo*ym_tIs5h4j;5wudjkL~zaA#Qr)m>LtRs&a2wQ_<*wKsq-fFLAOz zgFunw_jFu!I}+ts3DNJ?B*aTpjQ;#aTxQk#Y{bIZ>b^!yfVMb6nMJ{UViG6qED04F z_N+kj|J&&i1#!-sY&K2?Bnw;WG%@Oh-%M*wlTAe&iT>d2kEEX5dqb*X247Hpo8~HuczQi-o+nk;ZsdGIPxTS}-oDiQ zgzOo#Tsd{`eDj+v^@9k4#(4#iR6WUTX=k`_*MmNLZ2H~_s+Br)uX{Hhj9MLhI3^rQ z;qtaLLcy7{_{yPoA2{Bd9fb%watSE2$F@pfsM8sa*Zxf5?BB|$*<(=UtJf_YE7W5? ze(v8S;k^jf`q47GOBP-RqNsGDsHiX_)3B?o+4fyc*T7XnbyFjV(0+>!>bjNZ9>>+Oo zJOpbUGduGPRLL$bflaMtHsoIXb#Vfoe;2x}R}Vu_&gKT{=Ki!m2Z*8zES$sn?r5{0$p`gDhKi zMsuTt*#3<;t$(9{yoL$dv0sd72qw%INThpe|Dk;?r&d9som{JO**Q-}@WO|?I1&3A zdY<-Em2Q#foN6$u1r)RN(r?6C6`%|lrV^bI5Ku6;HXWOzIg9+jqt;BT5IAd}S(p>M(}#GUfXhyx|vI-l#q!3Kd8$9)h&` z_x0_+bBA~099`kv&Oq(<$IE_XvMz>D?BL=>%Ae4Ii@r0}R`Y)Hg^L!>N2umSD*40^JsM#fOcOq?vXyhs;I zTu~={cqZjM9Sx4C(nS-zU#ywY-y?_ZzZKmac}ioREd)GNcY*r;2W zL%wH^sTxRorF^|77+|;4^hJ`F<9OMeacZWA9rAUcv5&2%sPvZh{dENGBf>>&Km5|D zkzM~Pe%_#uQ=M--!eYdJua?M(`4_>vO*&*3C$ZLpY`J6$)^ zcJ-4#F4VO#bxr~V<^KW0ENuU!kk?6)x62ej9J=<7;4P^j{-U`cPY6EPQ5UsbqmuJH zfgAWE3Js&VAK2?-u&oR)+E7f;$$Wh|3GbkKZMiZ-^>sM%MA*pnSaa`)RojE+lH_z< zz@n_PJzaFO4L^lCv?R^^X%3<2@M)v<_x1DfeF8Y=V4<73${miq`ueoV#aa-$?t+dcgZMbp3ZG<4%G(PlJQbGRzROEPkTiBwP#L7)sm} z%oT#_ruYeX5K0H6!a{>D((cB%XH?v1@Tm_9%EIuU_eAM;q{NrMa6n!3 z<*$f1B_-0L%YQCvP2I?8#_*dcVOWsTc$|ZgAL~^Q)p(}y6b-Y)ruRxuz3EnnSi z;f0|grkces!Vh}N6D}JC23h>qnD74Bbten&cHcJZ> z@gx`t(M8Mzb?kGfSTUf%@Q!@v4J=nb;rth&{V*ximzRsa=^|66OAIfeAyd5?hdGuyL5ecPpq)2 zr#@S`ty@7&Fb%=QT6Nf}T%VqkFhnn4qX7VjzwYP!{~R&P{~)W(j4c1ZC{QQ9&o+<& zHssnP0+(ABB_DNJ3Q0*iaxni~WjtRTTPBo62=!m;b1#P&@5Q&TJEP2Phd8u%AvY9+ zp36L`H23w>;eHODDp21*uTqV+1KHA&*MsefS~!>nBb%Nxe0O_Zl_g5AnV4e*ZD2<n}Jef+$5(I*7^QA6K5!OL-SEti##=48m%9E#A=WA zF2p^si)4#4<|#)ApMEm%^-bn`YARAY2nrYr z3v((j9SAeP#L4zwBpMqv3l&r~^qP|VN)eI#DkRoliRODXd5jTrZHW62ec&5$vQNbt z8CP}EjqKVMqTdzcu2RJ61O-4q+%_b%i5WA8!!p7X6pds8+KXornU^xM(w$7dHk{77 zE8ef3H?MuJlY<&sN=T8%;-aO!y@9R`icYT@2bX%-Noev843C*co1nR*n-CF9BeEMM zgP=#uhy)oIL=rOC=E2SZnp+#jKbHpZ24CuUzIvlQZ#DGBn4DixB_cR?s0#|B6UlSA;rIWVhVDL z5|*f}8GGd(i;#<Nb6`Lkj5lNBG@<7$h zdQ~GQofhT0ziR>e+?X@xCq-j)pCEoadp%kB!N0W^=7}4zHFtljn{5z{^o#VR5AeV6LH7V2(%8ZM@Qy&%8W^I z8Xq2`TXa*r(!*)Dy3oh(q zxU-DdYG88U+TNHL`wGrwf8d7lj9k%A?p|o@bvh#IaKco{AKCLj~d4qp-Dnh$q)?+xq{#lLC@eJ2rph7D#qzZ*=;9bgF zp%4zqV$mZ|_H0+96Hc^xZZLFv`A>P$2r#9!}sebn1Fn{E2$+V#k?{cK;BXK&*yPBtA- zdWa19PGgw`T7%bpF?v2R$5D=r5dL(dW{^E!i$(?vM8r$cyN21a+20} z4cK?3!qp$D-k}$+6Z7E*(XobL2mW<+RC|WXK+h^vX!?=6kF}w*nBRo_gkr!G0{+K% zWaNNNY^D)h?dy=DDUk%}%OALSedqnH;sF@e$QOA-W1EhJ*)3m)H4!TQdfh6X{iRX22C2EYn0f6EI zPDXb1TlJuZ-i7ov-Ms^a+0#&iJ__N{g>Z!oUzJHI-t z)pU{WBHC%hxW7de)6!y5MgbGC6C zc{TMUXxoXEC1t1XNZA{%=@^S7{XzdGwp^0^7ygDz5yj36E>l(%Ij&?}BYhZtIszbc zIsk<0H8A5NQO@*eLmS{Ecw^zp^z8Bo%q6z6A7X9<_)JcP=w00>&w`uI_!!gyAZ-5h z)-rHv?yrZHx)URW+U-P~W}biO(e{GPHs~V9Ffo+~NuCtc6&0p_nkX7aMoX4dZn%^i zK2IlPDiA4Q(JT~Aks!MyQDfnW9^AA@WCLm#&MCL0<{XvWT5H`te{;O>a=Vv*`ugHm ziY!v7;;FCabB*y0uLcktyVdOgh$@V^x)!}(ONWnFJXJq#A0zamPB&6%DdZwuH~9Cv zCSKYjOK#(oF1CBxc^XA6q)h&7{~DRrgh5GT2Xxr{*bv^ocJehAu-0;{C8)Jl$D`y*A4ve5*+z$$Z&o@omf#s2b;E)No*zTIr_P^7<23f^$)NhOjJwI^)O5NiEiw2jf zZA(5h?}&W_M!e!j)uX}gGZse||~p8jYZLL19XV45@~tvxbLjLYP#OtB!(`nTCm@m8h<#r>s1an7RCynf#3*#(K!2I>BkC zR4TV~pVszz8~x)h{(^pDlNtj*!DU15D2onwrPp}dHl?YNcCMx`X_A_4QH>}T8EKaD zWIS}B#=1A-`qXO-99m7EY2;)gf4R+7CI{cgOz*CfGU^}xLQe$t^ZB&5a}6B21u-Xf zFV-*3UUcls%P74g+2ldA(t~^?U7Fu20$0#+U;Q{_C{VG68^MfU5`Pr2T=&KuSP8M=VZ*Z2fin(+$%!e6VrW8|otvVb0(Xi!=-k-3Ud`QU3 zrZ~9xvFnx*weSZRoYhM@vQ0?DN?S;(_m4SoBu98HA zqf{u9RDF4?1nVQ{w?aXnXtJ0Q#%V%*UUb8r48`fp|FO0(^(Es`VU9#OX|)IqM#sjr z{AlpBq-JUt&E1Basw%W-Bm@1mqpCiqE9(E>1R<4Y+>e&Wu{cDPOD8Jx#bU&wqcSH2SN@h z^J5os;PQQ8VF}@qBZZHmKffC*N(<+FMbXG3kD3B>h@h~yI^*y!s2RIZ&MVHiCtRlH z!SEavHE>mMK}(3xyE}#O`ioy6^*FR&!&XuKUQ032e{QL5A}wkdBl^T%y?sb? zW+?)=lN)$Th)UQhR6<%>JyoD|46@BO&+bhDcr`kV$*gc|29bfLziM^{V(RJPQui` z1_?3fnkP8+pZnBgtR!hrl7NC@QVZ2sF}q<3YB{FyD3P6BZR)`+*vWkzH-4jQBNM$U zJM*(LLPJ1$bG9Xm%z&!2zFC{|_%5Fn7biXSdx{S)m#u5r$a4qek?oV+>hl*FH?GuG zcTNmAfKlb2A{En$l-64{(bXZ#{7`HOnL-M0bd~CmW$I%jpJ~c5z-&p-0kT;RRVFV?No zDGqTyG!8^o~D6JahiuYz&lm9B@jyye)zF6Xf=RzigY#?;cg;KXR+ti za)?XBE@~hEkGshrDWQeM#^ydhNaE1t%((O+lZy{;cj{a)JM|x`QWiT|GvC`cWeBzgy4tKV1|n3+sP%QN`*W z-pWfIyhNA?3Xz`CC3&3S;DUnW$)N>dXvT=?O;N!q@GQa877Na!JXr@5JZ>@z?UXkD zN)RCBNZ^^-MXm{JS0roFQ3E9_LRzBxi+&q>q_7Nld zqBD9Oz)#!HdGY-eS}h(U&x7Rl^}5Sayw8mFHpriHlly4~+BCVHc5N?r3A=yMST8^# z_H4ST@4CELJe2r1usrx=@QqTpWq-Ky^o4PwakaAWs%9i5(xvnHEE_G9&O}X2#~(|! zlt>#rsSunWn{y3(z3~-eK;wZSzXH_M?$_L zCZ;DT<4TT(=qBVOrzVKe#J6R`%S%IM2wMC!WoQp;F`uZKQ>3uzuu?b+%rS?U@6;_> z02j!|Z!Q!=3j5`d<)LNaizJJvmQ;_JtkD^QQ$?nV@=8u+$K@Pn;FciGahgK3#kvK$ zB`M0(Wyyd*sYi9W?oBnpJ7K@ zOcM^2R8YI@FZJ9E3<-}!0V#qH%4 zI8@utw|+ePI&O>2@fN@^vc*Inkyapf%!befxo?^&ykqgT`WpqC9fYO(VSQj;{k|)w zO#{%Pg_RXB5+WQ3dq+L?B0UHc6xgyT2H=F*-Fu3!L9s-tQVGlqz8Uws9%`~G)>?rLy)I7{Wf=PgrLiCq1b3>!77r#-b^=~y&^ za_sYdnA7Aj-Y9-xq}|TDU;GB$1st`sA-&;#o-sv;CW1NdcVFXpq3EOU#LMqM-jYah zVK?{3c1`f#%~A9Ar+mCsRegL^RlR+rq`bYMGrsD5Skii4iQ{YH?iEg<@1}QcQeri9 zU1aHB!PgUjy4H@EHmlPJXwe)oK^&FR&x|UR{}!QI;*5gd9wEp>+B^9=1Clgrct<-2 ziG2TBPZK_H>%ia4@kNW1nT~a$b@;D1v`d)GVhj9`YV9-IA*TQC{HqS+^4{GW_Qe^# z*oiQRrocRAsAVnp7o>-H`}@nr{8zM)__vGi6MZNyc}5z%UvK=W;jqvQ0qMUySoj>i zS<{)JeP&uJ#Q&3=a{or~tpwnq?6H2Qff(8&0zf|+O%b0ADP+Ta)gIxqqv_9Qg&-W z!zE@pEg*69SMOBGsopz4yV^a+p#Sp#f2i&IlyxjYUTa#5-Q{p zA<2z#vNt-0UuLS%`)x{uWNx$;)7|Z`Ufg?o<-;E7OG;1M8(KX4)-0eP-)))USD8PR za`TuG1ZZixNwPCq3pB7Tgf1Vt)Pi9cr(j>~I&`EVFVi;%s~cSlH33!b8M)T4`CAsV ziK}9!fDK8L@s;;iGv%vTD08fs$dVybwE}!5g5~hX zwE^EO2LZ;8wsypEUVK_;2~%$WyACg8jgOKGnst*J9C>JtK0)5E+pKYpwg zH4&;DI0B_km#I~%0!iE|(hHy{rtQC%;6(xdyRpGtrug92rDkqZ=NcgL@!$)ZS=1M{rNLpbHdLx1NB*y8|+u${^n5a3IT;>=?| z|1E%H%@v#WCul(vMdV(zg&gbvgjXMJ)ONP95$ga}v3-niq`+TnPBuqXp(v_uL>2n% zx1ob7GPNf3t}lN4pu`n-e(A!|C)9~2`{IkLzH!4*qXv*ZVY0jtks z5ti*7!D3OBflIRlE447(q+QqCq-!0Gef^Y3(xmWvbga{4S*UUjp3h!ub9vO>+jpNk zdxJE8)ijFGw4Cm_T@e?Xy2IDCwR`EP#hq3`c3mU&mv-F9k)7nH2CC;?LM7{=nFAa@yocFCY^L8Gv7{I%7Oizp6oR43|P+!87_jZ|#CzEhCGj zEW|i+1h(lfbgl%>l>OE+Y%?NLB0nP266hs#oW_EHq9$89ian=rOT-lBG=*`Ie zFAK1PTAmo$$}5^w%P_$zw>;J4^2fEw?W!#}B1XeR5j-DW8$EO?^y;`n6us{dQ213G zoQJs&Rywo0NB+1is5^`RpM`VAb!67DRnL08+G#c`1qdd54ijGEoK@r=ZlQQ~RtylV zn}=>I36pE|85cETB|Jox-M&H1>)JDSn*w@7sNbxpSR376eoG-uA6hmonMNi(aETEv zz%uS}NRCF?Gc0OH>6*|HpI@?1d9b3RHO^PS3Eqe~5!VPBuLO?ei!J+45UbTs9S|i7 zeh@01bq_kZvKAy3tw|0R#1=FPJyd;*7N2}Je}Rmo-+RaW=<6MP|4U|8x@6!mZw|n= z>TwuvKWu+b^>jpMiX-;=r|;;HooLPspNd8ic@A~>NWEswnCOx-sLReH&6cf&hoE%M(0CG@rKGBSQTUW@)6N_d3y7Q5deI4v3NrK zLstyJbGVmg^LuW1W^d0|stp8=RN|MuQl!*d;GSGB&(5xD#(;ExrA7^#NmY}x27f~x z3s|^BpP5}+K~^StRy13kEsCT)C$K}?jSXsfRl>U$w@@i3+3Er!$Y;GB?IENS;1bdNPl9jFpL2oiA9=pM0DW_Q#pMMfy-I^Cntly*DQL3YvhtC5 zq$99+KmGxknbd#3rk%K4#T1xDex>3tTcI2&SQ?KBeY_JZGVU^rEKyqeK+`FKd}Q9h zM$mx`JXtt^0@h>W8*&plXk5bjk1z1qTY7U)&SuI-N)W${ch(Qfu_BRMO1{yKnRkpL zYAmVbkS2Et)L31rbqICwVkn|x?W$kN8T^p^Zel`KTw*vo_qtS(ky7$jBaGwL<2SO0 z>DZ0MzW-*sMC$kQ9=1Qthr=j^0j+68-UZ@iN?4bX{t zz`s^hXvvDd{Mfi?LoG3nkR0&@yKU6MYiu}F=N;6W>>bhTUNWgINKN@mKq*D``ygm` zfoRL$O>qgHPcud;h}M42v+YT{a-Sn<;a%yOX3+cNgoMMk|F&K46Nzxf{A**_ZyULW zLy%jzAJ{Y>cSADOwHi<02_p!lm0@{vgi80~-}l*QZH_(Z z*F4u8x`!wT`a-Ys%-j$Z=fsNmTz9R>%!r^cU(`*A@6xa5qROmsYiAzMLmO# zwzRn-mq{h9a6-dUkg&6s=Xdv^$k=K3N3RP}0$!!D=xfQmh zs8v`x-ZenClDnbdqUHu#@xlRr18~S4zlYbaoop4wxS;&ntlAV-YU(W69rQ=B1J%*B z0b~pX#w((RgbM_Ha^E3M0-t((qN?s|0AA`USb5AgeOwt+#`(NH;VWV^{L<~+)z}nH zoV8VXDSgIvX-th~NeiWb2;I44Z;=gX+2s6exOZ>6FHPx&<6^6^Wjdu7F08VKl~w9X zRZ-3Mt}`M3Th8ylBLNH6#c-tThA09LhWZ@7pcuMKP9s^!{mOCS{11Y6X9Lj%0y4X&Fg4Q>Yufo zI6}FRS^q4%6wPWKTh%Ync5^BLaL--}+CYCEofbA`oCV@lo#JCU#Yr^YX)ThfjPqY1wBp-!UH8KjDxSw2 zg{gSkhH0Nw^yUhD#u(3=w;j&1z4q<5fm9IiErhzNZZCWBSG-8{fRs4U^?{Z(g)QBvMz4bh z;u2kfp8Y~2Q1sMl)l1J(*^RepSL=FR#&>Mp0GXjziO{Y?8|{^kM3sa-%7S_ze6_>D z&bs2_YHg)MtqYpDf?;CyY-h9n(kuK};yACGpF?dvAG{*L%h+x1NS}){5shk^X#%bw zkm?~Noc~s_`HliSPYx6`{m2};nH-u&|3rF3LhBMbmNMJ_>43!pGoPaq67tKu}VFI=U(+($T1SzoPKh`)=UDZd~tmc)08=ASrQF>BQsRYe*>Hvl9-)dJ3gOUB1@$Waehi^cE5#~ z>p%Uenx9L7cPr=dKI^mcs?8-1vprg!bo>v04ins+eOGC25TLUzPShQC6P84J zZSnTs`U;5U6SafRj&{+@0)t!>t|ne5oCy37bO~9j=!~iQnHr`hWh=SEsO$uQB%fX;0LGqs3UmbKbOJv{(Vt+&;)Mye0#Bqd488 zeH|HqpLi0T6uCgVQc`MFghqg`(pBaiSDN_nLojUA;<`Q53u75@A zTCK`e{kufN3oks7>~*);-cfMiaHm=qpW^{A-M6{3H>t6*Q!oEqp%^)qQffq&_`PXN zy`}R5aq%|1H3rY|;>3=Z=Z5+AueoVrk zSqGgu|A(u03eO~3x3**3wr$(CZQFiht797-Tb+)Lj&0j^{;ak4!MFdjx@MhL)qLit zG48?V@^WFc0HwJgCA;wZX4F%XoeQ?OXy(xO3wL4j*U*23SzxwgU<&edC=g&|!2kM$ zeq`|6vM4fpYg*zGnBl>~b+t7a-nl_HDN?Z@g14suh|7A>qG^EL$SZ1@xWs==oCbHxT}&j`dvShTyB;oC(w-2$n${1gUB*bTzl3s*r305fc$2Ft4s_11$EPb~q*G(7B``?Vk*>A3 znU4oWl;ic92x=rX^k_YUwG`yIZP;(4y+(2x@)YFWR1}`OQ6$~28C^Qaw;CCKTQ(ni zb5IMK9>|&AUZd(C|BhZ}WVenb`Cnn1`#-`q8-SDP|G2Jd z)V@_!H8B8;K?gxlom1V!vFl{^`eA26K$3l>JOS9Y%Gj_r_UN{OlqD3vqC^luKPXTG z1%vKnpfHG3b75T%o>_d}))kEP)8-|fra$MkYnx{dxu1nixu>tGS_Fv_3!?zwMAXe6j`q zlR~x0X{7-D+}mxuF;z72gbzM@-@7@DcUF^%)WOj@x?&e=9>>?{y~p(@yq#El#4l=& zGr2gQshL8~^R~IZKxSF$?G6`#CB9 zA#}=1&2k~LMxs{RcButt{c-In4WYO;nYG3C5l7y;K|-~)rRCq7SNWg%1}S|V?T&!B zKXSztYK|OE6#B(Wzqe}G+ngX=M2a=)YHjTooGq&U)K?DKIjk$Gm^5fbw}e0KX{g>0 z7qQy_Vx~5VY7f`ARVkNCwzh28s%)Df6uP9eZ}%*1s|ssEO3Jo2*9J3VLo-Uz$O{`Q z_@YY}9$+dXbwpED&VR$4x%V%Vv5R+7v0j#WuZeHx!#9CFmB)rus-OnS;le z!%3){DVynS;Fr(R%#xtP&TwN8ia^>k8#sydRj49#!n}bA*hoe=b%CIow%zkRpszsU zhm12piO_{36otSnMB;)gS`k5kH#m`1f&hP91xofF{(eZ+ZbrRS0}Cb<4Jy#Qc_$tO zh~*+@&p|V!Z%!d0p`)7E1m|TV-G;JxqrGZ1!wN=3-zeyXz~0*E#d#JUJ0WwIL!cKe z{?^IN5*g7lIDrl7eYyU^rdOTn9SHKpbw)ixdjY#Lv+Zu)2%p}4TKGqsPZaNkoWS*T z7u3cnOm4^K;O&iggmin=JE9eY_y{}=Xy@QdNT=2Ts|3WW69`vhd zj{x#j^Z3S=tD*NjI(>Y&N%#`BpPWMg>+U=-$1Vwmi{}cD6aXKRI zoDd%j=>`%!dHWiDJf?ICpFVO=06~oxj*UEek@MYTvCrXl$@50Bh!2(i`W3obWpC^B zM6h+W0ZuTC5mN7h7MWpc+5LF{sH3{y%-E(Bf)e=@*m_^1GI$e+sN7&qsDs5Shqt5I zA?;+iio`9`2>`?rOVz|^I$eyoDUtIGe1+a5mp103IOCWD&vFS<8cKSu#QbX-**`@$|U#jmTIC8A|fMkNSv_Qj$t( z)U1==4rM}Z3K3m}-*MK$k>N<+`S_C;&=!$61bTf4jzV-Ll=S9%Zo$0o`NGd^L^8`} zX*}?6%{JC5c~JwmH88mWAWmF_2Ye&3he@#I6M1(W9wPAL?_t(3xbdP#rt@yQbA&|N zk8c0VVTAX@raN^?uUVD3K(;lFQ|4xgI~Cv-;6p-SIml=>Kisy?*nG`z!K6)RO>ucV z6ny`%Va@y_k)}93a2+Iu={U{w!CQV=(%B@guN~ zqM0R^x1gk5ykAzMfjv}I6XfT~YHt%j#C-++q_$klq4n(8f( zDf#9=+=5nkad!m6i;X=2v7X>HQ~MTfA2n+3aDaEyR0-LG4uJmJax3R|mq}fsSqTXZ zvqTTd3p9la?<0IfWNDXMsJ9Xc|KY1n>aoT7@87$FZ6}3_prukGHkCxvVbtrS3Rb5k z3m_#7tYomXecHLqTVop#q|!FAE{(W0ig2%P<&Z~R3?>cYa&sT(M|Xb>eFK@yHSGP* ze#Xv}{418C4TT<<8W@C~rR`^PQw9fNXZ>-Elee|70*n2uvj6vAZW{wT@H`AKdpaKj zFgt*o{r?mR`>R_kscB*aBy8n@Nt3wsE);jx#73gR{Q3>WAWcL(iPaWaY*9qILa$_O zon>KYR{oy5948bKh=MEmxtqcor7;vMf!e~BY*vZF8sj_>Yr&buGdu46&pM|A5vo7` zb+&D~>v`ik=i2XhYs6KD9x!t6=QSM7-eb^qcKVRY=#Z2DyOu0H`uVcxDj`T9H>sEU z-iw@BEVE9zsF@iLv+=~)-S0t}pm`iyPwj``vb&MIf#(36K3sETaMoxgLH zw3iHU*cvqRGd)vqh$r>UwjWR9ab6?z;l4x_NS?$y4%NG1I+oGsiqQIHsTwNKVYiNHMUh!{N7zTIX11 z5hN$)-bzZz$T0El2Fx58)rzO3u1@h~!}L#SFQGe5v~gF_Im@a;RNNn_tErKhVWv@_ z@w%i>$F->)@ZQtat;pENyJRmW^(EC;k25rD4~xlRy~{E(G^cahBTS5&RQ*#Pe8?gg z<{#F5;bQn@I9ci<+i|$zn#H~$F*U`p?u~hUL{8w9`Fvy04G7sD^SsmdOy#p|`G1$y{JywW*R^08Qt`*CQlq-+nP*^LR>^ilK$dz9&|Tzr87dMlA| zV4EV0HRs!D4#>ym*&t}+d{#W4t{z0%W3t5sF@mMCb%J;@<>@|o494UWQG~r z%Gy_@Gn*>ds6o3d2@|RiigQdRJXXCFKF{VRdb~KPJ9R)V8~lzRGGuZYf%0NQot~wj zt6J~+l&a_{orixUV&f1l#$MxHO(e`i7xMSNR3k`{nZ+-Y?3RP;^7g@#~+Q@43x?)AB;z}$} zUNCsn0Wz@J*33#QV4?|-mOCJSUa^O^OET6KU$e}u5urf!XH4^QVj2(AB)k>z0#>19 zPHe~FbOJdIdtba_qdJ!t=*Jd`7T6Qi3;*rE1%=Y0dFM@Hi63tl8$*=|JH1x*DMc4o z*;4Om!^o2;xOA>9`nZYqSO+c+?EgAM6l@PA24sZKrF(tg^F8|Nt;EFuCuyfl9oUh_LgTVV)t2 z>A`IWzt9S6QN!gd9|BImIy9jO5qyy@5jQMGe_@p=AM8+&>f!dgX9Tgn`AAH(D<0!V!l8L=YB~_!$awf-2)Vo=l`02eT~O zdy#erZs#%1aPnzC`( zr3~Dhh`j2YA)ABPB&ht_HA-Z9e%o6-CD_IhhvcNL5M37 zl0G8^j0VE~-{Rc14M|`qU=R+b|JmlTrGYa+K{);sE}{VZ-@KqwgUtXF+QuWgqa5{6 zV-g2iEb&TvJF$I5GI22-e`l}`N+aLFwe1*%C}fmxxo`P?QW1k~4Ii1|R3rqyn~ZEk zab}K?RfA?$30w(EK<*wrgoCt7PW$H$sK{M_7cW6w!caxWRX)QpjX!YIW)asmfDT0W z_>Y}K@krrPZV(+Q(Acvbmyc)2KjAD4LXhWEGM-Z36}@N*mVaiKj0nH^m6DEU8T3h@ zNu8VZ3ikgpIGveA)2DIy@#+K6MGiNiG9tI5CVZJ=LV>%%_W8ZL` zou-LjFOq+toVB+RQyd@VG&HRUAwgBKZP~UAhu3(00i_Ul`25e%#PPowAujI!17aip zC2NPPjuw8sQp;Q7U_~Nl!X8`R9EnCU0;U9Aq^7>0L|zgs;a@_lXZc&-E&&^{Vc)_; zk>F`%B;h5KhglviyDTnvkfabKHqlE>>K6@+31mzqiW_V;uLa5Y3f)z?E1~4^_qQxj zE&?)G1K2ejF(C@E4|LCH@ITY+@cVU;dbuBi{5gU3+VmZkVwXrzPF>4|dg~dCcM( zXRi+>_c1!8qUULeHcsE^lM?7x3A@}_ANkXmieq)2(_&&g!6kCfKY{zC5kNKcpMG{780D0Z~ ze$-*WA&gojAK1UngokCno&BW(I}Jl{&BIJ|5XAB9wKv|zc`dp!mPGRO@_S<$Flm@D zG>uy~8iUE`Fe@JjIT0?p3}Xs%`tbU4=TZ@*J>(2d=pm=5aZws|I+K<{RLGRx;AW(W zzzQ$^9=mWoI_gpr>q9<)?>>mtwbK2oy1ftp`$nnE&5k>%!*^3GFOe`q6p>OgkuVuo z?ZYf)!h2DJw>wy9j0#CSV$ZX_Vks~FxCr#93UJzFBHFe7Thw=oevc0Ex#gpbucOjw zAQ!iKAj%_iiBVxr1;e%9{UxGcKv%Orf3lpV5irdC*lDxNK}-xlo-dYRDhQ~As6PdO zZ4x%$(#L+x(|Kxp*39Xi_hNW9-8k#@oPLI2Hkt%Pf({fp4PmIfrGb!(`^cF(6_lZw zYdXI|SQk*&Y+i=ifGdO{qokthwAoWHI-c~^Uw@7^nIr-Yvj86`R_ljI`1P(?y(vR^ zPfaCcOo1*U0KfYh`wi;z%USLo*j{mWuwh^cT{{aSJT@rcLP$D`BCd*nQo72?U8D%pLP90o9MpZC11#=s zc_P|5NwD9Nq7+?zBUVDa`Pq$<^ZMF%9x|nxmd`}fFXAbZ=b4y8LByYY7wCYmFw$!{p;$K((62M0U}c5Kps-)RikmCvdwaE} zdwWN@dkPw^gh{nk`)20m^d$R6dwW&-m^oXhSh<-M`#2lONZC0Xz(xUM%1~2^ zQ*!hbYBTj?RMbDkk;{yXjLWi<^h*Oh_Ph;lr~#~3MTB^cB%N983LhrswlP;U4GED#hD5*Rgv_Of&lGjJMZqjA;C+`#!rpBDTa|DKKVyM#A7moS^|Qr z0lkP0M8<<%V3VzDL~)=NYx9f$K99+~pK$3|PQXk6_Wz%19H$Mfhr0Zf2Q@}yqBdM$ z;YQKE2g6Y3&~nwTQn9DvES=~NOF>66PNCZlW@acZB$h@+Le}0Kxn{F@zV>Iy#{WTm zL7*nDPxia#8~(+h?b#3{)a>YJs^ggV`MsMJSvf5&MT+dKX~VpfM+%(};5_%@eI}%M zUnt&hWDM1~3l@*!^{e27ctscLlm6BZH)et(EthzOON+&){!rr|;^{_b?-U*H3=@ajIyiYg<@GF4 zDlR|4@wZ7*^8A7G(eY_Cz#A1!R$Uil0eKBbFpOqJwZSd8-#mEF)E$ibtlUWnl9unU zpL)<1OiNq;Kigaqx%1Ll8b7wPdZfz}Xc$gI!5R{g8fc}&Z=5(@8iT_!Ck@C5nzVQOTbLyu>fr=Us%8TNnC+RFMC|zZLSq3`zyc1Tq$7*OIo1ll z)cKE5!s{5FurtoE+w7}9L6bfQ=?}fyZp{)EUzdn_K+qaAVDhwQTlt_*C8UCQfyoAr zJuOR!TLra3dco`r)Q0BAM6K|zz(R#kxv7GCLC=POJzqzRzAR1UhkkWtI-dF#sv})f zwDH?Lg}3F0q(?Ij2)QfyOJz8oa90lUn@C1JObLf31*W*aLJBr1;4VW(o*mR!T3q>B zOws3OpfzG1De9dYW|_JBAZ%uX8KWQUbgBlQO=3OI{Ec}S@HOy8`2Zk$SMu0&2-)la zj)7S4AUQ=h1EEZ=rxsb5HL=8z+}}W`@KOwRXiHl>Ng_e@%2|5lAci?zpbk-C8>5Pi zQs8phHPh4QwJ|#XigHWk>xPqN z`Kt=TUnorn7;1}$oL>jf2?R4y#k)4)jZaG97_at^}-Ic@bmZuq3J%Vkqn z$JAC=)n8J|s<-qdNH<-HkXfygH<*8=XUhwvbR5P|Fhak5Y|F>ae!iRJaV+`BwEdN0 zUhG0p7nav}t4a#G9H(p z0ME_ShW5V3P9AM^ni~Bf#WY%HRd8Evnqt5o5HdVho2dcW@IU*0X8+o74eFnJ_`j5< ztH@lF0Ocd0^$yuMxG5h)vWJiaA)9?^L9xMWsxy&Us|u7_L@~l=|7^LA7{Wf(gmpU# zcu#ENKioENi}R1^XPh!~#~S5jG0uxtPI&)^O&HWm?2RAz`w|k5>cCt^<%Iw**BK%K|DjdU)EMC z7?eZ^7Xg`K*1H~aE*1mdxn5o)DWjE?0b!`j#Y>MbttNMrA@}cbKh0Jf@eZ5Q-LW_) zAR&L(!O$<$H@FMFOWjKtp0I9O_|*=4?s}g%qgLqDcq8X^548&8I(uSI-wT8wsH*`o zcDPs=a!M!!t=gNqR}} zC(3sWW~5o``sYsGva?Gig8`V+DNtZ%dcV(_Wy5tuXB&P) zVteQdRhv)3DuOv_Wcg!>;HZjUX4y3JFKjbXvXQ(HE48lOKiW|;UbBjuuG}aOfV7aL zmv900{Pj(L_Q_oRzr`s!0v;C@jU8h~fk5H%gmj$v8(V9ODP7sJGta`%0VinaQ)Q(c!^w7>GFEN^WOD`^R5QxfjXj9wr=cUDLfc8znE>ey4!DI+>aEicqC< zy~XEqA%+gQ5n(dGk?fHR(BsKIXj=QAJsUqZBc+P{By^8O(KFW{doASUM)7BtnlZ-E zI31+mgQ`@VpKj!wK3BN61ninJr>eXX3Ai%$4C9zy_(cFc1 zZ?7$4qHRI^im{H-=18i$R?md1;ib0fhn;e4*j8C8Dh>l;Wm-} zsuLsyFSZO@)@HenMs1JA`E_!_muy5gm8@-ubr8x2L2LcQQmT6lmz zPQC=;GIH0+_ZX%D1;G>=^qAEuP%5bD(m(SQ^P0ID{oR1o#Zg%i4!LRUn$ zo)AhD&MY*(sy>09d_Y_hY`9`26(NjM-)p*ft*%$%tMXuN zcIjKnw506YP|V}dLD?3S(CG%&o+mrOCB|E6PUUX{0!7PaZOEnjSx9ROqDFU+w<8N7 zlSYaWTKL2hKzykpg<$vBE}p6E<^9d1_K3;UWpP+g2Z4lOzjenz2{lARGVveavDM@(rh>RPp0D!SIc0|`OV3dR8m>MrxUS8OckT<+L-~)@> z@u07>56k~8NNWc<@!9YlyPl}AQPQ320^b%~Om}2EVpl2f_2m>GSLhecA z9XIL82>j02A5DsIl6HHC|ApY^@IduRx^q@$Pze_;6%m}qMR@(16MwrohKT(_O9&%9)y7@JN{b5yb z)ndS>SC;#4w^A@S-6K8(+`h=qswGfXY;xVHij@AcWXpDhsZq%|Fc(@Eg}9!~_6|Et zt=a}{?)^q4sl~%i`lt#J6sOWF0)#{c|zX*!4z%YUcp!p!Ny{me>gSvTs;KEv&QM2Ugm%c5-8VJ}4m8Vdq zr+y>u)q(=Y2b~13!**cs!gTF(&Aokii3_krAL+!sGPTDR&?Jns|lMt|k5dX;H zhLeOMz~}qt_o)d~n=G!be=Wm=7XWBc9tm3(JKa9)uEV|fp^FyZco9%fd%6FY13 zc~6@Nx{T2#)h{g6jO8$}kgzAglgsG=oJZi+HW`#ePm%CtmhbwoE36M)cHMB`Q*#}M z8ai3`Wmb|VH~wz&Ex0`(m1l~kpHvwXhg|e6TX6geChaR9-*MzInZx>1W$XHE2*~Pq za}e{4Yw^w-Oe5u_gNfWD5T~cn8IIRK-y@hR7eR!ckG1?PyIB5G?PAsxcKbd6gbf@T zH+|_iZ=$~n=3j3CsrST8>wR(qet*3(bi01E*IEU9^b~iz_ACPA_66z%>;u0mDK)Zz z4NnrVjWRsNei4q=5>fRkXW;UqBKCbWaT}R_{5|o($CP6f^Wye^c^G3rIId)!7(Y9B zBt{3;{cLkI@bcNDWtk0)NF3P(d`+9fhTxa+6ueL87mg79(Q07f2r;E|4S8Vrayfm? z2#@c6)JJfmUeR?^>rG&}8N!Pl#Hl7<#tZYWN2IFf4^1QluLvMSSjQa4Gb#5!n|!t2 zNNHLrov`h>+1qra_}nl1sCu~0s&!e;a#YJRzs^^6s60XhBwe$}FpxU{R2`5qyW|B{ zkdQ%I;Iu|Cy-4zS%&}SrK-Y!`#4_Gqz*k&WC^R|XkwvKoJfM68hytpc^K9t^|BMU< zC=(Vj>^{F0v|PE6IEef?C7Er_C2Bv0-?44Su*!q>SI~2jz4Wo&fd$PPVtmPjlLueDyI8 zM(roOSPsDJ4x?Egw*35`p!|GrL6Y%UHrY@i{&xb6&+&ruc3|Bjwq_KTyB(Ze7Fq2> zp8lICMG*sE;SqbrjDmqd@bo`{39_YE#lGDRC+(-garU)*{nkCYdZxSVeamaS+=gH2 zc~Q)v**o>XXPtHc7EvGV_n-MehPT@~IrTy&VJj^QDRs6xvrCYOl*#a)WJE70`M4WSJ$d3Nl_CsmK&tn`sN$(DmH@2IngxE#K#P0uxHs~0T&0tQ{`Sy6OX(W!*wF*LS ztL@wSDJp20sy#_Z7Ajl*>COAyN5N2v4JnEt7oN8QRzDih=s{LeGCbru{tGEus!r4}{P28ypa!O> zYVrKw2fNg8Xg0arJF35tr!$rlz4||8XbGMom*b z;kcFP*G!HhWB@8^!>|~MQ!BEd4r|PI(}=1IkL(NJN(c$ata7bMJFFSyCGL3ur2&nZ z48!5a%uSQ`)6s0-_7uE|&l%aGrWNZF+zmHX9@P1CR*6Vq52M};ay`n#zW zRHf3kM(4L1bhm?>YhqxSnLC3IQT1pe?8Elm_1hy1_mVg(FwEf|geCyvDg-?SF$hrT z$;t7Lw*D==Iq5D(n~Tlls-~t`Tx~)N#PN@QbpHk z+g6(MbC}Q+br$5a#bD5jbwVC=o=j)DdBs<{$&gOwF3226vsN&tbmfIVF^I=|YtG|) z2ljYroppiTVtg!EMW$-eBPrk_-f07u^;H6m#=FwL?Cvz&}YA zKzf@`?`S0ziZ@QP2^x>kTuCo#9$y2-9jAK&z3sR+-G|F1i=H$IY4|meJ)J}`md*Y~ zv#b&(x+*E%4Fe$tRBdbIrZZ5mldx-Bre*}ABpt4^&Kg{Wg3-+~Je9xVNr$mCk0c{lJ=TB|&A=+KGHMR;kl z2%9L7Vx|3RjOH7txE7_J+s&mEiTZ7obOJI=!pPAJe9Hd!jv9Wk=Ltpf;GhJfX{h5j zT|@+bKjU8TWbB469dg*7lX0vxncmf({PO!*V#FuM!SOluLuqKJ)1*Cs*9Pjb3HDEV zg~Bz0L5$e$hEl30RnwrrSh&2#OE+GiBA9+^>6+YCF~V?2TpN28Q_EWZc>#ZMQx#G& zSz(a$&qT{ScYdK2i?0iwAR49-4$h!q;#f8JndRw&erGZ3Udde?7!;hzuAJhX=^X$3$wLEB zUX%=DGShE!fA?xTK}mMYa;=HuEQ3(0jS}057%AV0ZHw^T_l(Hrs-$B}&B;KeZ+Y+q z&6`0VFmS)!FAEm+L2KuCLN!sgS!DjQQV<*CRFwc0Vyfb#JOeoav+Mnymc%8~<41-d z70i>->VxtZog$$nWs7`+eufRD(sdPQkzIeB82D9`;brFrmH4`h|5zFK`F!;-#IS22~zshyGx z;p~3U9L&ZsW-8XSP3UkehxY z8;V-f^3_-Le)v^ZuqZB!5#k&s3%Y)0B-jS)`h9TcfL9g(UZ<(05)vjdGD^8QXfwDu z^4~I+N-UFu<(Z+2wyIm@V)owri%xWR{Q3Rvs{> z9Z0506I0)rcXWG@=epAQOXq z!0EF#H@!uf5RUk@&Ts_-K2W`O&DgG8m)KA*f_T zhYetMQ7Jh>9>G9hLShO^CQ@JXFlR{G0QVGBNceF+{Jy@xf*>6@F(S|lh?Oy;B48^M zCN?42i{6xm9B~FCQdlPlp|Q1$W+@IB*c`5tO(;)F5!xBE{5#F$@lPqC<@3R@E@ z^-!U-T2aAHtwzXvwL-x~jbrs_;EV-IZv7ErQpAY4)XXF&R)@X%)iopsAo%h#fH+`$ zd6G`}JtiQFWN=^tuojP*!Wn6sKEB+Ay&SKQ`b5;(eAy>ZDrX=F<~x%o0D6Szu*e%@5UGFV79h(Q7Yy0ANCl!c@PhP74PwPc*2F}TIKFOPl0hWhoFYBrX2E30Px8o6R(IU zif@9?`1nvf_jbqwvEFXsYFPQEd6Q7Veq)X+#Uwy^OG66xImHg5g3;_d1m3joBX#Mh zgyRRhHo}MsC&2`Bi;1CNNWO5A-W2~ZYeg4ku;FlrZs6j?hhf^a%zh)h6tzgFi@GVX zQ;0jGzG$Ew8y&=Ar2s{90s8#7bYqcL%gKPjg^0PN7k0g2ZsB`fK;D?h8^ukCEbFSd&5r0tUZq)0?qK)yn(fMiOv17#6V9nEj;P_9XGQF4S(PX?u80V$37=q*wbq85pC z6tp=9kkS|jMP#13o zJ)iGXC1&?FC0WB);X{wvbhXkq<+T!ox$5Dj)2%|il%1VNI<8wN8lc8?9OKs5uONV1 zhO(s%M9OVoS@O%Q#ne9xPF1u2sjfY9_G{S7=P`a%IKMUMxk3LaMif5XN^JNgTfIV|W8y zdKZ_q=nvcwM{qS7WCkt;#9EjKOQ1y8G_HjA!V}wH0&>-jbEqn!6aL676haf##x^Zrcd;NyR=jjBE?qmV-2MK|OSkhp3*d@f z^gYB!NUjs9FVv+L@x5PlzfgyEfakR7HSz1Bbs)DgtMd=HmXqpA)z2n^&RU|tO4(gG zGj{QL1Qc4#P|eG!HNI#@b!(6KV|1ALC&WafMSS%uUwX~UacRuP#^Zkp7)-dt%{izJ|@Hj zbOBrew{JuH?}UVH%Zi@Q*Ah6VhgF)G+Xno0fNlQLny#Jq_oo5XH;O$!xb`O({>@{S zXN@CHrv;@4kl32O7Y;1D3f9~6Nw+Dbv05Hr*=NW54j@^hZ!Tds(L_hW)}GSqK$;2> z$)SFJv#BeHS#(XXuSeFz@)?Ny(51WY4I>FL~}cWodas6+>B^>GTIvY3c`g zKto4&rmO=D{-heKL}$cEdG1Jn`(u04{t)K#HSuBj-$^`igIYSm#f~(=B5PJfRQ)$gT2Fc6G8L&3 z8REkts!$%73RUd|{N7~T_v%D28(rW7015)9ucqRwJ{Yv^PRFl(*81wd&>5$?Hqm3C zM&ebfNA*0N8PDJs_6^m!(X$=3R_{CR@Oix8BAC5pOq#ZndimP=IK`g;>&i-n^5H23 zu5C;QjCu$0WcD4N$7sYqASXTyUelJz;up;K5dtULO0V<6l*6jyfAf}MJj}ZV0BOi3 zgj)K0rd)gJdTdrl$^xJP_sl`bXQXwq9A`j)=B=3Ny} zn|Q~SxO&MmcbzM@OLOW&gM^N`@Kv^|E5blfBw{P16+C5(4aL_F>j(yrbQimMq_L!4Rb*4 zBvoB6&Q5;Tv*K_#&^u&$dsoEuGE0FMDqO)Bd&^>jlEvi_aoJmI?XV()}0~v+o zpw99#&w)IeFlH~Ar*f>#BX}RdYY|q?S=alzY9CCt83lLR9#NmoH`0UEet2!FqB03h z7Z|pOgBIU<3(9VyT?9SU?<1#t$JsB?inrxF>ne3N=;fI?l$uB03TxD!=#i%&#Ok24 zJw4!gj;5HCzbz~@V|G9e~OH>HLo&=aOyoxXB zbU|!A_GQn1c5f>v#-1VlbeKX})W{KgCFYG|v@(b`H-4|OH>o-t4p5NdJ63K;l-old z>3%c7oj)N6`rmTOo=a*ge9)x+s!~7V=?u`fjM9d=mkgd)uT@vS7@*hh2A>} z^D(oz=?0nh-tt@@d4EP+ULPqeN#XqdbcekYw0~a9V|nbP)Dtu)15CiD8CrykYK$k2 zA-+!B5!c}~k45mYekbvq@TneW@=Q+(4#S7v2_K6ZL44(hfcr_{JqcjdxZ(f@PNkQx0?&92M@HT9pK?UF}x*`l5;2lKX`-`CaV=e(&; zk-cR#KXY1OftkNFlp zWWvlO^VpweysOhTOPU!co6VP*;ukH+p(y6xF87!2FC{^PSFGoVP_MvUpJ+tm1@q~% z$DmG4xl(eXRIR5xYn&Q?_022fQ(7|Gj*%6WeY)%=+f$`Z^o|EAy-7Z+zwRiS{aKt7 z)5(=1766C_RwNWUbqkKnaiu(!{&o{dTPNE*!;^YWO4C-upNrY*bE4go_QW4zfcC%} z%21`wK&3S<)Ot&pqsode&TuH`AopD_L{cn6$|Dv!6`fGkjkxI01o=mDilQ13%%2G& zC>l6NkPfLbb^maeGI0QxtUzg{Pe#nhC_k$vRR%!H0dipI-rCyG|2+H}C^c$k=0CtV zkj~SR0^HVj`TPNR-7YR>Up@~2uJQs10wCHVA}%jw?Sifxw+tN#4gA_)FRzxf*9`^W z1pg|Le%{=f8$@=^pI4P%#w-JtWSZu9j3#iX{VEsoZ?4UcZvWM-d*+wNX?S0}Pjr^c zCjpMn-?J}=1PR-={{nn`pAq&xKhH3=CJ!8rO#XCjCr2T8;KzO9Nm6(6Wef${~84eTb#=YUS?r8c`(Nxx}jO zaoLgv8srrnGtjgP5np*G%YxBnpiH0RyNdtDlOu+8JbXp}jUc)Ht8ItL<(`A_Q`@%- zA(K7!6rrK}CgfZ4mHeD~2k5L?Rr+?Ymwk-*?hD={EXr@bL}2wkAa7eLFGE5JO9Z$` zF%?cwm*6+w|BW6g(->;Z`wP*9IiSPP!g4o``ILe{G--sKr;#_#w%TQ-I4J4OO;%cW zaqvSW#Cn%HWeurLqkvi|1Q+bVRmrmYFg$8qn$$n+oohzCR{b6X%=r@AX!*^plNC*W zd|!W(@-Vr$Pgp5;sh2A?LN~ClrT|8XjF*Qd{v8~{9X<8iuQzZbVRZA#?uKJ(q?s9>FTKBe`n~D} z0dpK-)j#ZOoPz-w#$UNP`v3*HOVD3R7wu+E>R2>XhVnXQ&cL(}5#B);<3x_&bn4&B zba6dIhKFpPDGc!r@(WFp(kx=rUtYwv>Gc2rG0kAW3{~wF9 zzZSF>nr3TlYXyxO2lZO1Y?Y2UGCDbfb0ZeI_y&7)^xQZJRb=BeL$jU7vpvo#F-dSB z2^D>nO3_bj#*QKRWN;QMIf{aZ*&;{PYwY=m110(IU(Qc|HO@ANP2VfP)ax`rMtF5a z2_~%Hd3FzQsH_`8VtD^>6TOCFf`9ibVtgPmmk2h6j>b%$(7Rp5qoJ?(G9~@e?vLv2 zSYhn6Qg+P)Q?v>hk51h-d>}<9^1-r^C9mdrFMp>p+IobFQfmr-Y0<(0DGZw0HARz1 zQLyN7M5x5@&uAi-wR6gC?xE%;WA{>4@AZ#Nae54}U$e}~W`N2D8_XdlMm{7SY8y-< z$_7heg`qe@7bQbdyqm?W{3~l`roMn4mt7f`y}K|VE3|!Ph3jA0%J0w;^3GrcDj4(&2xLDXlFE1-L=fc9Q z`j;2L2`8mOtl|nAF^$LkV4Ru4#vnZ-<&b={z%jGuDT-l&_`RhsqxLR8u>iM06Elql zDhduES~s~vKOwXKBcZqeAA1UpbX@7M@_q&Mg4h|m4GMc^mPD6um-v62Sxr=o;}Kbs z^aU6yF~5fvSkClqxLbnnNTF18MCBeUpxcDWdTRiMHhV1o~P`YHZ@PY3;uV`f!`dBV4TJzndv&oc;Tlp zP0$8k|5@v3y`BGFbG^KDEe`1ULcFxQB)QPPFvWx5ZRY*MO~ISz3FGO*MdaP9ehj#s z>g=H2V8-Oc%$;CgJg?+gq~_Y2Sqvk?q8~d?M$^wnNEvQyua7CSb+@KUO<2qQl|*f# z`Yd>Qsr?pW4AS`9(C;4xk!Sg_MXUSpt4eax_!dosSrizOcZKspHM!Lor@Gbu14?F-C7{d-2 zgI@Co)}9*E;65_JVG9KdwL%~QhOgy}&XbG)400!-?8R2}oxd-wT}J{743B2OK*)QO zqcB>-gb@8*95iw;>GCOw*L7mk^(6{%x;>v);}sqv0@S*141zwVThfP!iXJ$k_IAa^ zcm&zvmz?U^lv|1oT0IZyIwJu4-~U(GS%pO%b!!|Dh6d?QrBS+vP7!Hl$e|l#073ds zNlJGsAl==<0D^RPcZZbp@tp7GoU3!c_IlR7+Ru8|yMIe92lCiur{T?TeBm^`J1ph< zxBBc{(U>e}J>bp{v{TY!QTrS2Un#IX6@glUrJWl8k=w!w<056ekaTo$w|kTNC}7$7 zB_7HjT#+hb8#pTDQ!I9kzC|DDE;C%3`x_3Z4fLWZ)P?g>C+S$KRr6~|);uDY{Mka1 zHWFhA5FL3%j#2W~7WjlFu5bI8m9yfyBTid0DlTJ#x5 z{z!io+_hHR^deh%j_F3DK2!h%3i*Nt5)7$t6cTK}ZkpavGsoj1fBkz^2@4+d{SQ4{ z%iSp0N#|u$Um#W`NlSa3lp7GlRu0Yx5a3P*s2ysrE@tOMLEiIsWM?3>y}# z)XQp2;}kOErHw`hglK>Hz-w9xV1|P(eA1@fG%E8HM`A&Jco;{OS#s9)8NCgn#YNe` z&oM#*J$auBmfzE?(s5fVs{AMg%4^JyDNSTX8EfB^2Td3l>-wg4C12F@-?XU`r0g%)235j)A4X2_lMZ&JV6#QdMNQ2<*;Q&V>yR8`FQkHoS#a>cs`vLj z-EwI7zgHevw*F z>>^(h@WZw01)0J0nw{pShsIS0>kEuE;rkSPOE-D+ns+R zbz6<~na42QmC~$P2Ojca=Dxv_c{L@pR+P9qXjIbhfu*3;oE>8lv6r?mdS2VCPntRW zX;LS@F>Hd^15_4#oKrKl8wnuN#l2%0jOQu_l~f_&lw<=^zvLEuoi!(*9VlKreli zlukh~>wt5~p<9NNP;%_KhnHvF%!36GYgP|`sc_mR^>OMeZ3z~9C_tm+XxL~}ijV!W zX<;uu@!NnN*!?Q&gr-fhi2?Q%Yj7d6XeGO~fk|er_(s_<|5{9lsBX>oexkmcf^I~N z9X^zwB>mdyaCe^%gFi)_0i1xgQhA9toH#1#NHWw-i%h!C&wt@QA4vQ(}9 zJrnDwG^*+Pm}@?$1=!gSa+IJ^^T6t9hch_gWO*!kYO0x1IbaX}opQ2(lLn|GmR>lz zS!+EFO^T$PCCa7cL4ZQ!yDHbc#s?IRUG#X=R<_N62}4%X=lYs?$IR7#!23V~THdA2 zRjtF~6h9Pe@eey8HQ$<6Z`a2MdMHpN#tvoB(_U2eMQAn^0l|lBKfJzjMO)Hrc~<^4 z3)Xa}Vl@rPmv~iuXY#o&+ITm5s4JJ096^C|u6al_)%6)HeK$iJ9lyp_edV;a|M2;& z2T#gbK&q`>*WJ7sdv4Hf^#?6;lbHabOT{%vG9l+FZGgJP&l+TyoM;r}HR1hHfjv9e z*8^%s#Km)m1e8hH-};aDQ?qw4*4R75ux&YWI5hNxnU6`+A8zQK)Jg_yDaCp?W4}X= z_sNMJNWH=T$u&zv>Evt55L(!;kQi(}he{JM9WGqkN@_h&|0zl}l+c6Pe)*EOdsu~= zGVccO~*{&<4Znc9%Et(C2(+Fx6vc z_TZq|Yq*7c-E>0El~vO6_D-IFQJwQM`shPcSmgs7xZ|YFrH*|+3%Y)8{E?sybhGA` zVu*oD1oW&)G{aSm)LMm;dR!=d_gsh(t|QW=-iRL|+X^QfLX_9xZe9sI(#yvq?lH05 zHY1gC*8EI=gtwWZpCu#GetvJ-!)HCQ-aa~M<%cFgEO<}0@pBO`avwwtEO}{ou`?5z zMbT+Cym|LOcj`?Ro#5Nn*)mU8G7gPwvf&8L5hFfRz2yRH(M`q9Z`@?RFCT=f)sP(DTOvVu{? z0C9Lw?#E{yx;4$RbV8~zi*l5nxWBG%GHa{=)S)tf7U_W?KCd2Uj2ALt<-$yx~En$X(4${{_(pv-FF1se9JnLWaOzfV_URQry4$@eVP}*gifVPIM00evKtTL# z@2(mg#?>>=)0{`6?K`dlydAr)&-P;^Adi6)+ zR+!dHDr`_bM7e|VScDz{AZVL&O!-eHFb`ksMSmtEz9ZTf_Ff7@Q=HLZ4$HESu?l27 zLAFgUA#_|_gb~%M9@FuC-ogRYfh>Vk~;{Q(EQ zM(^&2xDM~&V`eS)$}HpS)aFJ1c-i2I)T%bz2M8E>U7G4z@l=h(0Fhqv@wlqq!neaU z&1*+4ksG{Y<(;mcoE7DMxlpiI{YDbK9m)p3TW}H0-NacKo$W?N%`3mFWz~?tctMHr zqAVC$`POjOgapq5*r;C2UZOEGtEe7Rwh z2p#%NGv-tK%%@g%HCAA@qkS^y-V;8&#)Mds#cfk_SVX2PYq@5LlS=xb5QK0elY9nh zT7HLh?A^!M-4eobJ0JFhu-bk>DKgS!Waty*#_>pc!II$0Hi{ ztH>3E3V}!$R_^?>Vj#)8kx~C~P+Lzy=`FA|{%f@OH z8tct}?Kuj?HQkFz^xJf(Ha+!*V+(zu z?ObT@GM**?dxR3DZJz5LcQao(@-y}&eb)^FuEsyG*il9s8S1qyzNWSV!_-Gt1-O>l zCd1I9h6sajLFNtr${w$Z#E@e#QYKhnfq$5C1`+o!t3@hAebvkIo-+n(>S|4v?2Kr# zFdn=JMC3lgyxWMiQ3}6z?(W1qSG9cQ&x9j~2)zSF$fWvTbm3G`zHD-7#xV=moM8FE zwG?NY@gpO=;e0MCE`78vN7!tz9cgDpXWv_(>eaLI*M=M2hlQGi#ZoH$64flsg;sHB zQH4Ew!`Y3PkJSk7)p@q8mmjs^D0#sgp%e|j~WNkF4I8RKytME(i32Hs|qv%CWDN27RF2#h^K<%P0)W&IIY zb4Y_f8Oy`-=<(@^yboJ=(4l59`u)!W;Rw9gEcu}f2pd=Ojgefwy&Z)cFK@q zp5WH#rOgRvqYG4f?xEaSZhHspAC5Md;zMNH79y&EQa37GbdKZMv28D zvh%x-0QK9x@t81rTpGnA{IrlE)7)z@(gQz@F*dYjiqOC9KZ;s(gRyQgjnY#LJQ7$0 za={w3@`ABy9NPx@264Kw4*5LEH~d5y><5<=7!?0j#>|ms@SxXU>Vu zWk5fJC+A3O>E<@< z+#t&NLHH2%B}*X-mLosHi$Z1wiXPkj4f&dlhc&?CNK~IPHz1%CGu2w|8r)dTH9Sm( z+{;g9leJsahjqxlH2faNWdvd94LcAF* zrA+v;E<1w#wnp>mUdk3Pauoz@90YvQvxPkw!OU0=jLO9llgN4B_blu6S9#y?$8?=^ zPQ2+s@)kdl{b+3cZm=2yAMx>%%K`J&sQvuu(5OEwJA>y!SIvZfE)Z-U_akWQY% zQf$j#ct`$09%ZImaes_jz5%Fd5z_*qiL9T<_-wiKoRzv*==?)M15_IAZ^T7k;qJQ~ zq%vwV^@oz9HzU>e3(7GJz?4PEXA&$G3!MxC(J!2>d~DaW3<+lsAE-qNs-_{k_FVmWv}KiD1@=C zDV$sG$%$4#da-FQiX{oh^L>y zY3&#OvFRjPEz&faWPrH{1Ul)(yvBYKlvQPqal+Bm?)84%2GmDeeuJ}9J?+V=(v$PF zaQ0j1+gPsDAGcB%tF~TCrIQ&=S>;of#mdKjYFsX?v15?#xQrt?g#>XokZY!}XT3>f zIZHNwm2!tX`5ZRyz`MPb{^ueF)=-=9XF>TQVi>Jiq}NL99`uZqLmBfQ6jRCpCo)Tl zN&zx45spvOZeI@>0HrhSM5RWWT)|-dkDw{`7MVEZpPZg&{*jMNKa;tTF8uBf&%I6T#M=5apCtN!0yZv=8Bz(L| z(@I9m2Bf=|MwzYaLs2*$qJ-J)|AM~=+1Z1so-^P};4@{0Rw?1=8)t5pYf?%ax5FKx zZ}?q|Qm8po&8Vx_U~(-;K8yu|K%!^Dxn$qQ+417`UvUNs5TfJ#OBeh3Z2n^M=tIsR zWA2xfAF3n|xqSkH-3i-On#bOqQAT;>paz?mUB2TZSW*F`&uEI&>~oZ}$oC08p}%IZ zkC&Z(jaNtR)rqB#s#!l>JQF?zo)*LuprcjDCD6sP!AQX+HI5Y7fd6q`^XyI@`x41|P&kZ|{Yza~`Cwc(elen+3Kc}f`e_6!{! zrxcH2K4}d5SzvvWkV&h(nVh`>tJj@BJT<2gBVPuF)4`Y5tN&QfZ(%evIof#+L%ky( zb@1Rv`@WMqc~5`s(PmWtn2y(7Jw~p4YZ)+}z`vrej66S+2V!FubK3#TNfl;Gi9mK! zr+h%7>Nh-ZLxFq8mpKJ)8xqu>$M{_s^xR7K+k-3tc`40cMG}j>`9r5YpN9^Qs}t zJakJzhcNCyd(h13AT{_dHL8>u7`6hU-JVv!WoN#E142?^%joiHY68Lbis~21-xNzZ zawh9=CB^vWKCg^7ZXVhpX^#~-V$IRNzy~@N5`rMD%?+wh3Y)=$A+k8 zfW^;tZNYh$ajv*6zec__Q;qq^C;ow->Y<4i<%4@w_75G_JO z82NA;ZuurSPCxUgL|&4qx{U8hyBJ=dOCrqb*N3@6K})Rq0)eYt=s-*CHhHpaA#ikf z$?DD8t;9jzv8K=8#n#@?i>%Gsp=;|1d$Ywr79aMF;AR6d#t6`Vhi zD6o%DlQJQnRwS}4T)LR<_oidJj_t%I0T}G#=M0F(CigH(BH@4V%}BZ|8L4<4STwo)4zBn8fX-it zMl%^9Sm)autN(T9da3yBXRmNET342yz}A)Z)^@H??nP&S#`D2Cp|N`!sB|D*hk&_l z^yI!1^I;_!{22Sh=HT>4FfSn^5G6@o0O?XO?`yK>ZJ zB22lQ?8w7*y6>i8+|A5e3R_OLTp7_#SNH&#ot9*J84VA z`K%cZW_Zt5~{9YdbHm|AxWQA#;YY=;r3$ ziHl1XUeTp5ZVz$wG3q~~SWB)%sc7{#PZ#}e9UDKxl%Kq!SoMp;mwHwt!phV2<@qmK zM?CaUIzZAFzhTu6&`HlZx+#9#5Q&& z)6&|@t$EsZJyt&@gyZeDa@?aY77miJl;C`8Tp#(Th+Ku^b{R3CL#*@f zSe0T*8l>D>gd1U{X?0UK0_t^xz(~54@M%UG@cCzP`F~~t6Avq|C69nE|+R*l;ogfNDw_f(4a8>No`EQVPz@F!2hrJX=8Wys41C# zLfKKRENXe7ANw2G zn{VxtPisyTfs>jAho||x3n~iKjZ15MOj;@4nSJ(v2{>2Qzu)12AIdzcrB7k~vRFBQ z$Z`+5Wm&ar)@`1lyn3`h2BW5M$%u;b=(eBTJce$r{0@co6}E4>8D!nx8qgRFn|6wa zkf+3NqCwovo%VMUmPtOiYE9#_n3RS1zQU>-$!!<~%$7MK^g43k1)J|9jQlxUjmV1dz@)A{Enx1C@&Q_(OF`-R3 zE`!2{S&i_OWm3;iRL0R-(!i3RT7t{V%RBGqW)wKL*c4=bx2-9zXtA*y=(qr~GgiSD zlB>7LwQakuBh4&o51HC6haR|+=dN#iEN^!dD**I6^Ov9q*Y%NeN|uuweW&YVoxYiu zI98?K=$m zqsHrzCXWen#$YyK#3NyucIS^5##>BdIX7VJMGKvuv1pi?ypN1js?C;JWqA8BBdL&8 ztQTPF)1^?DXL@@KNqJ03DrCFw*_LRCR}i7ESTo=lRmY3q2(RG{ zbV)s>2=cN}h~U7kn*|Trr}rf7>b)!Ek1YM$JHYy{2@zO^C}>4Tlp0uA;%uijh3Ima zvz7aN1mh9UdUQ2N^vw`$=rbF5X1i!E6$7W`7V0BamD%+w&ScNk<(qR}$>o?EA0KQV z(e6ZAPBZ`_X(JEpBRz(9I78ou5a5Uo7eH|2 z`yQ;4hpy95nSpd2e8)MI*A|Y=T6<0}xWO=WBl-11QO+Nc`vaOp8BdxE=eI_ulAQE-3q7tp>;(*IByQKY$8uF z;iK*P;X!Nwr=abI7)G<45yF0vG!a&sh*cm;J#e9$ZbzL09xt3W-WW!1dr-B)X;wC8 zam`_)OXyb=)d705Oh%EvCOFP~BPv8L*pfWrb9Y-(HG9jfYlCYDVm4Dg0ls$*2)iYf z7zJO@G*dKefF12^`t$aoIh!~=t2x=>yU$N5h#mE`0 zPww9VCRCQh7q(@27VEDE+^vk}YuIvl4@Cvh3MUSo(dD7#wuz&ug?u@tGh)6h*}bk! z*o$XiSSM&H${SwUf2Vm5q-aLmy}v5kr>P^qS{WCUKaJ)!jCc>Hc-!~yp3rqW!=OX> zo8&xLfY-FnH<)=+6PnPvLYYFl>gB@Np>!p(c&&lP=#I`(l-Jh3EE{Eorlf{K&+|g=Vxrn4e^DADy0S?b)NQ>M~z9-YOB*$lY ztcZV<2kY%@C5O<5p zTt9D~^`zJJy{^PaB5#I7WzpaYo}TS%CP N7mJBWUQGe(zW_Qfq=Nte delta 86112 zcmZs>V{k6O(k&e9*tW4_+qP}ncJl1lwr$(CZQFLTlidBD`~5gy-S^*2%~W+wS55co zwN`2&#OxP%oj))zTjKo~DS(lKfrXC`+S$d))X)~%W8*qY)_#i(G353OjcbG=g~qvS4)v`1kG(AdHTO(;=*|XUH(x|@$$>0!oXriJNJGS0`6$fi zJjaO>^xB_(voHU#F8=X1i;v*+2her9)1#if0Me}5@AfK>$6+|{30TffLRHFN-u^nY zzby)iOcIkUCzz!;?}Sq#j@niIu-pGT`bEDj|7yHk0z<43rh0@%(hQL&Td~&nj@mbu z>}H%iS9*bePI5Rq^ZSV-W!px8`gZ{AUL-n0)y=@NE@71VjO*{~;O3o*b()X2c^)$0 z1Ya+Yqj|Y!#A}jG2Eazin3XKML2eF+_~r7T+a+|lBJ66$>uDl9kuDZxY^AnNalD3S zUj~Hep+VKla2O5h^%n1p*`W6aV(d= zx>=v&A(oiDmG#tpD4?Ok5$|9}<}{ITy&iO^OoQN9`~eHh^MjVS#Qs5$hbz#RNG_=u zRfDbl%2ZK-)^K{vH{J($d(oYp8=L_X!SWXPwXCh(X5hDE-KyauY~^m zQeuXD-1hxq3%agsA@V>8WBo*Ayp>XH$}(-CXCt0kG%_@qzmm`k!x0=QZ#W3-u8s5L z3xiQ+?SMipJ5?t>FNxZ#AYbZ?Bs5#74X+_lrde6$h;G~uST zvVCQxXG*O%5?m-iW%N)zovPs#`Dhksyj~*6N^qj$&k>1Fr0&lzmI)=sL|ux}laV0nP^b*r#^3aHc;GqXYAb=d3ZC;r&2$TBrq#7wk+c4?l**J+Bf!)qXRzD!Uk5-S-(I-IS=gFSHDGa!F0>&isSxTcQH-p+ z8n6mBS6#JdL#VU@hq+V3o@a-Ua*eFQ(j36f6%&Q~txFdKD&z#5HH2H3Z2S8?W&9;c z^Ni`XAzvt^0JMcN(9m|}vfRSTgM-oJ`L z2Z0XOOK%tk?OF{-Cn&LPVrxZd7Wyq9$xT2E9o%pb zD&nivY|uLwWBJlrxt+UtqH?y1ny}EiurX+yVM*74s3mV>Q8-3WB_1O4Ed)?GG|Vw& zI!PuV`OC^Q0#TpMXe|=QaQb96LU*}j*Fz2G+rseDh~At-J-KseB8E%T!=vdVVenWt zchcFf^anmd-eaBb1e|FxWKlLIo>n_;D=)BtUK;h*Z*2=}H|!>AsmP7arhsNB(=Ih_pnddz~V8n=NT~RrEHFCU$D!smWpL=L3+so|4$JX)>0qaTD-$qc7XhcLr^0XY&6w$$u+*BP(b&rc_{cU@`zB z+kf}Z-ORjojWuXYHs1UsA zP|`PWkf_)`tSu|5;*Nn+b&u1z?}Ept-Ilv9<+5^Y?U0vWSK~u4g3Re(pD+avd9oxC z^%F4^`*%q5R%HnLdw^k)c+c-b-ahM3ad~n%l{s5olkKlPSPIU1jn_^{Nm7vUNm=sn zi~E`U*}fjX;CLGiz3s5a?}*J-*a0?twQgqdubW|X;&+EG4^``X-RAH348Vn~WyNF{ zo1xgR0;5^GKQz;z0=AmGP|$cHT}CL)({}2&>KumSbZl~5!uF+?jt5g z&Ou><^y0M_l@da zPH7nM0dhXd6@r=0K*@z)uPC|e)l_#-Upr%W(HQ6~Bw0%VeKw82-pMf$!xAoANt`*t z^JCfyVQj~Ds|8~v7^1>`u?kIp zuh2xJl}ae-qrxe!XE>?%*G}|L)_IkIM*IS#MIGk5=I~-83S2#FL>KHfe~s_(v7bwW z(A1m9jQ%)B>fWO*#Er7$DiA$(X{JR zYOv{+ZFp`o7Cy4O(JE_P7nEfxq;qc$Ur3A}7swas55YYJxAINf8z_e)77p|*A0`Kc z-%&j_va5@^#)^in{g^2ESU8S_t_i^5Hay5(T2u!(!c-|jh3`!k%$D&6 zuZ&9vjhfJ-(nb#3XkwW)?5aiY?OokBAUrP4ky#kuKAYT@Ynd1n8nc$?$pnxE7SNDc zz0E+{kC*RQI+mHp5TH8XR*XFh=aT`xr6>;9FP1@bF;FAdr!(1Qy-{tW_3c-gWCe15PlT>GX;FyWW{RZKZsh&jab^M0uir0$u41l^ zrd-@8S{rf(6~~*@veldgCAR5?s8tF#tXvoS$~Q?5Gt*8VEcC9E`H?W;ECYhC=ypob zg!AGc*IU>Q?-3gj>P?$;$2U|R)$bUDUow>+`q?d?2B?Oy7|l-zI{7Hi8x!Q9ALN`1 zwgT5L!S>X9ySzU(_h}*VA1MEjEh4abjE+11ASEN?_EH=TaRSQ_B8Q&h_DCN*<~s#& z0R3Td|AWgVm(B6K@(b}0LTnHGH$ueDiJ${@f>4%uj}*^J53SC4XO-7 zW&lEuR347N(<=v+FQoK4EA*iX;I^&2x-HK2keav1zujy8%k+H@62_{)Y%Z)0G_E@E zLUIg!{%Oe&7|g(!4Ut`VWN3OW2XQDriMay=Ldn9sx`wUXkmSJZE)39SY9nO3Mpmd_ zH~uGL3~NaG7>ubb%MV1K@FQr1VDOf&Lg-_0^83pZ%yK4S+kN|${~?z|{%=Zdei19p zSb6wMLo3u6uzOV?>xDiH5vgR$wOS_fFrE`rP5`!h4{3h3fs*&82HXW<*(|BC!;#!@ zM1Nb;!U-3&yeQgKzb2sUo3s#2-b_zMVwSN+MKw;zKrLCngl<}LAIhou@Mr#Tjsv|e zqVUu!5zaI_;aZ%}j>^MPsn0v$v6NbGsm4Rryi$WmCu&Tu&z_kMh7hZh(?u(SVtoy> zb~*(1H6hMP^l7xbO4jm%Wn>QsE~!=cL#EwnS&hLTeTl`)#TY=`&^<=IlZKws5O?&; z442Mv12TGuFC|Po*XfCqE&FO6?!ckVX0*gmnXVHR#;uE_tvZYWK0+|D?$632btuuV zw8(E?ryQ%saa?(8h^wnPOWb96vlgN)d6Rs<>?r%#u7s+|HNiki2p%EXm;ixo>CrM=cx8x^=3sSlGcV#H z7Tr`2W&j2zNc%7%1!QW&NP8q~zspO9)LDQ?RfiBRj0N=q)ul|a6DYj((x35B$3mPM z5N4+R+hvu4s|TaxK6OPXcR4aY1L&qBcb&h5mBg)zhD!kQV8e5DmY^RTG&3e|zxv$D zLq^>+m6OZQ%3z%5cBw2mPWed_U(>EE6&(0ImV}c>&EeXGB5y2>vlh(y^^haDet9zl zb^k>e=1Gacwaa}wn1q}lm$>Q`?#4)zoL4b^to)!y>XY3$= zuQ^3T4T2FRp{yz${JB&Z--^`=wm|?)%VP^Q?Vh?^hc}jx?j&sC&p1GTW6@o!C zh#s248l{W<#p`lY&80W^oAptKx{7RpQ{H=94+g#pGD)jY^@-w16Uy0lE=FTE|Y{s!synk}-L zg}lb{oHT}Y9kkV;??(GcQN@KqN10rU0+`Kf9t(~g?N{3%{gwHR&P@uuMqWblS7fUI zFfUA{$wHHvNY@_y z#bc9MxZ4G1bEZgDWn@D-TwK60O0>c8ni0*@n<&v0(*JE7xn7xeDQ)ulJk^YB;rg7b z3XX=^5Lw)oE!^VpXkMd|*n1an24btZ={v_~i*$71vTIsTRV4TH`r;`sjpHFn1T;M7KC6dXwW1-hS)#$Djn19+PMuWZ?;G68Atm z7}JVPp=-2x>)7isTvfwvXSX2}nM{h-xZe}BL&O_l(&&IVauhKsI#Mhv{#K?-pXzh* zB)#)Dw~@)(y6T`JMn%(TS?p2h?lBLH+sHF(jHh9Xj_ zUX}S{@I-Dt!@`JQoxINp67QihRr@Y{6>L+fcLUN*y5K5`a-^UXG{}O6L_%C2(%~`P z6?}gBVL>ZqKO@Hyq?9tnIl?nSn0qQ#wQkw_iEH7d@uD@LYE^Tmvvy#Yu+N<>VDC+a z57}>&AHTDO>FhK0#zt_$8Bl<9#Hz-Yc$;O*vvqCZ?hgk_a5sJn&>;&kt^>LF{u3@E zJ~VU&@yuzcmx~I8mt5wH`7SEeXa?@W`~IqUL&Z=?u*aXX^*n9dF4?fKysD7%^N9q( zdq!|u0<8EgQ1qX_3Jou#HGg$*Nvjzxe+%|g#GeL++ZMj+_q7z^4`L&~So~vVmD)jC}Bi-cvNgiaby?psw~`hh`}% z2xZ2`B+=Q-O>gGqqSO+LOSDj0A(20qf2y)Dx5j8(zrU@i0YAsz0m$*Fm>BN&LCFt0 z!Ad9%yl=&W1m6f_h!s@-%fDg&50%Qs!TH}a(6Cx(%_alv_9xm0a3wKiI5MIK#T@#X z8lm=lzFZu)>)8)I8LhP6_S1-@KMp6Kz|j z$wGc()>=QRwT$n;;#mdBLa9czMBA0u(Y!Kma3tS+d6qZL4ogCU5U(mV?qp4U^3Y{D zX;Xcrq@fn6C_ram?o?Beth2KA^cGi743;lJiG>!3O?=J4~zUM*zVT?Ii5!(W3IWZ4xVX*Lg+# z%;JN9sFiD|q*EyXof(viys_4Fm1jkpD!a3Um_J6BZkYlNThNkbl}IZfjMaV?1!ah9 znQLFPr2T?BLY`n`k!_8bh(G^G`af2;HXH!PQwjm;@21;va3z1-Bd*!+Pq7A`QbDGn1roa>pFYUcr7}aR017S z(F?PSjKJTTR)6?uOhizEZDeW|>0IrTkvyA_mS_Fs@GBi9p^t82(EuxnrM;>3Opl+<{T z|F9a2|Nn_zQ`(+{9k%CHeTq?xQ7gPigwi$o27Mc(n>IsxQ#h+H5@Z_)hGuTGmi{>- z)pYdGY#u+N?=C2XBH`mL>&DoeixyB~e6|L5>}#;e>w~!A{qCdBcN==k?!H~wTEbiu zmjzYR$?eiNLFB#oEC>LDi0SAY&27=@{HkHsvi2lh!4|Y$gW()IRpjGZaN}*5js&!S z=6~MQe6CSK?-085%4-xVUUfsh=9Bb^WFrDD{jPT42C&eoSZ8K~or`!H{RO$It5XqR zl{N+`iaq0gD94{JXx#$MAQ*)av}R0gp{ctt;7kcF@$T3j^8n)Wu!fn>!@~1uj9P=I z&rfNqBaK-#y-|&?Gi^2O zM!G_|DH*bXnRiaW?U{6c4}ZyPV%AMB%6f7g^MFiy_^osC@ayG6`+%$NfvL84ciTEL zYe6ZwQdFv~4FS$hqaT)x%+Y{@=2#|>7DH5Xw7fh_1H`fzzdBsK6xT3pUosD#8-bV~ z*^}x_2+K=?rwBnzdmHDe|JDo})-X~?iY@JWJzxL;H(KhSk?p zX%+TiL-r7A#Y_?HGu{yb5T@9@7Q?niU=qsc(17Y^_W^7r#MWxR_I5DUOeFEUgjg6% z(3Dr+6OPQh$(nhZKsfT5cC58s-b&|Rr2hC=;YUt@ySbPiyjd;coXS~{o<0&=Xhj zgo~d(>H;E5_450A&_*=xD7OXS4w@5URK4LE;hA{-Nq>-TBoSLx|wg9v!Rz)?}gxr*(_Z12gt~!00bGCuq zdk))ea0%TR0y&}*v~O=oR!*DLN}%_)z^8nJkz`AYDd}H z+j_>sFg!OMPn*l^Q*l>k>(C~fVKUqz#tie$w7v*vO<7(QH0Qz+&Z)#`W+Edhq=I)# z^#SPMNy}hCNnwl7U_n(&>jh%XxQ%YxBxput5~Dp>7A?jsw%VPpi6YZSMN4@ij3XKt zS*4bT&SQK#jJKcl&^v{;REf*>xC8pL=O?bR1TW#R4!`k+WHm_3Vlo2_*wUt?P;Nem%8WU{=~Vw;Dq+s%`Zq0tqK@ z3vU$smNO2y!1ev*<7EMPG9C{h@O9y=1m@8i&il8?t;W;I(HwQ|BX`&RZrvzoY&3~m` zTMdLH$l>X*(Z*_G5jin`D#ed-zWJr3_1lk5;K4gW@B#dexvNo8ieWt#EXTp?aGy|d zV2{U!z(rF8!6k~d_H`b=Jk)%><92{dpl?2gOmt9Nhp9?e@E2EsHFdQw$^cqh3kEIg zFv0$t611-Byj;}R6>leod!WWp!VH}vylt4XFiYcMRf=-S-&Trp$E}2uI1)=L&5H)v zjmIiUl|%0Cq&wy63s0)1RvW-qpT)O}^0df2a(>$KDm-g zcwQ!hEMo1_3|8`|_AD+`mgTPD1QS|oT?gH=pjj&JOjqsDv`X$!sl*S9@yID4Wl+5gjYfSLa@q=0g=uq2|=h62v*ikk$bB2E(%lmbi$ z?v%_AX7zIAkKp)_dX`($r7#7xq)3VHH)|@9{2n$Srk#SF0y3>e#T`;vgG^_nRzH&l@PPU6t(ywQR?=a z_i{2di%B|IU$FrMjUu^Yahcl0w|M<)XS@i_pR|%tOE2{|ifZ|v4bljJUY!b5Ay13V znwBJ6!#4H4EXY*g2mHO5M?w1*3 zm?qOyXn>e96kH}Xl=Lzfl_lR-L{I+nxz{;^(=$fuS?x~tdCcl@9!L00(u`e#$F8fKCzz{ zaVzye0BUrINS&tM$j17rg}zU8N!we72;O@J(?oXQjj!x`h`JjUDAU!ROwR13#%L`_ z9e2%wU|-!h9i;HH9$sRHvE^_Vk;gh(stV_yPJU`J@67t5#;w#^Bfk{{wD$Ku;qLF5 zF63s7{jDKic1BHhxybAbD6x7R;r1q)I1B@Pqy%5Vy?o_+!D?(AJ}d!I%00M|?qokK z`jGxomcd{F$SLe}FpVAbKHz{9yYcDRRL=Z)9X-#*k;l=LEUu-lB|m1uxO*M9aa3Lj z%%V`UewMjtlm_{4USnOd606}%o0FZB3b5NkotFOXqThpuHYW`s!rYv#a`F-FpkzUZ zA# z!Y&a_8f1;3Pvfl+A{O>)}Vv&Hm&SG(#+mZL7n{iSIdo z$cxCzuXpc0_ZvdM;rS2IOUXH%FpWOvpoy*6J_Ey=-|<~fuPj7%$Z6HW08w+?ZwKolY^Hdb_7)C&HPta z_Z57Le5?^Ww5Cn8HMDgmD!%??o3>bu<)Sw1zUC0v!kD$z>qwfPY5OFC*^UuKQ@BLI z0bf;sRYWd}KXv3|WC7sQqd!54Y(}%pu#mn0)-Rydp5fQo;I<;2QyN zKrLY{@qwN>kzwFql2+!NHqUBA`Xge{vPk)FiRSs46m_J<&S5+B!-YG{PW(4a7NEKt zh%l?~@>tw*_`iS4a2;(V#U{CMlSr1%A@$1wo<|U)N^D<8Q;lS$opLI-@XQC;vNLL^t%xmE^);|Rcpk_qYEe9{&=anDU-Bvlh-57s%5 zdOlV^L+Nk*1oYUtej?d zmc$-7+zeHsZ-tQ8Rf2pL$x2Shp(4&$y-2E%mVKgHC7<J`x z*++`s8>btn-QRq&2q-)pm1x}O6Mzx`k0NOcoS{bRgpNqG5C+!YF~Y!{yYM>Mf?z~{ zfT|Umi&XVM5vULyuEjfjoIC^_XV}WL)5z|FuFGgR#rHDEdjrk zcC~5rC%T&OW@DY~xP0`(uzKLYZH`BkKUSV@~5%5m~nYUZ$7!{<2V&6!@EmmlJ28ijCLEqZgSC6=XDrfgN5?{1+N!_tTB zZzXU?6q$MS!X~S>Hm_h8EStX#i>_^6dpnPiy4(DfeHZ`!I!)@$YM#P0gM!m$O5hLX zM^|#%7ju!JgCq)ctzvv`|8?)77N;)plpWv{3U z(6lpkt_vU)y2DZgJz&lD9IYFW^IId3W)>$sUzbcF%?U^xu`1S`1NNH7leN_uh(BW# z(_t`YAM(+nl$|>!J#b0*K^8vNDI}3!E7dU9Iahia>iKa#D5cWkfJ`}wrH@8A7=88a#^omsl{esSriV|@mzE|ov;;Z1a~W(jz{N)$10Le$&~klW zjgp2#HL=VMmy{}^0mmr^ByTdO_W18`Sc_!$(Y3BX59+?WiP%njdjJx7<&jK zG%kS_L03%wE$|l+daeiW;kR_FIwT-;`a|0NaSciv&T!@j8TsgjQ7z zNlIV3P-idQP${WX7r%E4TImg?ztW0<`nC3G$A;bu}*g^rf5*zQLv>RTL&T_>c&f25U%h?LEofOm{3FB{%hnH+uFVro zz1NO+D%qn#zjgklA(gSg=);4aJMn5`Hts6t-rkGu$M0sT8DRY9+J@LdrI#%Cj*xNI zVwgW#KE=fRAGb+owq*jbzfg^gG}e$*!oOd=@OW+B&`7Tr(<;tgUjOX1;UNpz)J5Y# z^S03VOW%0uD!WVD~1^>l-O?CfvS)FvECw2YO+x_nOF`AiJCrS+P zfGm8mu%Fat80#};ExHGv^oX3ci4CrBO?rNgZApd~fFZr4k)Czx{%}bIca^Ri;I4GV zcG3=tMym{e7@S0R zWlB56izi!krh*6B-Yx9yqBAqTq8i8+k0$EWOO;z(j=!JTmj-1%Ed4+iNM-2bZ)zqU zW@7<2p<#a`9oO-`*zr2^#HUM6FY-#DE@mvzUJK z5%0k%`ZU*4oF;Z@2Q8Ji$iO7Vdk+FH;dS^d`A{X?>`mh!xnuS_gO|&r)s$c)^r{w! z)_XLU7CS30=-0!zc47}%W00`VHPEyTmTRL=ix1i6XJm-X(@QMC#BfOxv;b_TStdl z8TGBRC;6#M8X_5m%S;^w`!a@raNbF!dc_!>4hG5kLeqEbnxE`loymTpNl7macHyfU zTG4?2q76G%7c5X=1QM<74Kj(PkuMvKpb6o)+?;?Q27m+1hw6k7yavin@MJ+0_Bxa` zUFy|W6=m(oqY?IYV~L@es5~D$?4#F;mj6<=wf%+Hg8gLzE~7U*LQviZB_!|@+*B8r z(ax=~v!WM$LDi-4*Rl+*T=*Imj{UNZcF+I;Rpbg_s(vCfq9Skp4_NWY52zT^U_9e4 zUsud!1C-;;O2iJNIfh${il22M2gQEft?ae8r(Cj)+g|vNTphd`s|*AOEzwiHBu}Fu zXUJAp7(2pJTGG>;*Rv^uKcYY-X|Z!)u zbYA6|t0*Xc%oc!8fz0CSL8|nNw4EG2A6Snn1~B6B3Vaw(YehzxqR&e}tC&0!oAT0+ z4OE{WU$50!2)(KtqTO^D>;zZEWzFEqGAPqtwhx{f5+rZqwPefOVKY8tKT^OymZ7M{ zKTPsitvsAfrp@r0cJLd(l8mVsye!APtT5xn`34C9<0l_fAJ@B(^S|oq9xpw8iXelD z1MK~xF)o6YfXRFfm`KQLXa4u!|h<`vr0}&P(!ZZZ_H(0ju3O?ly;Ukp=ZPRYBoJrA@kTP ztgC5WH`q-*+nyAyLY5qGJZVBe(UqAu?pi`ol>8qtc3#%*@lg^;Mtxk&Tem;s0JfPA z0r>ha^=H33v~fGZgEtYmQ-p#>3U0Jm{w}?b=QCxIj5uHE2;nO&QBRM%c#?}P_j3(s zrl789LXnm1o*vq?*TN~fR{0|7S1r;$dEEEE8@f2?aW}5%K!%{ zR;otJA{GMSr|&Wt5LDxPlHkg*_+k;L;Mn7}9>vA{#<_MDxyW5hmbh|wTb8%4#YQ=t zDI@+>5bOhOn{tlzVD|lsnA34s25OU+G+zmO?JI0?eS7tDt?5zwO1CHgfY)05Jmu?? z6yJ3JF&InrhpCm+j8I+HTPG)41?t(yCo#rmK;P#kh-__jVk@cPD`N8A7p2L5(RIkl z1R3H57=s*WhDRr$lkbRXno@>ab~3Kgs;u~v^D5n@$Y_Hi8&0eggqQIW=&C> zd06GvTbAg7?btZi(QYULfQQg-sZIH}CS9Zm6Un83&)2Sd>@NRS;2u#fh^8E{OQ3ty z>Vf(mE0cB3oiC9`h}}%cp&~t2zT-N~fW{Hg@pk$HL%lrX$|5X|`NgMzDhMfs)!0${ zA9ysE!J=X`$%CR`9giOSaM7l8X~b?R_>U9*Hz1K{}`6?);R8GbR(qd{eEI#d<>qA7)6;~Wf|uYJ{t!Ut5$rpX z`#*+-j>$(_j$ghP@I4Ys())(;Gvi)-3MB}0Z8{W;`9XGH@VsaA46UP_6G@5J!TKfn z@?iBeaGkmy0)v0L97Shb8>mgaP3_FKK^m(bc z=mgI6=yamouFRwLU?oG_)9r);*khd!<1 z(~m@8)?`0S&zhkdV(#ds@kGnfoXL9#hEP3*uY`sa$;YXxAY@Y&6!Y3_uFIR(#cnNm zebSq^`7rbC;L2xV`-h^t9Kqs9KTq!?e=G?dZ47UOc7rd;T7^*Q>J`;g9Gqm92$c|P z3G1R3Mkq`Hn#(qWjks-K;?RY)e7agQ0%o@p!>MfsWRDNpXBf}eo%Y>-O?^N=r3F`D zCFxtVse77KL|Hl*H4A|s!CTGC?Gybg>UB^yRiJ=^<+l^U#YfS^U?dg{cd#v^?6u;1 zrc^;><7-5Z8aKdan0BD1^`t{NmL=hBfiXc7cN-)DuudVX=ruR%bmV=XV#ZGT*I9P5 z`$Ch22i;ND*i4Z)YRyMPS<8G>4AvsFx_jUzuco(Br-u2Voy>a%V76Pwxp%kx${%$# zY9f?TY_LdfBMrBlm-*B2zrO*mr9YsM6}3bEuhz@S^nY!y&^)P7>cDsaCPv2p7JaX^ zq!US6;d)NhpXQarEkO2|i!&Yyk=5T@Ubbuq+{9QjM{5#g;om>s=SVx(t5d`>lJN+X z^xDZ-paOv2d<9-%2_Ud(z6*&S5QW(&kIzC&5#qWBPcuI}*>z8`aAo7tEY>*9@0X(= z|B2gkj#mJK=%b_1AK1dRI`#e2AD`F1!;9KXm=E@7oBjLf$1FZ&{A8Gt;R|;?PzmA4 zU9ct%$$KG=lIDy>)7fP5gM{faPeR#G-BQ^^(sEq&M+Q~TY_5?{4QAtIF378_yRQRg z8(k3@e3}LPc}23zxoJD(=ki}qy_*VCACn9`2!nvk1Mw|V{U7$fUt{?uxT4!1S4)yh z+-~S%iQOXXbx@RL?xZ+oVn^hsatXoCzt7Jg8HFg{}!D8+VZ7bekXvWL2zGwagX zY8R$*t1JU%#$|u0$_k=1UuyXcoKq73mH?ej$QPzlU+nZbvD1=nZ*FhqmWK1)--i(1IhsLhTVk30_t@eizYd;xsf5 zyz=wKnEyh90+s%UuCB_sc*xU0%#z+XSKDQU6BU$FbAwL8x&? zFx)jcDx-kXGS0ueOr~4s1H{niW!Xc5pd)4!_|Z~_M%+fYL`Wm-=6j-l#O#@D(<%V! z`m!mFsrO2)HhkLV*Sv$+wqjNVG8sXQg#0e|6(p6$`<<%Nu<)`AixFgpW`zC%ieOL zhc!j396rYRZelPXqiWhTf4wQ?KRx?74Xvs0r5NX9;&@s_`1ph(1<)neh3Z2#r>++Y ztJ%dN+If)MGci0^5o<94KEK60bJqL~m-tz&LYTyxf`Wtn)!m)(t%gmy^?SWF26pNY8(@JklV%;{WDe&d>IHwc zF$A9|*h?)_lMwtMWO3F@1@h?pPQki-uOnGX{K6rH-QA*iQ(suRgj91WJ`&SI-)O&q zg~60%&Kd&ZpKZ{-^#0~4Yv@!n!$F=>UguR+#Zs>~rR-Hzc@=I+frVtG2PA$qdJskK zGXMPKs~&np^v|pvwJIegUsiiM$&q!olpU}|)g;j@PzNNhBm zxhWkG4Iv9S$eAAOI&?KM3rVEpOAA!o08a)gvN}BHo8i*D66JoayZobWBA|#K#Jly5 z~-b};^$0HbTa+K@gplk2DC(Bb~c zLus6oJ?;EkBd{o?vz^;A-t!E6#~?LtnhOTZF`LcFEUPI;BC#sZUW%cul<*mjB|}Hm zFj-YA9j=514NqUFG`$KQB%vZc=3H2EVx;h)R*N1Tq8~?TxJ=A~LRDs;Os-7+<~`e3 zGI>&<86(06KrMo>4-qgQXL$>IXGN8|ymV=jw(3TN;>5G2^fjXG_qB3r0ac^+prb*e z(Vh>It0-H#60L;2pf1Bi{`Um+MaB?@g1Qh;0K;}d2a_SCi0d(RTCj55w&+rG-KFYM zb5BU47@hRz=>S17_#K=LNhw0(8Qt1^y#<;tB@b zFATjNtuz9|=Jvy~wXfxYzYCI|52R!EEKpIH%dN>17R~eOs*VNg4i*-j!A)`m5ikes zB3cdf!q@t(ShEG*axi6IgXrX!1R-P8YG0ddeabQ67?t0L`UdMBQtV3LmeC&ec9!vZ z_~XU2R%gkvu{}MTqFn7=qv?_TwzsyTEID08X!BJIH1;Ld-dyUpGt--oYTO?uQ@M{e zKb~`$AGzP3o)r3W?5z~%uo1$h?La2dlx7z@)}f;$fqt+0&yxWc{|j14%wPTuVBq*~ zh_bCE9gEwF^gj?qG17oSt$vKye|W$V5$jGi+%5)TW4j7g1Dg0Kt~WQf*3Qj-R(eN6 zh%nl#B!ouI_xZ%)gJ<64K9u}eQkaR6{CRQk_Z;8ev#_^sTJCOdre1G;_!#Le<5FoN6__RgS`CcMEX(SqZeYu@dbPJ_tSpltRB`w?w*}~x;IfcqCV3kn zSg>r1E@?mvgafxJoLwn8MV2FKzc-ONgOAGdAQ6cznEmhCz3U;m4F@R{Kzs=jcp5iU zmDzU3%5{4&fxmCy{psIVg~L4Fh|^wP9K6oVtEa=K#aRy?qg@0KT1mrw@trpl*ML(d z&hm7V-+^zIa%jfih>Y{r7Vm*S{&V6Mm&S0fxF-Pa{qK)xoOVxhQgTCFwRMl)RQEXT ztWI6?9L~!md%9UJj}Y<+DaHZ=iU=H&a9-i-fd-|a`1>OcxzI58_q&-QGTGD@Og{6Y zbq}O`^QZw~(ZOkps}u7c)bt)FK!uz)=iz_etkdVfq=1WdU7tel`SG~+bX=aE%$S!&bbpcPN`fXRpk)*j|Y9`V;pyNS4V;gR}Zm!qDXK+0b`HZcis^3F^WpR-?o1J#;hzUzPB1w4dx~G|kHmHMcy&5Fv z5~8!TG~+v0d0^JajS)-d=>AG3dCYK2R@COWB7ahFzZ6)e98$#Q0`=YFr$C4Id!zX5Gb^_PhJZ-n%JAh1dIN%hw_PVluuq{Xk{r#bS;_pK8=QB$C*Onhq%qB1zGi;gWrTL@n|kUW6S~f*$fBD~xvE z)TtylZvU|5C5ah1u{6%5IT<`oAkuP6{{c}Y!_+!vpy}DX!`1c*A+4(-#o5v4&*ypH zUmxY!v^d%TOK^1XS2_nnB|W1$!Nz_C5Q_66V7tJF!BI7bHpj&?Z7@&njw!zy#P zXq^enx8HsM`&C(0Cg`*zE&0pfS3HFYkAte0`&osJAa7Ht(vp`@_3T~in?_0J);Vyt z5T#g9_&Mh8cCkqW1}B9ne8`j4?UkYZjY0AwjiG6P6ak)}>-Gd0mWWx-0u>Hkt}j06 zobNe8qn__&01PhoEcTO)(vBujsw*SZi>s{?Hgm#$tPgSpEd^_ZUI6&2=kY+P`CFKD(`>NDTc4VjwAQ3TRz??eMn=yl z;4|7~O3+x(A>d0SEF;4E-(n7)7WM$w*=8tx1;T=4!D>q~S5;~Kp@s_(%ytK}dEfae-u5fUy zyFVpNQId7HM{VnKGC7Pf2aOtPOPnfLoW`zFR^-7aJrl?0vrFyyn8)G|BsY{m>sYlo zJX5OzKfmrAU!10X49ApRG%*rTnXv)#3!j7<2uV|Bz>Na66ELJI1zy|J!J;c5Ds*vL zm!_acL)kH_frnlYG=GA`4o&EoIy2^|j_FmhW<7pd>Ms_>imm>3jMTM~kED>b&2Dki*?dF!TJA#`mk)Ry?Q=oSPwr5Eo6VGnrRvuM{k0MATD`}C{QN7I z*LgDbjC%myxT(O#WJPRvR?X|@@^nb>6H~;RK>GjlbK?3>x|@mhzx171ZCO`5cBH-s zTDKTjjYJ(sQ#~Pc>BQ{8b~4Bt23r)9C^X1#fgK-PjqY9dq@XBD-r_`^ug@;sVF8v& zu?6 zDHZAY+J`(8$*VdS2___f9RaeZ%?lc*+ko0~>8QQEeqFKslJtKBXvjZgbZ;^>O%6Q=46)}I+d3=W*n9#-6Fk1%px?*4>7U+lo79b=_;co zjdy#H2yq}6!aCxzIiGRKY)jFDFMtye@Lo)vj*03cHOxc*kTT2Y9fvk^zn`+EjDZFh z3O}HMqF$03-@G>qMN>!O`!(Xos4?-uqNgCdZe;;-iku z$+U)o0AEukIa+MACMUmIl7?a7>gep9yMSQa*%ZyVDpy!1n%CwG^2(2OOY;CQb`IU$ zmw!HH<(D9Fs5jgz@q+8-swJ8ijQmGXV<9_wzOvAhRT!RArhxJhwLkAF%OM|wag@WR z0iLLWNRB8yfGdzl-5F$XaKF?a6e9MvbQMZp27P@18wMGk1AGi(1n*fTq8X(`ysc+n zSj+Ok00JtRpxlUQqD8{>MwtlU0NrLswax8p4`p;5MwBiQ2$VVCse6*Zr#xowW9pWK zx)#(ebAuwTBTHn!W>UBi@pyr%EX7-9*c<0KzW@(4x=2-Ik^I!zwNcEZ#UhP?s+4k$ z#?LR#I3ZL5ebFMZm7z9Z$PPbPXCs*)kIY4m2D#GR#gDx<8*}2v!HW%0Ov8SocDN{D z60f1rue?-1joTfY(Ff07!s6nS)hF|#Ct|{*4h)>Ey1+Jy$+*u>G4uFu#gPNUk5wpXmgjNwTdhpC*zjRH$8BCKCu z6$^!Nzk(E9o<7hJpe$s8S*QlWs zZ8KGc-1Ai)$vY-6lc>SPcnaP9CpoERgo{0Hs~*0F!lOqw3pHd*X9=S zqVw#+^wy2)OF~fq2XDH;<)SJRdffE&Vy`R&POrx~&NJQGfG#QSV0SaWDH)I_z9dPg zP2|GmT&_;@ML1d0;=`wwMp;hMEmQfe`z)@~N@cUMU)+v{R04F7jd*^gDP!fwkX=%4 zvq;=aqf|bqNv$?plZQU;MoAt9Z`YXET^U(QbL|-eC9pnVIK}}9Y{!AXNu))U4Gk5K zdEE#=5Z=gLICu)!x#`>6CRS+DcHBtv28S*2OT&Y00tjD*FI!@ z`b$8Wl4@@@ypZ3p$0_4cOlYO%N?oF{!&D}ska2l|@g?<#B#Ca=d>rx1$hhW8*iKX6 zFK}c^>0<<7dYZ(iq#D4W>iqjA<_fEOk_T;U^hcg;n9%op1VMslyGhj=8)sz`B5*q3 zn6WKvb*ln@l({1HJVjSR;y7)w0)|KWcJ&|7fji7)-J$qeFW6<_t7xB_t!dSV`AE%X zS*YxUBd!!FfKxxiJcL~7Tey>a*DV#A5L|q4BtQhjpV15&G_E<`Sw_Pe9{iqL#1W2^ zXG|hq2d#AD@yo{Rf@fDd1hJJEvQecmf2B8-uRCXxv)vooqz*EVJE*vaPHqLW|$mm05xsSaMs)mpRquHb)*P33RH_OZz*f z5~2YpO%pNNF0rRwtMya6P?M+-kTq)^?IB@T?#W(#$uzhsMR}6%tj3>fLvLYTn@|Zz z5QY$~buFbH&e*enl>YmhD3~ppHMi8EA?bIx+p?Gb2^akox6|B4=Oa-j&yAii6Ba_) zoF-rG2vP}8FDp;|-`@~`Zuglb;`-eV*Qu;y8%o|>yN@Yz#y^^ef&FO@cwI%PcEpItO+Ef5>O^-CyNGvVV;H79%fFj-0$#v=cPLu z`ZdF5gLUWlr-WZ4fuKcowGy5S1u9nvw7>rRN@kUdR-yr#dUniG|LDAQ9AD|(a4d;dsCW#kdV*5up6U-)EnLxIJ77C_X}#jyVY;(ICb z+l}}bzX5$_!X26yB&UlrYuwUYo#H2C>0}NfMHcDHH7Tg?L~QjL=f90{t+{(V5QAgB zQ-x0ZhxZeX&ly9BOM|gDwez#~!iIbR-P?y$OMF2Xk2|-^HC_jc&!2zQ>s-5@dLyFq z-l$Z4DUU#p_(vP(_$4_Jilu_o6AS6#k_wWe=ns_rWZqZ+`X= zGzFDwAUWS^6kebSeZ%lAQkP~EB~FD--I9M6_wwm>@T?Jlrd>?kg=kX#_QHO_b@ssc z;`u)@wh%!BB`*e{0ki(6HjRz>zeJTQEqTX74y4`}%?2SvXbclBLcF8^V>IwA@V0Wa zPW$HsE~m{MyG3!tuMd2gA~|j~lkT&&a1sx)*l^Zi&iLWN8BEZzGs27j3aKXMvi;eU z<|%^5506g)xwRcAI1MT>CVUp1QxqA3*U`tW-X?%^n#$ve;&L?oJ6+G~m+{Bf2}VuT zXX5Bw!#5ap*8DK3N`o+-_yZTry0(*YFjzJoboMS~#Q~cKLatP_AHPp zc^Mf_k7uKc%4C_8PqDb3pTO!6%I2Ibf`1g5U_~Meo8b8^3zguB=lb-jX z$;g;+LS?y|`9k>UQV+U!-rjmJKwHC*VFo}2xoeO+oqh#4l8K->!T}4tPv#U z>i_fW7|$`Kbw7vf6zWN!PEfC(RnTDGUfF(HvRbJ8Hiv#4PIF9n?BzYC_bM(YHd5H_ z-Yyb+$SS}L-Jp&~+X+6WC95V6Y2%7;DEe*X0<;~EVeah|8w?)89WrOYk2 zlxPYpT|Vc_N8s;_X{%htjB9baz}^-dEPYTYn+%0gFW~|;RcME3W4K0?cu#fX%(qS= zC{-X3XiOo%CbZ5?)0ZnWE<3H#h!~JqJgFq<^!#9jkb@i=K{CEet4&$+yJY!yUWN(y zRv>izZqy5bqRi{AQ5bhRY=KuhfmIhiRaRk1-bd}5Zxc1djUuJ+UEo%lzsSyPQhf1O zJpD(_Zy;5^2s2Rn%}%wPQBZUZx)NqB#>>jo(dcQdt>s#7mdB5QlGh#Y=y-q?Xzu>g zA@epc<_f_`az`^K)-?nlyJdrp41Umc-el_gttzcMkE_DIW#wVjx=gZL=l5_6hhhD_ z8GdS;4ZdzT&e_GHQ((|81ezxgHUopXg7B(Ix&@lwa?!pMETBE^%KisGsQD7~2tugc zFl5CJC~o6XNSiutQc&@zK?rc<^T;;*$kMYArb%*!;X~FV*)fW-+~ORYRN>LRS(~Y% z1TJ|!mqG<6f<~wmI_#PJ?Ci&S>X-P z6iUiFbraT&;j-As;nZ!x`hY2Eg?eDF*6h7f{~a~H6KPZd<9SM-ZYS!*OepbC$b=yM z;n64tGM*w!rUmD0Fr#c=3Ke3SyibIwn%z{5jeb%?oGU5jNHfZ5|6&5{w-Fh48(qs# zHjTPEtD%k#a<(3k;HJcLK&sr{--V~#3|V+A=2UxGUlQW_PtH}h0}*@>AUmRl$jXO?xNL(j=G%*_i`l%1M3>)@u9urAA{Gbsv^&QD8|R%TBe z!s*~Pv=L~jei~1P%{rP2mrALqdh1E0@gTlOsnp?Y!To)by#~OM8GHZ)Iesu5<0NeBp6Dhm&{`OHiXrcNoGcUn zwysR7;8=JZJKd`yi?&|#V4PZ(83Hz#^Bp+uVGVqNJmS}hdaM0Kd!^s}n~Nt<{lWKX zW_mNUyfr6*cBc=bGwFnicRgYbfoXX!CzxYtH{{ zaU5*_Rnm2ZyXB(Se${K}Oi*eqjtVpwU2L`FmNj!UtJ**6-B2>oyPoH>nMv{X9@OqS z(acx9^Q0rshi}{4%|!+kK;$r@KuD3%@)P_~`|;x? zZpHu=3r0|`fq>lK6!KGmaTg4YR*Qv?_s>`BDw;!`kS#r7Y;t`C`>u_BaL@H|De2`& z6yE8eV9%$+`@{6vaEaWl5Z70^uzW$zi^z8OBoVn4s2}f_xeqfcBn?yW6TkB+)eYXh zT<+@SaVTr*W3gZA{0T?@vVGa+_UQ|hY|6ZvWS<->$Tf-KQ)MdPZf@)@^CINJ<4-e8 z|DPrCRV@GQU_@0E-=vQcbntnSBruH$|K@9X4eoVpd^Lf80WeKnPLzj39Lqva4)y9j#I_ z;@bVLlPwG_X=PcB;jnC3?>LaH_(w=7&bg?w7MS@y?uGYW7S zftCVHDa&C}TcFSayFf$6VJu?aD}V1C)!G>A23vsX08GK1KysUgX@v$B{p`{#1bZQ- zJD6*A+8A16o+$G!CkxI-Qb#1Lj;yvY^9IvLe4pwkIMNTO_CuP|UHZg~Cyf6?$M4VS z{}bG^Gd<#X+?r7bPTX)%u!B}~kTm)1V07x01+QZ(B~-iwh7mVOI2n9;ONp}JHo=|N)7Oa z?t?J$z1jeFc!X6LrRoFt-}I$|z3U zHYDxA!~J!QpNe&fb=)+?E_sk~6Ol6L_M_L*y`?g0VB&hD8RF1&vcZVrmLv2Il{)Z@ zSf|#79Bd%JTLM)fAaD*_=oPAaes33kep%Tsz>EMw-ww406$fDQ5>rp-^Wz&PskAff zu-#*ngajEx9K*Z5KByDoi0s_zy2k_9Iwd~#>4m3#S(>>$m;0BsR5k%0SUocia0xDLF zS(6-cHRMA_mnQKp7EEI{F=BL<&lanwS>phIp>HTkE{jjFo_%cZ4G+sC)r*Gt++2o~ zMrqPFI%n;{mlT2<=yId?w=eibHn_k9;QUclVru;3Ez`gCf8z zMM=eU>&Oi-yk8UqbTv^r0mqhIMV%x|nu z_r7MS?YRUw*)*lV5Q93{6yxvJi3z|NuG<>A=;sK{zB_cb=k0B9uVQ znGTiw{dOG`LL8*b%3PpdD_uS3!x0f1n6s6JUB^xv7GAC}%_#>drvi@-1Nu_*R(|*e z1T$9L7p3m=b$YD1G~Pb&bd)UV#k+d{b_KZjvgQTF3n}Fc4Bz-gf{ss|r7YmVedlAa zFMdd!n_>zwStP(n7?DQ1lQ$tL-UIX`yQV1=bln)8>qD&c`D-9N^s z>w{t~&lUB2q8cYEJ0ijLcpQO|W=Yn@vgL~gDx;QB)$ipFoK0O7+K(>o|2tKgu zRaCzXH)YD7rs;Atu5%dUi4H*S>EeT(Jw3=pIQ1t?Yj$Q&YPRZNJ&H?W%?oAp$Dreq z4d*Cz-H(+;l?SVzKwh$59I^4}p~vxN6Nxy@VHw$giagy&)&03lCryEPCNinYqlra` zt?#exsB)a;D$v6A%`b*zl|;hUj0GvOoLR|Si~h+r#Z{%FxqoG;ssXHSkk{Nv4RM^* zh>0gwp}`wtx|9EM;ZrxMdfX1>2)4O$>vXM=N6U4J0-igN3Y5b$UMs%sLX1~=4GjHa zfV&JHmQOn=XIG;^qJijc{6oG}y;d^4i&s4>_Rn+SPHFw%(-s_Bc3Eq+mJD;PpCgRo zCTi#5d@uTIRE2HB9u5$I_QAUyP-8BcWAE|Q=U(1B<7$>Iy9TBfi-RVrBzn(Ki7l-|oBpoa777qW(dM;PXgL{CKo;F! zegv@dW(I$_n9$=M5hocwe8);M^EuEjpw#UQxJ$<^spuD(G`8w%$@w%Ivfs@V z6G&UaJZqdy@ue5G64&a_zSRz3+rb5K;|)LO^n}UC>vfm;oV2O1=}xf~t`~e#UB^&k zu;d5ZVK8~l(E}_CWA`h?W4)Ilw_mp z$j$6ILL{Ud6ifi2ZNSAAep-M~Pg;a%jal;Oi7YlnayJ`8U!9W1Ah$1z5?%-uz(MQP zrWgkU6acq)LS-;~!p9E^g|aDPc=7Xh+Bac727}CL@vws%RjB7JQ%;WYol9>;4Rg>9RA&MGxZm4JJLxzZ`_J^0M5PC9M`*$N zttMJRSeu?{K|}j9)c-Vi8P__Oijvw?tmRwl+P#Yn_C1e&d}F z9KeZM^6*e|>n2`><0duX@0In`>KubkpD%knik(V+`|RjTD|v$2)Gf5f4M!}S4&ZA}BazJc;Ez*e^1R`a5u$=i$tkMbwo<+lQhkqgdW|Nqu zK_)F{>0aim&0{u4>=oAlei zKq&!7uQVeby;9>+gzOC7n^8%}G1(&qYy^qs7(=FdTSOiZMI^mnTREYOKE`WVC2pfr zyq&2>+l~}%HBBS_shuTKk)kIxQ^iD8;&OFHD|6%a$^Cs@rZka$^ii(>IpLIs!Z=#r ze`h|A3OJcZd4d&XS^_%;ljH$8gQkH%G9HNmXa5%zMo;9xCT1J&2&A5aR`nD7h|H=q zAh9wVTZRLeVju~p3xy0G+W?V?(F&nRO8jm7WaePpoVW-QGpX0ocmnqg%eE(@kWdzC zFgcapH1eB}yVjdOa%vI|1FQXG)YKWD)uo{8fz=*H zqG$4;Q@E)xY)_g9#{*_&XnaEkIq8PGO(C`?)RzXRypky?Z3hmvI=Po=;IE7nk1fF3 zd0o{n8UMwxtH4lhYO?vj{yzJi(SJ0u?1*3jh4pA+Ne)(Rzqwr!fu*B>V}gwG^dZuk zloKj_xEHr_RcZ=lv?cc2+D&^av@)&4ew7ri(p1)p!y8W1Whs%f&{S#qeOPMsW{xF8 z70wD^yfo1@I1@G4wL!hPCpRWjrmVWq44KcOMVcS&Fh6Htg7e~?VjCn%GmnuWVJ~2A z{=O=PG!e>o#O}I@fF<9)z+B`31yMdsr|dTRWYy;3@lS0ka!s!8A7%E+7gmh*fG=1F zl}j|IV;~KL4fIjkE+m0Q;%owCjO4mXgYN|NSYa`om#mdcW$ncd1s;niw0keka_U0( zw|ng2ehYb7t;^W8srl;Dgr z0H@j{R9%j|UDM#$agfzVqa(oEysuJh9L9#@>uBQ8cL65ZQ}OY!=!cGMqMzfg}k2mafKV#t!%F!&zU!+zfE% zMZctR9%T093j*@4x3lI+Wn#PZkC)5Qj}tw1SEk`E@{0vT^}4Y{x}bhOHYoj1X886g zBVJ+wbj+<;4spLB->gxr2@jnK`V9eKtK2GzkU}x$bHa~3iooB(%|v$>&jCjJ2s{TaR|umg{$6qY3l{TUyE`DP}m zc{%rZpypH@vegHJRRm;lV2lg=cBLEzrWg2iJ~o|KFdOKgPCA{gjd%@u=O+MW@|a8t zAKb)zY#Jjj{%A9%!l>0WmTpY`e8ed*p))i}OFz=<`-UP80X@(h@l7;Ie}i;7h-F5F zXPUVOgZUJUC`W(H13qRDgViOhW@@@=9gkCat82SsDZpn` zoN9?C!CjEcS7DuI&96I zSAbzzg|hrviHBAkIHN=lTXRG#uR61L1td7Fa()enrUJs(C93(xA`-wB0m#01Uh3Y# zxf<$c?xak~8kM7VIMK7ISr_smz$eT4t`CnSh8Qt;9$5_}zY~k7;bBW~>#fUlI$-?n zW-I|=We^~wFO%LSynJVdXsZ3ijFfvHERaV?aLy)ggv+>*AwB_sLyv2EJt4K?y=~0M z?OlB4+`6k=4^aOON(JmWdXCxe#x|ZTtTRenv5(Vms_{7e8krvPC}rHZ(HDT|7lh1Z z(>}wdV4QaRvcugo{rhRt4CF_XrBc-V%`>u=HA*UzDTcjJ#bUcc5dx-it2OBu5G*l% zD`JPEC0lk+ZCehq0>8I}Bookedf(7=vjXigHwuY0zE~U^=?F;q9_yeS?D#s^f3WuE zMqe@TSnAxe@bQzcK7lzz93DJEwOL1bh{5LR5cmw^2M`^)4VFfpx%a%XE>4bevZND` zeQY$s8;;(@Ajg9%2~?)sQUlYlSC#|R=2VaI zy~9;sKb&C532lWFzPq^G)eqIieIbb(;=yhZvpeK#2pthyPqMlv9wNQ1v%6K(_%7Lg zv#*a*)AVB0mBJs+-QAo4;&hnn<36Wnr+#jGrUdU^k~17uU15uoR@YyXR$Y8Qdd z*aQ4M90>R!L5)z6#h6diAvPrDK`b)uqOgLw`@P;qxbt&JC)bwAxlYy4cDW#JPXR>& zQ8X}r@xqr&EtkqmP^LT+d=JZ{?ense5KtK&2^0xmF@$!*!~(pD+sl@F zRd=~Ak`vyx+)ScVLgO8F4ZfRxfof!brjE{m`GZN%Je^=LX^Wsd6mI)A3;|D6VCSrX z2fw6cmfmc@u8zHerA-bKeI|qs1_6TiAuAOZEl4MRcpr0vyEu9xlyEE*WJZ6SEKHRu~2DzN|d|x_PvH5a84E6Zcro&#nW`D!46GDJB zrQqR?@&+N|4p||AXXYV~u_3SX+<>Cz4G3~rokqiVu`ZQI+$?VoeQQHq>TA}(v<7X$2Vi8yAR+NJ= z>Th}8=q6uqh?LBkex%haY!1K6Sw(eDHmtSQ=C}NIHjNUW)jTJR!o;Z=JcUu}D&|*rMQVyBa^?vg%ZD+fjpXD?)k$ zGI!89jCeBmYGHfp;G6;G-~3mU(+8oH4n6VTlE6~e zAPFtr`F;sWxOBVdQvd)|IdzE}huV)o*vd(-ajP+74`1l@5%-sX0T`5JB$&p6koigd)Fjr51) z%WmB-bwn){{C|DpbH7_mVX%P`YPUm`jnNNTlh?~gig*7CY6RGsY}U6YaR!b9G$uj+_+eoo zL>X44aGt(61Tm?>+L&dW(qB~(bohC|u@4J$)P!#mGAY0I*LmJBpO&>A85K8~eoCDC zyy!f0Q<;mxaeyW9s&F`z+a>Qtm(S~fQzC(j)~J_IhO#sq@ExuhTClYylt6`4RLxZh zJS-_k`2&&@Q$5Vi2z9e;=JL7VQhypY#g%qwLqrrpsbtK5Y6SyRcKBMSePX~`wH_N0| z)%KG65+Lm#!!!8gfm&@4R>i38g7X+4FT9(q4*(Uw_$E9pV$ORKgY!mcpGy+npRadm z1L?M5);}Vv!mIWYsBOUfK`0HX#<7ZX8u%lpY87zE-otJp(Dv#zA~d z1=i*&`x`>g-8rUrzP|gVCl3f>m0GP(J=9Nhb!{Eu3!)-~B*wDTnds;1{=i~NN4NML zHh>$T;^Jb?eVIdVu9}|ctVi0wN$1jL@0*4>YKxyd?PU4+Cx-GO{da0|bNwenlgdfD zIF`do{rf-_ev>qs_kVIJ3VdfZVbc-5jd|IcWwxh{|IFylITfPv5nJ{2+Zimhd=o9# z%S=hQ{T(2_C=&w3O-v26?XH*wT+TBK*eoC1B<~okZiY!Kv=n?6*+YBa=!{T8nr8 z0sL>3-I(4zBdDiKHI*&Slt?Dp1rze=z&BdBhlB_ZZWi_?#6w&o1bfyH5ImXRI{Vm| z{y!fSd)lE>683wDenFxGT#Kq2V{&DF#7v0% z2n0n9)i(6(vp1w3%Afep*6RxwkMOsQM*kptSM%fT!|ina{gVX6H&s42(hL+hEaVl0 z^Di(K)5pJJ@C0SIO55|(NlF*(=LOJBaMMO2y zwgbUI)dY9RkQtV@)>Wrm(Rd=ZpapDUDP-bhsMzU7p+!OLwU_}easv8^>U}xiGX(&Clqh#^bYNyQh0Cbe>c<0dx&$f`S`w`51>{F^7Qev373L-`TGA# zg^4MeSpWu!psN`gH}%8OT!H2;{3fXUStX_&C-evnpy#3y%I+wSl=E2z^ShvGo9+oO zhrE29$rx((>I%?bn15kz#`6k~mcjmMKqs)Q^p^qB!}89CpJhK5p#70_R&cYT>}C(KKFe>x+dn_=lRU?S(+x%jQMAW znr5-gx6Sav^G2k-Ehmndi{S-t3X_OXU6Y}=Mnl)@c>OT@KVe)_8lG}xxJ;QaD*Fq`k%m2IV4TPKz0Du0!0^lE6RB!sJ}fwvCjkda-Mhbr%fC;s9uQVRzNMQFUHM{PCu76bwEb8+1}?T zU+Y4h)2VT*b6}S>dY4l$n+1cZx7<~~f0|d4FFks7J={{v((W_*N^M7tS_KX5uF<~q zH-je9duOMA5llLi*j0~9N!Nn1Zr?CFi~>y0H^MLauAvLay0c^aE*Ls|eS5FBRBINj z%Wh4&aT%_bqK&igJ>H1A*WB}QV#H0Smo<{18cRS==UF3to=1r5ov;o~D~W|T6$YjX zE$wm(N{)nP*Vj2426yH2FuBMlC3qu`O%J?uK`_=R9tHIW1rhH9wDvtV{kQDk>H;2HX-k)_Dmdc zccVBlRzV>US5;l49+o*PSSRvz!Y;MQya6Zj^|ccvF^CY^Z6wQDAxwHEQlnDT>Ml1< zG}Ppq=ikL>(z7mZtsrW@TN1*Pj45pi?Ubet3vIENeQxZF3**QqsA ze2!^aHGvo&CVro2yo1@RT+5jov*zIdTa&T6XrS-K9aQDcQl#_^Zdv_n54##d->KUv zX&saHrKVXuolNrS{zKN(E&z@r68UJ(OrZ5s>*Nn@$v?AIXk0bL58)xH|6IA1v-{1W z1ghthw@f2Tb+=pe0N!lxYOR553Ymv<0BNHek7=f8={&V--UI`7j_lmIL~9jLSe|~WYZ(F#%4PxUDh0GM8*u#szx5Jp@f_Ty>r1hQ z%JQrpPA0uAGDZ#YVjV-RykK!UX+@YWHS$V*a(%eQ7^hf*HY;j}7%Ncxfvb=)-y8cQ zQS`M8wlT|Pp!NDGbKX8?hRK39#6TWXe~GP(?Z%^3ge)@BRM&|=h$XWit zsNvDZ@H8|l`I9S}b;JvjJb7V@xBCpaH4cb~k&1}qG$c|Ql8J!zCry6I_D1;7@k;TY zrdAZx|KX7mYQJC!%RVRh4I#IVZY-TI4Iw*+T_v85;^k##oJ4)n1EEz`EwaC|>ZNRyjuT*H`Kiy?d01((}}(4jKI-n^E?LLCa~2=8WV z;#xlH5e7+zN<0aH0U64hP&b;Nap(-!CF}yv0~ih?H2V2_-F^Mo_u*^4*}ciq&fRG2Rx|0zJgKHa)EMRSwO`L#ale1%`7K@9 z4?r%VTojV3i8s%~X;cZipb645y}rY$av0lsriRnA;RRE|ytlOy{XlRjwt4bfpqvI7 z;~j037xgSjYAy4iFvK&arNDs@S|E9Uj<~SEZZ*7ahC|JdDyiL09%-~Ig&?G<)|D^* z)4sE{|8?sJC}ML#>3@03ze}~|$+bC9$vZU^0OtQrXk6*+IR1;b0&WZkC2?n&k8VxF zs^~_jH-WsPfO`L#d&nkYZE@LQh~FMQ4qZCiyT|!=Y8BcRz*fCqP9})CbK>{lDg|h( z;l8y;OSmZLlej9f;|u;(aD;z9ICweuB3=B|s@ViPWTQlx#22itvj?ncVP7SIJ!PLy zWQkDx`pEb6+}r7C#gYHcp8U6Em?c-lf32ms-Ch>GD?trv(Ni}x@nB>2(uh*DROq*- z;Fjt&Wd%2ro`=glZQ@+)L|m$@jDeAEF}Iam@$uw=b`stXXJ}cr;gc!)Wk`L4P_){9 zM_sq7erE|D-n3Htd;w%Dc}p3h(e8@jzX0cZyaz3tx?=&Pi3lZ)TC~iJTRJidiE${r ze-b=I#$wHMsZ}>LY$&11b5pS-j_9I@W{lY;(l}7Bg$Q8VQ7%^6idW7Mn=3;S6KJ7p zXo6*`=DGca|FU8O<^b6yP+!H%pVQ&9#T(NVgumze_no8T1OfZYO`N!HQeo;#ku?va zQsrZBU#aiU`NZuJVDw#GxU(RRb3Ts0e_zd?j=kbm)Us1hnBwVwx;&9~bxCV3n(+rZ zpCN+?cy_Yq5%9}<$E)RiKL@?`IJIydpH;>L?QzU4dcU1;0bIQ?^fq6&hKesN&+C!x zxzmuR_!jSR_y8t?dy^{m6CB9NJ9AoH9zPv6ur^IPkb9Ps60M0P@ZM>8lkoGIZn?Gi zF9=}jb3>yR7g(Vt*IyzACw1%g!pnaF+P*&o0e36bPc# zTEH$T^dK*JrOtKwu5>BT-AyPBc+PC2m>uzJxV+b{wgIrVTYA0W29?g!dzcwxV4kd| zo1C$xdB_4IiTSsmwzjwTn-{0bwuO{hu(?k3mX?b&L&z#F2vFTDut?OnFWXQ={ z>z}j*Ft6v5=XkDTpqtgLAG@P6P%0lL$ZOb&J-}E2ye{VR@UJzAuZP{|t`nxY7YlxQ ztO<}^nYqNo`$KIDJBfWhu7>N1Jx!Z|DDFB6i7T#6kk@|Q1ojmYqDqg=XvA-}3|w3B zZ^7RMlEH@2FG5m^EYomdAzv*s<-i92urz<;NE`_2 zGT?Svn6wg95G&6!jR2F5+9uAgYT<&J)5!9NEifm!3=CT&#ekR4{?)`84^(8874C(c z#Kv{M$Ym^}lsX~!q1m+*w`h4KG3^#j3_J|HtMAq%JMQs@{-q;`%cG=T*M=dBzFRKo zFNAo}77p59dxj8wJE=KY_2_!x9){KiYXE)i>g?y1y*j<-u8Zt5{xSwsgA((zyQ@Jv z`0OTYt0zvi?)Et+R_iR2P0;hi2q+#FAkh?P2gl>%kg@&nrsM@k@qi9ECaoiXtGbOv zy+OFMO7T)t@)*+8eu=~T0v#JZ7pWaXZ@vjPcRyJ1NdJ^z#+J$*juo;E0(LH{9H1XY zJ>`33ineV7E3nRxiveAV$J;pVOS{iDR4*($r{-zOG1;}nNUGp>*a(p73-i0DbB^=6hL5&*WJk|2#WjUYeNy;{ly3PO=!uUe8N?Bx@=@(gXgDQ0>-CUU1+*!5a95|eA`zm zBwN@8wYTIC9!L1xvFh$MAND%uZrfaJ^KZoR(P$XP+cbfNz7^JT!^`$$6IWyr%nQcL zH0Cw^r-2B9S{33_5JI?(cnBqe+{MsW$qUbg z3+uAS+*T%RO~VX4PNHiWC;+w6Ul%+1gsg=E>vJ>f*UI7>XxW~=O~;o0LZ8zb_6RcW zg}eu~z*5!FNsnh=!(yhm%_Q;w5Rqkt;vVCXu^oh}f1daHR}g)(GY5Xq`#vzd(JU&3 ziHLRB`*nIv9rJ~Mq}IDlg`;(6h9+Fd2EPBpO<`LnA@MoX?G; zEzmqdj8hkkr`ybEq2*ZDYD~WvgIUh4Y^L$%ys<+3Wc_Rcz#1~KV7=Hrs2$-*pEeiV zVHBs~9%G@6BJcNA0xP}tTpVG}j6d!@7R$er;g@J6j-iSb8Xm5O>^rwf^%)Y{m?veq z@lh`01-TUKfrhPvlQRNV6SowY?4Im>$EH9Yq7_|teYs{5bK>n)xS@X#;Lg}d_PVxh zL;&HA+ARyyaY3K>Nt2H2y`A&Sl!8L}h5zZiXA+ zFNy+g>4y*MI)Ijxy>|6^ih$|gD!&9@Hqw3TS{SzzsroN}j{6m>dgy$eLEPderjZ6n zhuLAveGV}Gv~kUX4jvnRLn0)x%lxwsqb7g0P$qBXAOj2?$=cxoH{}_UxMws)R4OXx zIQ)?I3w&ry`{5v+d?OzI@;;sug@|A8r4}XF(yN!(a+d};>lYiP;*muYgg;i{ilA^h zzl@wLobXa!1{ZH{g{^Lmp5%Rcv-4rYoud}Lu@LrqmR7?jUaYag<4hrInY?hmS!2x1 zsZjbq-$Ztn^9g_6GeZ4(W%36Lp9(b!dwFA}ZHT)BqOmgb9z%zonc+qy z2m=PCl7xc2^C!~*$Dw0TgR5zwNUqJL0sK3>fD^V=A}sIlDSL?hd6CH?teuD}6KbJS zxe_WNv+Bl&HJT@R+>k@#qiMyVYV+ITyaHMcDzB1AQa`~nE=pWRr*d1aHYGb!yU8Sx z?2AN>1Wjg+EYoIJXV=ZA?Ge3{6XzQZfS8O}GH&(MPRU<9T@vmXe$$seUVQ6M3aHO3 z2d0MEgck+}wW55f*||S)c)e#tlWagH?ee7wN$`YP9ddek-AP?NA=D{e+~l{hKa|~d z&By~w^!WPPX=lMtTSlhY2xo8FWP?v^c(Zjp;4R(?M=0T3j zbxeQG1nqZs;({~$8*7lKQB%(J+lzYB3Dc30!S_KMSlXUC_KP?cn7=_PboX6Z%RJ*y zVpJzsTrlqIu6*}E!P*Gt%7@_Xxk-?o=7z4zXA{wzPQ%pP03m0@kJe))ACQ!atn82T za(92kO&9(*l(T@Y`xFV+;@Kra@s6k-F~W;|!)r~+-@L-xtEAvUJHQAJ*k(@)hy!Ea zk0@`}=aFTZoeJ2EDJ}a9rW}p!X$1bg?9kMYpi_z1s8RWIm@t*beAJJnvQc1+f7r#xOjkeW3C>@tM=17=K0|5<>!NNgP{z z{LpoW56Ad!38!N<@Jw@v3me_;x+Y|&!UEiL$uF;kUY;Fi|343zM5NT;P%=v8~-aGxk=-V2_LzY9TO?jkDA^+j&*$& zJr4hC1mG5l@lk&*?@a%_>k%XGh5dLrncuj7i!jda^5VO^()n7vW+f+wT8G;50||i^ zC(K!{g{eA_V4BVzXb*}t8fca0>q&d!^%aWOf=|Ez@Pq5ADG?|AIJ2!~9wn-0+2v{t z7DNo28D{Yb>gCTZ>zC!a2lq`rq;z7gy$svebqhC42b_L<>eD8Y3#DtkCni8rJ+%`g z#ktT%7U=7Y4(E3tyLZ1PKWlACdE7DIjI<&Ueb~_O>uwb>@TCHqj}=krO&a#PtxeLx z*I%0ewG8NlLU^QQ1ig_|0Za^OfUho`7$Gk^-+ziH8A&*P-=S{^-@_Ppf zxTgzmUgg3!=5{&41q}2E!)avEcXCe@`3zYJTT~WgQrzU9Ngk{c%2j03MB$|2meEso zI**m;+H=z~aNS9?O`ep@eSrpZiIWQt)I^E^L&H1zJF95O1e7MxW_(HRI1&&8)*6k> z5GIcnd;12vv&2021Tb&b4#%3qt);Ci^B*NHn>{IsS#)~fXQw5|#8gqi{SIB1u}_B% zRCv2t6cw0W_^;{d_}U@Ih*b6vZGiUzL?>ab;dkur^VC{;BbdT(irvvRK?k|Nv=Fuc z>rQ*onl&n!X6IiMF`fu+SbT;?EO6;Zo4vt7^&#*7)MyvCjRhz+|V zrrcN+yw%vM7$u6~RENahS~*NxekV{^6qDy#q~k_{qx0D-Ts}F6c)?ty$);Jg2#40@ zJlAm*no5*T9|+_OS;jKTM=u6B(^NBnT6fg_)hzcuJEp&CVa@pr0N-zoHggLje!{de^OA!M+;lluz1667##%S|hIM%+)b#9A! z_T3jO3Y$})W^8fk2>XKGWWV2Gc`|_YE!|D=8LKMM5%o zNh;e}4W{>${fTvtxf?G$-Bt)yh2$bf{uEbzK#(M!WH+4;dE2&T60i6LpyC-Yzp*jF z)KrES9DffYA`3t}F_X!!(U8u6$p+%>K;=Hxf66+q{;JlDcNdLh-RJOr>u{+<+4oIe zbbaE+O5S7ZY10`9{b%&%do4JNaX$5sUg_Lm=P$0zNC5n|uxlay}A5 zsa+TH7q3qa!}5y|V&glpNwo=au2E8*YuiCj;42EBkLI2Lufm*9$%w3GdPV57Bl)@$ zL$ZW5@@!xLM5(#gCHv z`FeEK@o6)Ud8a{+b9jSP4B59yk_g{VE@-I`0Ll)KkCz|r_a4!waK}_C#i#Tswhdg~ znh$%USIH(9nT{D{2eXUfxFs}^t?)+uS=zvOwU@2T!24r51R-_@lD1g>inMTE^pRF` z`yY4`fYPmW=VLl@SmyOwhH#7Dk>d(J>`(fGpKbLZjNQ};S8EDNs`$#2Ba7P5l`>SrQdRcLUBKAj zzrPLrSaX-j2hg+uhJmf7na?a9&#yf@h6ZyT@pg84<2s+l!hk^;wN{KIL3lc`1&yO{ z`)n|fLZR`H{yDA~g_K61^~U4f5U&MdyZ}H8c`-ITp9=9<;0xr&+0%3KX9ny>C|Mq^ zyeDqGM%YkTsJX6kS*TZO$q<^9b8&MvF4o$y2bxfm)XP{buZt#u!o~NE+qQc{^>;OLGQTNi) z?$)!BDZ7kebM2}EIVKO#o1Rtnw_*0B4LiU!ei5`UnxVETi%57dQwfHeG7Dj1a8a`M zVVH=L>?NmyuyFDltMI;Ual}YYnuwf-!SeLs=R8?c92$(2y#hMB?r%)91dt~L18LV7 zQ9uRlV87kT8IdQk9^>gCn*rFFiWGm(h8th1X^@-fMuP+0lOe9*hw2;iRH5}g7vb?7 z$fU5}7U`ZaG71PCDAY_BBNfn^=V8ui?iNvL=s5DHAuenM`sJD?rjJ&;C9u4K8cGz5 z;4|=?TFVsDXS&N~cp?6TXXJsz{EKw4a^a|Gf+l2!PEO&pp*FK<@&ZIJg-vc>jH6zH zDh3m6TFG0rv%fQovbWg5IU+b351HNL@JPPbLs`*_c$SI5j|Gz6eXSqy9>FJMOm4-+kNcjz{Nyp=Ky*n{pWZ`7?^HXdjdkteWZPj5r(P zvSi|kT3}(huK%HB5s(aA3U@uuAvF0)iOiMZh^TEfaoTZNAp!1qMKbR-&1LJ^fx5Mu zEoj9t*W*k}wGY;Y$<1VibBU$!Z;K57wQjL#k=p_F+&525n*^&%$Jnt8Y(CZ7*QUnw zIN#E-Uk=NO^5yJzPHD5Gg-d+_j^X7I@hrK^dFG%7>^kOSEPsllXOtu71Hx$YZ zRxQbCN9zUsjRUj*>Ii{i6uuT76X8_&nu&iktxlRheCNt-+JGX5{Zc)v-eE3H~e z=hN=LqdqHOZi3ehMxWidF`F4DOWtpm^4Iz*3dJ!9&3h#8@v(ys*p#8h-C|5P!@I*l z5glmUZw`P#bk)1@IMN0#@0i$x5A%Bgs%g~EEuW($Vi0F%w#>vqIlP#R+=_nl34aPD{K+4tRf*O`6H2W@aP zJU{26bt`QyM`^nmD{iZjHm-f0gdn;VtNEe@Sp>gN;En@pjS^I;C-Vf^VeKmPNCAIB z!8mpTSWF6l;Xj-bTa|I#skg3K{fWm$-I~yM@%{#~15oqBF|9q(yg&lkk#!~<3jkB8 zRZ_$#CK=6S7SFQ4edAeYC2&JA;o<+;33}jMho(qnn>&D&sM+`JXPAXd7y02 zMMyn6IE!WsB*__1F*po7aLj1h7&nFeZ*q!@CK%fzN2e=2jKc&@Lr8h+>grA*csG@OfGK|arFqdaEG`oZV#p5 z5tY(@2agiP6T%t-O#2Th0#1D(5{e7%Pc!5<>UW@9zgt?H>y$SMI?MkcO(v68R0K+6 zi}#3a1HGdU6FfAWCFXCmuL8bqQLUu8?k77v$y#iXe5o~PjtSS&@G@;101&W#1@b5l zx4~XFI;!vqkZF;bbr`gx!M~37-iFd$z7URQc}7;I!MYAO4!`h)tPl+Jcv0Lq)iJuv zAf(I-gHzfEjNwm1|LZ0Sk1XfvwS%^uZ0>UvEXzWkJkQ(n7Dv(~A;hLk;-kv6)QZ z+al$KHymn+Z3HF|XKGj&3c8>UMB-;7O)q|{zjEk~cMLJxTNida`dCBy`nK}0)eG@@ zHAtSTD{P=2L$rhbwNVst`f3R?S88R{`2b`_bm7Z7r%Lwri ziK=(~4ROnwFE{tD$gAg~lGbAG3d>DJ{^J{Ye;9$`;ICaB;8{mcB$c>GoXM<6ZB*DV zVuG)s|J8{q=(YQhf-Zor9uUr-gn3N3#4c3@nvOty%B@d_X-g7OiudSLES{Nuib$+w z3Vab3tKB^gOi6~g1n8tSR0c^#0sRFP>D}#CWB-^)f^PBN;)vR!!=3|_^~GJC*Xt|VUPimxD~Fo z#++_UYhya{>O40n#T7>*I|HMDJ~x?W%I$_G-dYgQmf%JY0k|-Uq+93%A1`p2d~t5$ zC593byib_@Dx%GjWH@u|l^Z5`Q3>P3o6b~EkOrgx7mYb~JM2=jrA>@GCoQ$mnazWk z%ljKQ(U2`ZDeuYU3>YOB9duasLO_Tna7Oe*~!nWREsE4v~b=ZrsliX1EO%Q z6!*F_gy*YC08_9xRajHYB)3*p9syH~3a1GSI3@wU%BLBUxvK4!JP3FLrknzej2D3Z zC*)eQ)-G^g8Uq7ijHL*rM&#Je8a{2cocA&h1FwBo;jTifTp=j4Ye(yP{P~(GwFl$+ zKL-n61))3N7&`Qur;;cfs-lWUb1tHIpL;mQ9AGCxoZGyd8 z|G5CYZGw;u0f^>6M1~E-;mbS5%fUb>cOMh{&1Z9#ODin%=gU@qb08r-%4-zd7Y)Y; zgzk@3f_m^){CKK)IzQL#Uxrfu>`FYhUrIwMN%Bo_Rc1`&nv(ne-G*Z)MG6F z$EAmz>woz^Z2myZaX1ivAm%qeT*HuoT@=S)azPYQj>2v-E=}j;0=WomzD9wbft3VZ zrTS$@T*9A2K+$8nlN=5in=FQb-2qx-mA4yQ4s7dwL~9h@TL;GrAO3Cw`kmn55rxb< za2=~GR&7G(0dhG$B+BWN8Y<*BA@JJ}*T9Oev=&LI`#~kHS+kMG zbk78RZ=Xv)XF7Ct8V_;>(PigydwIAy{6Xnj-Pd%uSx`uy%i;t9yZVGy2-;4eDJe-^ z$@M0%d{R{dZ|QGbif9l(&^XNAD5en9>5HASRTlm}mpjN!45&cp~eF@3UY+fYS zCrWOZtk-<$Wvo_y+`q8$a~)CFhI6^K_hvvOf78^unu6F6xy`B<9OOZvkheLJ?*-{f zIj4bd37_uLEkXjooIx#IMc@rBEvoF{t*r1mgE#tg!o(Vnl4$*t$x*P=V8S)0+R>`+ zeWV0{-+}kvZ}^HeM{7<#5hO+(6AiEby~jSZ7y3Dzl%M9^flM`Fq$okh1yCQx30=+F z$|KtyF=oIl>ZdI3QgU3VOwTGhgB`}x9m0e%8GxprLeT(p$M80l{^1|e30Vpf;1=5l z2jF#qyz>~xzQp}<0$aOF6;?vzl9cJusf)j&zJ&4-nTMf}ENYnuM=*2omyIN@Sv$&R zre;?%Z(c^KP?7I!hRnUMxOLi%TxnjyqV<3drjWFJ9h#VEEExa;Emo|N({@24-H=rZ zCM{@(-kSo{f^s%f0VMKe;1zz^BB<5P$!AJYH3c*Qtz(=aZ~Rj8WHr?^V?wQ3MTbNn z>l2@*4E|@CtwH{hSiZ3owJCKiL>*1o7Y79DxQ~|sy8`unZYzW(jsjl0<5;4k>Ksz3 zw`eTRz;mVD!ejrJ%~EoxJZmwbhc8wnXgE;h=42JnU;oej3H1)jCV@b_Mv92*#xKHI z0-!$h{5`>$32z~%hGsVWx>q`(gs6n|ON5QJYBlD{4iP`&UlJ>HuI93emyCSX2kLCmhetVfYDe)p06Fib68*S-y|AyiPxpEm- zfkzL(c;F$8WzZ)$>{LkmLfm9vmj?#XrGSt?YpK0C7XzDL))5DMQE``Nt;G$CDm14n z`=fS(!_-H_QY*JPQ4gxy`L)h2fbF$$qD@w)5}j^*m-KGB&RR+9XbU~5E7{zX_s>_9 zN@{F9hHOJD+d;L9f6h8ur{(+ut@{T%nK}o+7sI1El@;Wh6D7^wmB;2&5S{mePnk}q z0LPkclwS!iQ(jByQtk*ZOE?!*L9ntCOSm>AKFg~Tl?X{tq$mgoW%mLumR{%?+UJK~l|T~1S?$EfGJr!U zGpS}-i>r$a-=2+6-NacG*R2+XIWHL)+~|f_keY2@@qI&iR(Jw>aX%Jk3pDynn3a~P z@uTY3y;vlKv8p=g_84QL$fJWkMcDUU=Z&18Qf00yqsegmBiyO27}oP*ZjqKi1VWY# z9oKQSKXEFiM_#ueUb6b<9mOFkh=5Gyl3qxfq2yc1-7O|uVRj&5rWQgG=R8#VBAT|{ z7I%CGeY{RCS4B4FgRfdT=m*Ai4!d~U^$JF@tX2a|@#)qX9gIxZGkduQA~MwLxi^X6 zZRckYZHJze<;>s5!e#0iQG9c{!H~>biFzNLlWC*HB>paj(I{iL@j^gMvw$7>;Q6BR zQbz8lmvgc}yEakk`9C=w**n0U`IC47|D>-wtnLH{L<)oRi4AzgOa=olB?1&0CKU<| z@Xe0SnMu|a|9WQ^iuD#xPA{uz5P#VO4%x(@9>mf-Ol&G((3W(_PHycSMMgUy;=Xx0 z{weNYZ2u$fh$=JhWYL>LD+5S``F^jx;RGYTQ#{%{jxJqBN%ri1!9M>;Vp<+qT4Rq} z1F1N)#6JOv)fMyTn7N2hfx#UKR4TmW(vHOHjnoiHS@cytHsML(qdfnfnbj?3<(+4f zXGXnR*Ej1X#hrnXEbOXIK0W-qOIEx;Z&RbLOVESIp%bG`OVM@d*T~aRopFtk>ZCya zFkXdYmopR=Ybmb29pF~@b^?9ji6}+YIw$VMjwN%S-|$$^%em0k6I=~=A-KGOW&Q6k z_Fod@4`k?nmnPVHu^Y{|T|L5JZ;qknSktgvr19s(P&?pqcZfJErK|{BZp+ao5NvO= zN828h5y<6*SL%0bQqe&UbXJ2zq4#{aZVo&rKL$qAM#r3#*Fg=Nx6!@&sJDL2 zE~(g}Y~f|d&2w1Dh^Cfi5H!}h(>FFCv#BT^p%^_0pri&+um`t4*kIVOXok?0jp%og zV$zx=MY*g&_Zc-ZJCbXy(hA-sr2M0#SZw^z-r^Clw;KG%`GJo!)c_v1&4u5wYwcfv z^~k+r9$GN7-mwHQ9hNfVOVEe$Lbr{4;~74H>6c+A!@o=-HXoKo3oxpm4XIxe=9<@{ zR%FzC(=-oWrZYQ$lGn;vVx@wDmtbbx$* zaDH=T^I2f@FqqJv4A7G@^;?bIas>t@~AMS3f*B5s^^5wdzsiLa0 zA>@#<-z(6v43KMKtn|^<)P$Yp!Ku}MRkIOxTIutuRR6m0hL{vCzgac7TsTyVv~MJ~ zW6$z(^ZU$;q5!+CWJH`L2TLcCz_}R0dy19|RN0aY!x{b9Yd2ckYsyAQk*JcWc$nM} z6|9;#~Q%~a0 zYNu0%V1i9T_bl1_Eozd22$#v~5Yr|7m_ui`YI(h4=hc8-I;;FPLs`$#WiBq2K!8_^ zUr@e<0Ei^hTqM>qkG7Sh1)~eKt4}u)A@E&bIIG%^-{X?N?QAyIL-J0pBu(2V1d%jx1KB?-~0k~%kKF5Z4y_(PfNTm8LJ?bvXQnH0S z=ChJA*>NXF14^AN3=>v;` zVc8efc$rWu(SFTCR8mLH^Eq1=Xck)%*SK|t;cYkgW^_QVI)bqjF;(`Ma_w*lA6E(< zK(aA6IOd&rgzM?ydAZqLxt>PQoFW-nx_Iye!?z48A~OYLa38yl*m{h=2`1CFsh?j( zbME(}s{(O(WXnSHUe%Zz65RaBIl~cr<{e0(CiN@T1&5V!aaT~KqQOUtRDvh46IW+o zkw_#ll|QhN8Tm5B)v!&b;7tKe-)y4>K&qu*Em1KF8t21XcxFkSq=FnPdi}ul=-=P^ zK?9xlN9pqb`{ZJcjlXCiNv)!H#lss?(c`ELR(_9v?jIO36drs%M`sX@MTMTwE=eOh z+dPyUII=rBfBZF+`r+!=d6mNbPVqJz)K`%doX=4F0W34Nmx^u4Sl-A8^x$63fS`p1 zDjFva6~#=)cWWl-?2vcHsU?lX223N3VE+esAg~g<1gg54t9$ZZY3PNl!KFV`20Z~xPIfE$RkAh*Lx|O?$1vq9= z2dS@8G+Ps`A-)KD_wX{V}cUm#=A-5nVDlVO|H4* zJlhU?uA+YjESZVd$lsrrQ(Ib^Ats5 zUv905G0d&T7>fekabAvW?-FM~4^6Gvr$@1MG^2O0)pFP& zp7PZ6{y0`IM3N{!U_8?t*0toKAzBbp!jvL28sG|ZGO!dj*P&5`luA+FH&1#0ul|}0 z-agDyQsL`Ab48&Wd`tt5?LvdaI3`()w&jtu$zicozGU8*>e6u;06#^euC!z{e9S2I zgfP7XRbB!X(yY}I(WB?T+fRCuI-Fb$;FdB1s>se`fT}HZ7WID^JV(Cs?95DfsL@G{ z@qK6&IpCqzv^1heyhe9!1>?$WA)atMaO(E8B@n3G(SG!{UYtTNajLu475!0^^-T3w zq}fg<<;>%&9E2f30MUQWJE0rpuX=aeIdV(fCJpM8zns^jss{ZfZ_Mo7YIY`mA7j;W zO0>k~1S+96*0G3mlSao*?;20%4*~qczD)}J74+^-1h-N_oRrPtf0h`;!u=jM1M775 z32nocQ(5nJX$BoKNrz`d=t3j_4=1tspL0W>bB5kC=-BBwVxAw8=JyyB@?O``dXGc> z9>N%}!Kgzta7M{1*!;zso7Ls;X*!n~W*qne+DQDFl-L+rJHlTvNhS*)_8_MS-ylNl z25( z=3@<<%~=bvY&v;-nq9a+pS;-`MU_yc;sv6;9C|rlfd(u&%`=sc4DGj|E~9&w`@(Vhv;XrZNZwPf61|ma{pjKCMUp1X-3P?MB;a+{>ZQxSU>au9$h4`2HA%O7ap-c zF1p=J+x`p&EzCDGuZ69^uj-d zKl*HjbY5KCS#afIItYku22l)A`4!(7U-n7?waCIRt#!{$?bb7>nKz0VF&qC`i;-{d zmu|eHQ4oUkR1+)(G>^~N>0Z_{mZeDG>6AF4hd18W1uK)%J{?*3&$9bV z1Sx<20fQX*Gg9>&t;|6_1}?@{^lk*;_2le&(=`@x+OI{B!o8rH z+s?f_@Hye_Nj$OX_0);~MH&wnT1ZUJ`~5NI^LE~>0}MsM)egAq_Ai4`sdXmB^WtQX zP`S2>c1u3u9iRRLrd3AGk1%j8M_Sg8^1p-Z=l4?r8R?koXv+fV+0VxPA!~W0hb>Y+dq`3MXh<42#-MoNK?IS>n0YeY z=IwiXw11mWC=mfGGxCJD*J14QXzfv%)52}XNQVKG2|J=-e00G}(nOv@!AmZ&U*0po z2lE!Y;O7L#Gx7vxf0dTkmHZwZo4L=)&NATVjrw{|L8se~E3C2oON$Tb;v%zZO_VgERh#eXeZAoA_?ziq5)rh~5a8}BA;ad1 zOu+FDHch3ugDr0mN^#S=joNBdbYAZvN!kLyOgb?AAD$@|INBeOSlbfW1Z80yCw=Oo zG56!x#gyZu_%mq3U(gJfi^)Zh7Y?~Z@Rtq)TaLHjP9qPr2Bfv`z!#&~O#P`xak+G; zT1PP^aZxnuAcnMH%yR|C2OP01#fWOPMVy-WFZd z(n@=^Mrnk0NaDGD7}*j0Vthe3@x$1#+)A*5{W`Mb`p6&f4#jw7uq?c=f1X^e#aq{8 z+AF@gbH03U2T!5j{vOV2>TQ)d_zSI=ys^W+)NMbI^{1hx(4wYEGP-sL^+IJpH*=qH zcO(0@pA2C*M~){9sHfX{l188{EGmVBTj}30b)?rf^96iy3$BKs{ij-dzY~1_O@8tO8M*r$40@J9W(9F~K_lI%Dc-U#Inf{->z zOSM_I-))k=Xy7#abV;r5ftq^(y9Imdjen{0L7sb{GE42LYWIdd!Z5ZQ`4}4(GuA-o47>YbRlURyP8IVd27MAn z>M*$x3@x(E)eJ5Y@YGg-7{-^!PwW@<#5I|uK+?N?I4$ePZrNNCgi!GV;O3i%ylaeg zw|K07QxRRWd2o4Y5YdkraQZ(SZQ(8cjpAEHWhsgtZa*+4%aW{^eSU2q9b{@oP!aod zlwCEp;cg+y?Ql?&;gQsC4a)iFeMv%QcAEmZ@QBs%W?j7zYGtHs!1|=&_!z9$dR4Qv z=AfRO6QweAHZmdI$ZBnq{%ps;$I03>mosllQvS5C6!=M@9YykQw_msZ%_39EV=l zHlqxhC=Q6yW5YFY&*ZVy-Zhst^;f@uR91CUM5i<7N}c54g6b_O+_AaSxsOFs2?hIN zy@On)z^DF*9d~Wf)LM5p+a^_hD{a>ED<%Tf{&$7W;)CuaAib{#>N}6}&%!U45NPO@ z?f7VdB!Q5;95Hm?+*Cw$M1ikDAlAnBL@WQ)xn$=f(sLNeV#qhwCyLq^R|zi=m8*>G zhPTopd~r~@1s8eQLe@X>yl3dqf^FMQPgnVMV0UAvTR* zYk6&Lk91>1PiypurB&;|ukXeBEE!r=1i!nMVN>_^Ngk!@y%qDKJ_3wYFACv_>Qz>9 z#oQ@!IUZd&VkcltFT+8~phhi?5%}eN6}32MXyQk97BP|mL)d!A-CyrlPod|rd18m# zr0nD48i+w}y81v};I4fY@8pnc^}%_95+Yj_dx;>^E*N7?%BVsOBqv4BQr2vkwTt0Y z-gZ$e`7ZMl+N7(NC>*)ZUA4i@o>KWU@kJO+^Ccx3>09K*D_K_0TdHQu1k#(-Zc0w9 zG4}?kGPkFIU&^!Sn!4__>~qj-Vw6o$f=c;MeH6Z+ktfkQwzLUooeiuaLK%dfE8!@Z z^o$+TQVcqM>w`b#Qf=_ESNSf(oT?Cn3rcu7S4)Z;UdtUxtplUKWRHp#tlQ`&;PwF- z>qk0P<^3!a(k1Ilk~^0HQmV&VSr7whIw7pbFq;dYUphC?oxh>}v5N|;+aY8sYEuh47ak1 zd#5#b>&cI_tK}rBi}$*P)XizhFD)VB%9fP)j67m*SjO8wJWXAm#}vX@ zYAOIoiE}9{De6-Xd}NzN>lNjeT(%b?HEqge7+KQtA}7)lw2B%_jJXJ=kBqn3!sg1l zP~^#kZqL2|Q)6iDKyBp9WmGNWD*;}j^+XASGPOac5Qs4ZF60tD#>lH(N|@Gel1X08 zvM8;>(KaC(!;HXvu7Yvi-as$kQ<9hx{hfr80W+%ge3ZK>dUR03 zPG6cLskhU(Ca$?MwRSr-g80&9abxOVh^1rJlI+ErVdXxxZt&;ke;8j8DnBb0p z1um!LKeXmtCbGiybIP3fh&H4%6)QMzlXg*0Jv+-EML}U`zB5FZ(E0j(^qREt*xNtVp`xzqKgaJBYZyN=Pc4DPs%=GOG;#ng# z;0|(6YZJS_G~B-ZH5m)>JQrr)-JSyh$@A~gBd^<;A3$7P$O%a9Y`FdRfxn>i%}Z)%{o>{<@TUB_-x11*=mQ1FLieQ>BSZ? zvK!gmRu@*mNmwv5$5`Z67%5dgJEG2IPxTz~h^$ajhHwlnuEICg%bV@EN^Xm_<`+VQQ;gy&|9~| zVIs;PYe1;Pn%tG%ZzKcQ2)q>lj~>_9u!t%#UJVBww}^EL8-@r^zD5M^KXa3oW^-|_ zb`EHdXiKOA<^V*U*r-#v9W$8^VDCh7!+Zc%|4R}fMU3UgWMxfAo!c$}*ALw*hl72& ziU>;F6<8H}pNIqeQclvFlOIh{tz_m_sMdm6bK)UFPIs3T zRYH$sM>*t+_ddZaDCM{ue0#p(uC8KqXeC0cp~ZUcv)(mr0^dL*o0z~$!?3OW3Pt^} z1ZGm1*N-ezY4BXg5=d$%!2hn+jKxPI;f4C2DA<_(PZa;FV*gJR{erN6uK9;L1y@Wx zGHnID5mj%JUV20^vh320y@Sg~jSq0istQtMLKh!}y;SA$oB!3bH=^yY`xIA)9S zj!=BFTPhERaR?$LsC0IPU+xM#z2t^0Fz%sn_QtseM;t_t+eA z;(vJ=^LPR8PxGb!ClVm`|D(M7|1l}@_aWhHqhnP=fN){!dca z|0_7*;{0FV*Jb*Iy$Taz$TRQHPZB+{Qm3j02^IHGZ5+PN5=EI*TXZOJ#lp8G5k<0s zxT3;ZnczEoWWVnCJWHh&0(49OQvbJy5F(g^k>AJ~T#rD~vz*O#_0FRYD623|XkVW- z%s5ObA5m65>O7^LVbiNCJ)l@kx&1FpN^#U?RZ<4orOUag{gk-08(s|qe+_?s2byb7 zyWPH6?RebrTGSLQ7C-(@eRgJ}CXRB7i+0t^#JvQ0?5c zrBE~bOhq&|6QgcG{A~8$;jWwF#qjgL8iPY61EA(#sbv21Zx8DwcrVQu(x~8k3S560 zq)j9mfAdmh~;Mh`N-g=pex7gBrQmsd@@Ba-0si?Swvb1`l0Ihj35+qL*q`Mq@Ioq{W z)(sTj209A9lYR_lH-ffCvj|ahBUEY}^b_U?EHE0QEcJL$Hop@%#o$^u0i)6AjOhkO0+zohfT&>h~iop8rQFZ>h z&Q-HX8*kj`?7b@Qx0n9&E#7f86ve}`5k#iSr~+I3UPsoihiA}SuBcl5cBAKi&9^QZE zpH-UlkXq*3Z%%AuZ`No^Na)+UI>$jBW0Dq{m=}4Cg6s4ePvMf9(^ZvVD!&TO{jv%W zpNdbR3VPmD2on*>%py zq}-SjGjJTzNzP@-e$FgozN-r&Bbi2Q#nUQrXnFUf!y6OpWO06$DPmj8RCztq*M*%*%Z+y1d4nE{?S ztv*vAL_}VG9WCdy>tGj%aXozgud3Ls=(ol;p+ zE3FVH@v1tNweU-Iwh*BpcVl<2SX*7>itX5V{R4eTd_Fh3i`AFS@qfdvAt(<970V->?7j$d&2#9WdMod#F4M3Khh2(W%ODyXoW=?R4lAUL z_4!RX>fsrDhnEM+%@wBp0RguZyn!@svBDJ=b^<9z!TO{~2XV=(&nCrsJ~p1VPV{nycSwPa>S}e_HJoM8B**M3D#v|Bj?BH?9m0HA1r)Oi) zG%HE#TKD_XP!4k*P&>E=i4iUc0;xbsBh3{UV@P)~8TZSfk`Pw0V5~ee?nM~x#B31` z6e5QcQw%&dK$4P+n+kNkyKtP4bJQwWi6n<|>@MAcs!kLOOEg)K0XqbIE7W8+@HdgQ zkzT%A^0V+?l4_#VWi^PIi5<^a$7Io@UQF;AA@EuyYa$xD0Qt;yw?tBqtXEmIb4!y-kKuu%A{f-Ypj1k z(wM;cFzKNiWgU9JX0P)#)k=KMK^(ENl5vjHAW3M_#Vr>jM7|zlEfWjI=!6H~4Y1B% z0!vt(K2FLxfP^$pC?sFfGF&6fJWM*QKILW9ta11S`irF1@rfmoGshbdQv4=Tl!`V7 zdCKVK=wv}7Jw6f9TuJ!q64MT{4o^KNS8c8qNRp|l;$Kuu_Xk7hQ3B>p96~%RbTaYI zSr{tf)?j@}q&MgRb}~=#A2vl=9F`x|Z?5smxcRtJfL7)y*d3XfHZKBMttQJt`|ncM zF#aG(C1;Y%$!;fFtc!lj$rShaT`XJT0TwJyQ!V3hbA|>&;pDDKX&5Zxg%(0anNb{D zBNi-jOczDtB(k%9CPB;Fi{BMdFBg5-hm@&&T?!qhF-W2k!vX%pB3C!Kx|AfpWH=Xz zcE&cH05`^iC}3PI?^6!V27F(4FAsO0nH@f)JPUq3pGUWw@H0I^;{?}C0rfX~Lr(|_ zu^tT99yQH?m$%GIglE92U60TE(eZoD@I>nVVaE!C{s+u2|CjUk_si?8E}soM1OFGN zk&bPF&iC!h)K~?9O@S_K@#~fK?|=R+pJ&NKfM~C-Pdt5}w$G>A(2>g(gAZ>&i;t)8 z$~qh=AU0Ej>sg4)S8@iiQONs`QYii7*t<>m=gq#pGZ_w6i-oIrrni{8DE}2ntDITZ zL<=Il%&z$RB$wP>mvLhOGh`DDv_OJ^hk?m8XFJ79fYCXt z6jD?WNFJ>7YIJ)I9rW72V8LhZ@o?T=f%Tm9v-GgeH=P)ysxFU*_X zaD2yTm@~TvjFdq?jy<~*f&;R33R&Q-|4iP%&3IkD>HaWST_Ne{i)Xm_3!7DE>_63~ zvU*@C#kPgRhO0y9k#386YC^}BE9lDhuB9=w(asWWl6DCBl5}t(ZaC>%Asy&814Qx- z56rP?Lp5n#y(gk!BZ*RckY*)6qgj$ zgs@28X(%+aDKu%>;uQD!`?%Y;wgPU}Bx^Mh`gU}s0$+5g4u1ue>OdNhYX&PGhZJkg z9MUEWHTTr_ZT9a>_w5)tI6kH=0Cc+ibM+>65`3;U1>Lcm-x1Bow}jmXww9ka@Ed{h zr|slU_JX>CZw>=O9-U_RRG6Zwf8NL3BYJ--NJddWGV~p{y6l{@lpSMx2@T8COu9G& zf)7cs6*7}s%j>xDfN&)_;s)NJcbQX{nlcg&hB1?|2~eFRlF8@sPjNE0-<>un|M8htHfIsgaU_q0A&saTO|O41%8TZO5(C5J!{$ys;n* zylY?Wrs+LCczmxTwG)DGM{U=$tH5CruCr_sjezJ32OlS`I@_3~lbyy)K1N}4;ObJ<7j46-S%=$+PU=4bQlfL2LKHe$@v0$u z7~bwHnSAGmEE47g2&r_i1%fgl@-2klu~g=Yq2BX0gr3J&(JX>3e%$m!aSvQ%hus1G z9q*S41Y6yo=bKmM1kjJj3{*$myf4N~OncWo;3$ogAdH%RCu-p@R_UMDEjw@nWo+m6 zF_*bI?<_zbiZx9D|1$3Hwk81--%EVHpr=wO7p8k1{})-TYZA}?1(MwMBi|TQ7xEh3 z3CYj7i)z)+&~)X-|A(q`3eF_%w*DlU*tV^SlP7#)+vdc!^JJ2VZQHi(i7~Nl+xh04 z_gsAMO<#3YSN(TY_ui}5UO!D`+?M*|qtyV5D6eL`N8!^hXTFe?keyClrgFWR<&lru z_k_$a@f<9+n66uomNwc*-aWHC7=OU1G=8Z;rsTM z=@#|Rl0uNQ_V_F@{oTj(*WKsI5%KKvq@DZMz1`cx#}{yY1N3!~5(3rJ|Bk7#Ry3xwr{Qz>a=mai4ims7gFY)Rv4l+*G zwZ_z%X?^*_#fm#9?oAo_=+QZQy}o6q#l4Ixs!t9w&E}I_pzUaRNjG+{+k^CBYkkVF z->{TZO%Sk7VrcB!EpXNV%l=Vk0szwp9JKtXC89ZN@|15Gem3e>L9YHpxvk4>)|3bg zhcO*e>2~*Nk#aQ9x(dv_(GzKCIFLHzigWnPDu0HSc|(`GWyf63+ti~YoyrF+?cc}7 z!@(~Gm6MMj)YB7%kNejS-syH{J;-uE#nC&mbEj;Oa`@xR*P{U_p|_l32r9bPmBP8}Og>hcN%92AP9^2PwA zyoSaJivE6n@eegHev4` zX%qx>P*LpR>aTCzWH5Nw2?ZRPx(+Txz*1CVBmi@A&8|Orpg|NwR%r2^$L=4La=`W< z6!nfW6}}g4gn3vsrk!|2F)%)~cdfMx3770nVnqD_l0*`iihCGH6QZ1J-_lkv^WO{K zNYJy1HaGY?zk*=%bI`G}Bh(0bN$Y<1-RPiYfM&1npFeMwLYzMRXVvA&->vx}4I1NF z#j5aRoRhttV@m}V>!1Zx$5R*1?wFJhvlb%aCt!7mrEq-Ji+j;zW(LvNN3;L7UYpPJfg9>&$Q@C18vM=U2s{w>q2E%J5TYwS(tp% zipT^bY{qUt^iMVo23l87hWVX&PaRT6gCyn- z?Jcwr8oQ@do9JC@i^jxw+T`vkdeC|L5KKvDy_6Pml6d{R?uIU>pJEgSx>wqJ>&mQb zU_D_7O^mk!CQ zR{)jAu~WzXERB`V=?gfRBaqv8?NDv1L+k2FQx>VD16AeU0)ER7Qksbcg4pP``4P{e z(HsDU4_4)=z&M$}aB_ojR!x!7q`aRk9+s6(T-`70Su7CwjMXD_{~n;-va(!rj52-f zpG#xCZN_m-FyQs?!X#I|K4mX3ZLTV+IQY;QzQmz-T8^nu#$N?akhDlxlor^O&-wrmSSNu1@^vr)v3XH9-$r`}*9=Y3F-aN=Jd< zS?YSb9%ri2Svd8MM7CZK2qB{FP>li8QoBo#uB=}yx0Uw=bY__?us1^Y+)5fX ztx~Uw%u=oeZahi@NRlOub9VmQ*jy zS=JABUckG(p)!!)1lZZDsk?TMX_tHVmirbDFIUcy!IMR5O{=^O@rRY`H-Kt(`BCNW z)^XTet#6*3Q`gp=F+r7vrO8Eqqmp1pmu2PB-*2Ch-*Oa|pt-erLd#6n7)7RxFgvx+ zd?FGiJ<9W0>Uh#LNA)_ZphoGMcFP``4X%ew7_4WSZXThwzBzW?j;Da3fuVylv#0nE zfZ?S0dw?N;0|5W@2|^I(e<}Dw+Hx`YZKz#G8rP`=b0X@PJ>Ld;$s+b+Ni=O9V+T_M z-Nn&yn9aba0spiKeU2409V@q%MkHfR@^Y!gk&5yWtFjeH6T~`>^J`$b;Pbw$*Jv!h}(q4oNVvyiDut3#jsU27?SCY{MrY+%dXk1{`w{QeMTHUr!P=%`8K3s0_$Cyx+NIi<1*d!UG z)Zaihz8Mb~%YZm4gv4SN6%>6BVSQf(Jm&{J)SFZ9MH+C%Dft1!qIN)`A{qzXX*+$t zdkHNX>E=oGZ&BBFdRj@roH-a+hKbYMLoKr*sCK8{aNz8V{RrSbSV*iBrV$h-6d-b) z4OF9QazS?lrt%+dD~XEdr3c)MPVZ}W1&xyY?RH!z$-1{M8W;W3u8gwRwfD| zn8Qhm;nWvVV0M31D)q8R3S!741O&)VXnVANzg6lKwUiu{@6=a;QzNUx<7XtUz=_bX zn(K|JEb=LPuuGyDiXo2;T5OAQkgQl0-_O(z3MaHx$-_OiMqG}RiY3>SKg!+MA(h`BtE+h^(700UX0Q5 z$4zzb81NXdy-0gB<*NKX3^CTs%3AsBQqs)N5!kJwVHy(Y8RUrAtW#bNqy_7(!u8rk zw~4Bz6xZL%h_@>_fSVr=_8W z3-%?$zdPG;_apCh$tE5}tdHfx_r@;%@cNnFSrsQ1!@OT`S-azr(57PMaSk*S|I@+N zafu9TKLQz7voXC3?G9=L25%&>tuQq&^z_tYJyEy2^+-T5s2|qduE(k$Ix-+T*0Ewk z?7u_x`#}ixL@OqIJ7&eey;lnaULc>raKL^O)|l=r1T%l_@0|HYCg=^=7c>4*1o@72 z*CSi7giFDMy2R?U!wN=#h^9gDOe3OCy~H_~$R%s2jqSjFr3Mnz$Bcz8JOuZ>ddHOLOnEDFh^bIvW48q6OJ56Mobe z{MiYOnz?R|yan3e_!Aquh@}bC)Pe_N-sgb*9igPT( z#6W*1D-$hJw)!Dzk@y!kDin!m9`6N5a2>D;VgHpOVx#1=Ju{gZg|WE@p1_a0h99A0 z=+UF>quZv(?9Qm`A;$A5tIzoAYUv2u3Hz9Rvkei<)*jTwK7F=1?X_0)(%iBU3!1RO z{RdB$mz1%Fr)ZIz>Id(?X;>CZzK^tY@U!j7MjAO+z=lok-S!Q@4vrn|bHBRm26lFL zZX*^;4eQm++*)j zI{ty}??FyaA2kL&pYL8C9&h)ze64*ShaYbp!~%ZYd_7SHv!$LOf%iAtcc&vS{A=#h zqm%aeCWUstzUV~^9yThjVL*#b!xA)Q^Cqrm01EJmS&E|ZjV9Y7JirtqC^e`F%Ys4v~~Nw*GFAAR1! zpt@l=lh4o3zbQ*CCc~d6duJ@s?mgZwa7-ZjqY0(=rn0C`UHlisLQi>gy%&wZ4k(xw zf6y})$`<%8kN-p|g9}3T8~{sDyZ|Zcm-6_|P2wqePX)QCpf@+~?+t`oM%$fca z9tn)B3EYhqU-#)~!6huTl`jpCbaF@gJ`mAI9wf->c{QJ;1zg|SVf-omIS=oi*}YSP z#suZvYbuM-imjlGzdP&^pPw$<cm6vS`7yryvb+@&>a7ACzYu z!>+kpOV}i#-Gx|bBav0>7-4+1AG+{owdK^>rI&-7{Xnhyo`XBp-EC7M#27eYMyl`@ zMHsPdk^o-+_qhT=!FOOUN`k;Ox>d_0Wi7Xa^Z4XFw8B@`8zkwO^)ni`a&P(Rt1_qH zQFD8$j)V`G)9-mmOvmXd$HaKd2#T)nLUq5~-h7N%=bRrJ7&p$?5jcZrb?1tsql$Up z=hS>oAL!eS}k#q`Qb&zfPK9k7jRnt1!&Cd9bs z&QzI4s$bQ1^QQEPtuLgNb}2wNQHZL5$Hs`E3bg- z{-K#+tjm7IYCL%Z??mW`vs+7o4(j&1AM?7S5>V@5{C=3(F<>INY^d3kWdLg#cj z`IXc{MgCa4tF3^`{Xu%I2!6}!D?H_5V_>!WmUBzY@7L`mV&fUTJ+AgUlj5eeEx|)l ziw%R(-XRS;=F&Y{-UxH_8z>xKqJ#;{Scl@Dk>m$Fh_AET=i}DFgX5v1CFk>Q8e;!z z&q0-}?b6$C;AjbXZ^YZ?OR+nK^`HY)rMs262*g~p!&ck$Hl`5Apzv8~?1Mmr*xgu@$e^v~?egVC3>0`{iwwB%tE%JSuo@cc z0Q!0PFisn!-MU`kMBV<0fE{|=#yW>zubb{@^F27~8tx8m#&fi+X$5GtZS~xSrqTkP zH*+eY=T#=17iJl+Ku_LJ;}69tN360hzE{ew*c{v{gxF8iEzY3&r40RSSvHm$TmFr@ z1p}jzDvr^TV+BQdH@#O!(m{FMO_Q=`AzXkG zXbUIM~y}pBTADX$6Uqfp?C#@wpv{zdSeGLO z6=(C(4%X`s_A}C|W(>bZP9#BMTIt}Nf?-;j;6yLH7_7_hapQwx8xj;?Pb)`0ujK z`36m!s&u)+o+ptfH|2Nd+ZNZx9Uh`ECA=?n6QyU}CPm@CY<5u%_3<+fmFTY zg_i7W)&8taboplfz2c*ue`8`TfkGxi(3C`O6)K)5R#h`0mtz+LMvMIf)*AO;yUr0S zU6&k4u_&pih)fcdrKkbLD}}r~+A4v9c|75N94Tt9n#-n`yxpjSlEoje&7c#wO-V0w zoiC+oj#ZwZsPOSU02?xh;B*D)H=QL~CyfhbND4QJBG#YSZ82fekai;i`HTV(o>%bq zE`pE0Gi($zG^!4ENrKK~iSoS)qQ8xU0BCf1sgU{@4~npXpSWH^@*=LsxY@}3tcuf0 zY=QX3lAVxJtdc|eVk7p3fNPB3QeqUh1IPW$8TVOD* zgkNBkP0V11;0bjADhPHij+8cVFnkd6@c-1878Y&J%{__Ts^&YDR-s|62-3?Fyq~!@ zjWQYk#0YQp4GQ)`vC{^{F3`{7kv&Z1NLyiP=MW!Fg2(+we3?auneqRXw{u~yrkxs9 zBj@0C?|ScO&FQ#VUho8J@RW%}-8?{F-9Ohn_4zzA=pohN z(FT6CclftF4UNTod=kmLajIg3@DT?O3-tFfa4jm;WMQEKtZ_#`$M7J+Jp=kZJC#|k zd0KAnOrIyguNhAW{wRHXmrd3@rtpSbtRb)Ch=2FJ8Ve=U%LN7;Xy@9!G^TEyqrnh1 zrp68PHVT)G1;iU{om~v|y+pe)~XXlwkL-aC{XtOep1aNi605kipnuIHNz3 z=j38^!>m95^waEyaMi!x~9Bwhkc zye+qRY7~Evs$OlNe{UpCi^BW#aIsK#c#lXB2oRf zf5OQ(`1M**57T!qHxyu%dV2<{B`jPPcGEuuLX6?kNU3Q2xKDnjaZqNI*cih{6Sst` zWKaoEet*MO&T+bUcCUbqKqD`j|2}{}jX$n4tuyXD?LFXlx%|B!twySnik1&MS!R0p z+gm7MhM~uW=S3tVQa%tE@wDv46yyGhWmT~PH`>93%T%UslVg5#O#snjZHu=be4uUL zF)!mYr4lt})^>$mdlMi2pW`bC0mDd{LRTqN>Hscm`>tzzl<71>O6@I;0cTW$fW=WJO=YZ(4 zImj|^{+j)3lnUArgZ$q%h(QxNWZQH7M+E}8_kdRTM6aSwC&vWVR&2l?EB3HH75VBt znfp^&!um#u2PH*uSpj(gyWO7fNQb9~mpo|PHoT*wWKCDCm4}C&VsnyO6dkh~ZdMZ6 z(T*NXxL|<8(r#}vX3heHW-gzd8UGJUB$~uWD@6Fx_uR6soX??TH$IRsu#odRq|G-G zrN;3MAc}eU*m)>5U7!&_r&Ix}(eXm@JE&r>NE^CqG%`W%=Q{MXvG7HHnuk_>q>-i> z3R|k223-}!=Th2?U*2FWb3@#8foP%pL@(0KJu>72G zMSaD!gTsyLW&HNXo6(~=fjSR?8iUgNpZ0p|mA^k}xp^#>bL)i^pj#097*4aY&u6uV zl+-KP$5-EwvPYD#&dU;jH^ZczpC6PgzqXMpDbESoOT2S9?E= zw}W~#mn9K06pd6({?svA#Q3)@s7!a1qa8(;>Sb6;Ly|Q(#1~;C4+c%?wuSj08DmB~ z6Lcja@+u)jJok^gtRzJ`2y2O7lTo3P?0e1dYcbY8@fdc`hi1&WLK(D|CIVU>zHVW zdfPK+@!fLnvKpee3EfXxO9)OnHz8MPxI#17#yHM;t+Lp7WyFp|8h+Y(k_C(3r+NVi zrAz5Kt?8yAuMXZhx(LHHo~`;0{HGcIZ`nzt+wgawcuv{yk5WUdPH5+5kH$#>zPqzT zlNrRVG@i@2;LWO~ZEs=nlO-Pw4~>;cp9Whn3z(Hzok@{9529V?Q) z%^@ft{1OY+cbKXwpm4$-jy1zs9+SP&>YVP-uU{eRDSHq&E*iEwqWjgiF`uID7+&o= zPpGBWt@2r=1M8zI>IBdtYJaDiR~uJpNSB74ZZ;z}7|nmJ^Yi^xfxW8o+?oz~oyF0} zlK0AxZ3T-{o8RGsZps%-!cI&`OX+}VoUT{`E$Rscm^|)ohvew!uFigL0I$0~S3pjQ zeFK2rt!4K|nXnvu6=2r$q0QC`%i+9N#jGyKhyN$sqDcx}`me^UMK2oC4ht>iSS!6o zeZ5SbOx;B2wjs}O_JA27>&$&15 z`(uQ-vcdRNVclew7{bG6^v-<@=8OacAZHEVrdv$iN?rQ)J;cwmC116NLqUt7PCHj& zrIFK=^tW(t^Fy(&NL-`16A71yR7{;^Y=_J;6lE}D(Loa92C!GE_PdQjMI;SuAjfZS zIHm0jf_MU~IE-(1hA(CJ&cVhaj@+@sbTV>s?UYpXbWDcYSKk{ooMPhM9f`R?2Y2a1 zOHYp*wn=!d&;zg7TRYi#^q;*;wVL4r=?X9$GuighRB3rAI2s9-)$2WbiV8EcxGn%f zG0*hE{cL6Ocw~_HOP4_*u#NVqOm{n*(LZ#7_6(+5wCA8pXd$78_X0*YgnwUq;L82C z^f7qFbT*78qO}oWrBsaS3ls*(LjTVQg?=a9+q_ea!4InNm}f%H1Qt~7(p-5(RV7Wi z`EZ=}zP@~B)k}auowLpfM`>&+g4!|bW(lipBs3wWNYZt%sGgw)wo5WBwI;w8(ADKV zzNy#3D*(zHX}7P!tpBSoS+OgRcN}e%B;wp5h8m zWqYa7j?PLvZv~CvKGm@u$)k}}QPleSdb&ld#>=+?Q-&0D!1n%FgBS<|L%e-sAT1VM zgIh|{S;vwab(B)rU);ZWzP$NX;n(-3bE|x>w1h)^d(8#E4Q44=|JpNjt|Tu`_8mc1XO}{> zjI4%R$L$!x2mcd!466c3y^b8iyc2i+NY4ElChz0xBmRv)ne5YEbPNj{R_t3C@v6xUhmQ4jj zeK2CBK=`(n1IG__1DUf&PPkSTV0pKF998zAe7oT|;|uv|U7Lo>KT^zzU;TL$iV+B@ z93Wht10CZbqijHeBlYzJGcqbVs+x(!Kubrr?lLLXER&$FAOS=F5J!l$*)6 zM5H)4nM*B+!!A{$$~1Q?I~$No$;NNyw>yw=e3u&sBLOAPDj7+)pP;YRnQ{7`{Q9by zPm3QlDQ!>&=XWv$uRop-yFIO6j|ay;e$QVoWg&`%uqJWoDHe0Z_#wnr$FWGq)3_Ha z@ncIM9TWz7!##>1zMG$fy4{WTfh|l!obMARjkaB0*HivGuj(RLFXE=OvnV2cxr22> zvX#q8IcSNVfHo<$$P-Z}#KW#2pis`yk*miP{N$8n5z=!zf3HwpJV`D6xRC7=XO)M< zlXN`!>3Z-N{%HIo1)lxv%dZ7)Ua>Q08xG4ZkfR#JT|qb8D$CmX&<88ELi!Gh%aY6a8IQ455E7uW3b7h7*c1gRZo3ANY_&J{nS(P1&Bg3y!zx8Q;+3XY zi(LZLmcxvoaeLU0kGn0VE)g_^RxGlgHm~yDbygZnW1Z(HP*A3{1x-L>FT@x`mnYv8MW>M`-HlNoN3 z`jT{p)=jshI*@BF!oMi8qgGz~Gv$I_uiFtpv9u?1v_3m=YP>IOM(mA-)rh^ zo_M4TOrlZ^hj7JL47vbwWFu|6I7AXUCl>eW^x^z!c6;z)k62aaCo?$>88!2IZ6ujW zZ*_A)0>-54RcM)wX0sJ=d*d>baP3Ca)`aVC@tz?CCN;B;q0GyE?X!+3n?#?)^>koh z>i?%raQ|CGq6BgL*EW@2e4kw)GeYncpICHOF)aA6W;9`|yamMtTf7TXE+};2I&R4i7)2BN<(AY5A>MIZ{QDO0ue`eXu0OiuiA zJaf}QTOP9UGW0#xdqsSWWkQX5rpfNn5z9`ELP-6Dx5)sBDME>8_rX+h;}P&CJ7c*{ zajGgkh6MFo^;q>>P9%c0Aty-!vIO(U?3-|pgY@(Y&^_xDW2+n*Dz|fmG;?gM+%CAL zwlD{!rh&4i{uFKyBEwBCrEAYSZ`AvZ{q8!kNeY+AIp6xfR&F@Y1&-)R0vS*3@&$6h zru6zhvyg2G7(xoKAs8))gPHli&c902(nG~`Re%%)Suui#NX}@27GS6pE4L$zi$d4& zht4~%2wpDFd$myK@nf{RL@uM)I(;rES$KsWE1UrihMar}5J)pV0oZ%(Dl2jJ-O9jn zaJbj0e(`f?)ppukpZ-{%cHUxQFn)Fj7%~=P0_nCf_??ZV>}phL3z&HAbKN~M7ZX1| zj7$8^A@Ao?PbI>NHVw%koa$&Zeg=sndPkFJmMMs5ud_T$`8dGgS>-gWR?JsCKW9nNW7MvfsrNHBhw=~Hw=AQ@D~u9nBuq9=+m5%KAp@EDZ6vGingan7%H`11v`Zf!awk zra|BMpusCdX&~UdWtkWm$YM-o&Uv(M0=eHnu0_r(&Jm*zd_`6o&;Q)J(Tf3ri1j$l zM$p3)1fB}F%T5%!zAEH;+HdZyPFYU(+2YNQf}3WIy4n4!ISVSl)R)BOo#F^Lu@;rF zBT)F`^3qb$)Qc^wVvV-M_hvEX!@lzs$9P8HW<6~kcg{IfestN9#As<$7Z_C-JNpsP zZiz^t!BnJH1>btkZt2b7Nf`XPV&a^rd%^E%cV5s>lidWS{b>+vN7NOsi8)iX}TX#J=%!_bAk>&^yQMOS0tp3cKTbe-w!jgN8eVF#C zJdyL)>W%bD^33*B5*9C@dd_ye^X6Qg5rMq3Zm7S#YpA!n3+!86B|-k8zmw4-Ukidi{f#zlmJh=mI5jtmYusbFI*RGu*^l#UqQZFeM$ z+82A$C{_*8d9PF$2;BgJs4I)t)iWS<3uP{2ZyTTg8Xxq+4v#05V_L=f4_3RC4a6CE zB#JYGoj3t>*;^B_!dyxG5!Q1ELPZnDja&Tj*Wn`OSslPV+l=vtzZI(fNSPyPDeW9{ z@Mm#=zAlh0Q~$*$ej3~1LB$*}A};3yLwyP@7tp*-@oN3G*y_ zLw1{3(oT0N0&C#nH@Efg1x2@LR)_gbnLVnEvXL1tWNhKlpvx^Kl+zqMx(Q{!gwO9^DIqpQ1M(&-$)jJ$kk_`JHBk83KUN^ z+&oW~a5klf^XMw&*%saA_x;El>RA`Oe{Ch4n+KX&U?l zAF^of4ic6zsQp#g!r)&|&PG=diIspD>Cu{rmQCP7mt_Tsp3)qt<$oi)`)=(>obPqH z1po!~^Wi0uD4Ctkdod>0tyVf+Uz;-=-s)2vYA;|NY9F# zVhHZJ*>Abi$|zD~8}J$qR=tL`YTLH;Xu=;13}H$;_B0Y1qc5U)5GD0HejPquu zKgJ@{b1{$!*B8E#;mzm%9la5^*co^I&AM~TnaMlIx@Y z^Y`#dekICCQZRI-(ZcrCe=0ASm1Yd1bRNPajp!25WpdWcML#H&2l|;1t{{9WddbYZ zD~$sNsN9-+)9-8D|) zme_2JbjZK|aRzf$?JdZOcvD@>c4);G?2+=m+sP09-uEpefxF4@Tg4T6V~Vxgj_J=( zkRr_p+~0~M%6Cg%T%-o({5lXO!?245j7ksZJMY+v7H+!{8Ka#D=3-~+l;o1x^MA>+}xNtD=Eo^tpF z@uy-QDQhQ(>VLbFn|($00S8dDU5lkKAb(;TsEE;^)*YT|El8dS1YBr4C)**aEC_2D z1^Mr%Y#uyMO9jq2wgmcSS9vlR>C-~!C?AY?e!edphg#`vQ>ap3Ir#P*+6d}sQHbs; zA`#K=@JD~MGbz~%VGQI}x=cs@rJ!}93_It)<&pTaJbs^%T0hv1O71wnKE6iA06l7& zCyg3e31p20ddfM%^L!I^Xou*MvB^(RJT-d0e~2F}huSx^rMN^M@l zoSxqs4V0%4igU)zhgoB~Zoy+^wzypqhRbc;2w$xM!MyA3_}o?`};C^^q?f~xe)p+pdf zGRl86u+@9`6zYI$Z&r)iDsPr|hWz1oA=WgF2Djmz)HUNG$B=2UTi37G!Y3zkayus@ z(*G-MYE%)d3v7(@U5Jzn&QyZ z%;KrIXqTf54XB%dE`hhkWObcZMFQ1k}KX5Tw+j4 zMS<~){~~1Xu$%s|a51uA29ARRbF!OrTI<|Lp4;sEh;&qQrH9yTI!I6O(BkZa{d=U_ z5~)VY?8)+0uyI?n_&Sj7BmofN`J$+u%SfWZY$vVvy?t&s3*Rm2Cq!G(IY#o_jTw9K zp~JDPyEk<#cBiu%yP?KH1*>yGXrI;i?*MDh2zQCj|r>K&4Q@hwMN>zf`YuKM8TV`J+wa7QYO-*5=4 zO|aX?&wklh|Iw8iNJluV%b$-lh3!!B-#2I1EvTz3r<*dOu-`S@a;jkK<#9kX-9e2; z1PUb??$OfI(=K2J#!u8Fszc&i@y7hK?Ihri3~rO~`3;|VZh`WTzMi|*%InKKP&-s< z4~JM7GQ~z)oT49Q9eTf(lAlDnN|3Sxu$Gw~54US>`5AcTh^GU?WsJf*aWpEG1D{92 zoB9_bZAw8bU;1BGQJf7ix+fpNW*SWN1a!d~Xw49yaJR2bBVLlCP^%fAzHi&86IADZ z-aLd14(Hum1W5LMknOJfol@A3{>y|7(N3iFoxu`OkBUo51$%S&@cz{^K8P)>Ju0M81UCTuSy zCnDkt5hL|HLLl8}xYquV+y7SjXZGj7!OJL|rJB6H`p)J4R6s%JxI;_HrM-LqKr0qd zzmlq+3smMhKIn>E%j=-ops|p}@AHTeyD2S)h6rAzs=`NsH~$pmt;l)24P8=)?e_W9 zkdMiV4qa^p1tA#OTjRFFBWsk}Q*K5P z)uM)XpXZ@8`FF(kjJkuc!D>!CpF=$7pcQB{2T*@dOF)BO-q_(``f34x2r>}_y*!n8 zmre+JNI3hcko~;v-!TM zbc20XUSkm**i^5Wz9)A#i~6dqU*N3opf>h%fHk5fL^58(G!c91xCnpC7sAgLa>l@5 zK9FfM8CwQvTR$XTUMBKsYTuHGVO0Z{_m;Ip0s$eF0&=)80||2bbBCp7%Amt<{DT*~ zbN2nm#d~s1%!Ko=!tl8$@6GjVMa*bziQLnl*v)tPx57?K_?=vacTG8`x%Lp zf$$&K_RO_b^mi^&`MS9=_jgBQs6Qq(dmd(;yxM1&b*G@ivTi!xwzt+WrE$J9(bMgu zRDn%S`#*II;sOJ(5r2)WH5}0KPDnh=w?r^a^!fpl(|Tn?-wbc`Fan23iP8s6-a)e5 zNv&-6-gwaqLQAW)m#XymmI*BjAr2 zYi-@d!_PMcPaB~TcOx{uYyy2YB|(9~X4jpG^&IT%>d7s^0i49KSxqO_ME{bZZ<-_7 zNm3$!P2$E;v-`u#OCO>9^~YQxd$bLU<@^8W4{d;o?Ty56{^bM-7L!zf+3r4DMfDtX zUO{t}Ty}O}dntP7AYvAlpO#3&BiD(`g8JN4eFs(c%>jG zZ$!@yF3)oxj?_~fwF|y?LE74aU7a>v7M62?Y~YvVkBj1&%yI`)ABRpdQO>|% zjj+-F;*1K7Yq1D75bI5Rl$YG?S%m*O#hG2nPS>!)DN|bpk=J2jqXd7$Wy8nC+bugyI!kC@h(^`$Np z{Jd}zK!foQDz4WT(!>~xI@sI>DB*WYJ(D|R03?jFsM zjrMZ2?&RREq4BxY<#@FdDc-sSxZD{Pb6C~AVNQ%?8MZs8Ckg^=qVV1}oBH;@tIDtb z@5R_kuBg=(J_)nOiMVw#cQ-agiR>+g)s(z2S)FIZ!5m{3QVraqJ`Y4pOp&Uh{#afRZ2M7W-4{mcOzJ*9R@ekv3_(TJ(3K^{uNv&Kg z<|PWwDwULu5C48a9_VWG{;!+|21vO6Lj_{~udoWeIF|o$i3I(hOQcy!l8m$vMtUf= z8BVG&a!^3I(3n9a`2EcZ%JkUq?Cvh>JF@lKxGr38s&m7es(ubJE=j^XbNONCqASdQf%p(frO`6H)1N578V{ z#v5t^g+efl{?^BDSoe1W(?Igg2~W?&t`<;Kq%qdf)U%wA>)$|eGZHqMaLWGJtb9!8 zEP~~nEtq)(D^l=v5$0gkws>0NAA89Hr^WuN}nzS+^Yj zBL$r)tR+I=_l5^ezTX85cC6H9{k$|%e0u0h5N3i5M8XCn(g@VaN0 zyqFy?a5|7nRzxB+o zP=;;MbSjhyVYanv)g?C6u#;SeTGVTyT7%|04beh{NLaw)GpM<)C=87P(@lk1TzD)- zq8Xcq+<5escpBQznw!>6?LLf3{!Y0pIS>50%$DSRLq1<`o92J&^qU49y=981u;PmS zb?N(+L%iH=e|1{bah6TLWM<8o+P%j0CUIJ=dPfbLheN~QkSQHv*K55WoilI#D$i!~d4E}w^O8yU#ny~(^U4`mFw}oy zlNrRjS(Z*K`|;-}+Cx2=kSn~VznT8PiF3EaHT-z;q5meq}zD(1?lgvx4a z+9C)(s;FXEu%d5HUn7VSw^HXwvKXtV$k8t-o3X0k$cV}m+bU$UbUU-D%8Z+s zDP*%aosjdII-IFoov~_Ys$!yVSi30VDQKFvv0Txt7dKg2)8+tqbJLrjY^QUqO;BYN ztDEn$!{iHmfH;?biw9qc)NBRlwJiT_rzl=CeFo-eTODr0d8)b%!U9yKBj%(RQ z;fZJjT*oeyMQVDfbxVo3Xjou>U{8zK*ID=S=Z60xp-4Dp=BX5wYn8f|cq3QLj2uF@ zLLu3Qe}mKw8_UTM=be=|1vq&z6Trgcp@^paroL45>^%dyw&9TF(=kpJouoB}{+*kM zp!t)p_e`rA;J&Nf30E`B;eqW1mlEq~HA~lsw@`XGJj;@d?Nva+oTu;=o?J?`BlNWq z)r#vZ?E~&!+eEx_)l0lR^;}hPMIJp*M&x*&BvNA&V6|+q>g0fYh*GxkE2a*d_yRKf zrW%CBq|^iw)@pr4vZ9KD%(pkg@Xg9MA0#Vl4T162bi8tut*Y|yS?Q7%{W!aNA}SB{ zdtb(&BgCXuf$v<(<2_fTKnnsOc#u;UIBU%0*7Kf165*6k!!O{TDcnbxGt(R?| zK);6TIl2pDQXE4SL;}L_vG~sXe>|*L+*U^u^JRc8#_)LAGN>ot({MTzmKKjsxa%hy z;NK(JU|ANJQO3y4d%V8vX^x_P($ENES<|bhcPZ$rM9v7_;W;`O><;>KlO|9BpD9^$Eam%G?}!Y z2-&pH9~q>UAnTsN`JKfX+G(+};=+wwqBp+c?ixw;+}rH-QJ4Yl=*ioe;`m;{c!#|NGcsPk~*c2e4Hpx0%sXE~(OvNJKPu#=*$JRRr2NHGb!m({z z6B`p-6Wg9-Vms-HZQHhO+Y?W0+sU1C-uqSE^VRv+tE&57@4ae0>p_d><8F>E5a9Ux z<%w4zG38v-pzM=_ply-G61O3%<|B30HPL3H-2;+}F!|!^k=S7K`M&#=zqJzoLaHT; z!@Jh+8;CVd76XM_lJ>m}n@5@@C#RSzv1z_fz$PvA^Q&ja(c{bv9sg!vb(-li^O%+ORoeEw&{NBY?JX9iz^`~d3 zuZ-`96h7e-(p?Atv(EGF1f_2IU;(8CP1)-FzbwZVT{ci6$bVAN{|;zq$>RnU0|nz@ z{_p_%?F+rQu!s(&-%y%n#)R=X7p<)5K zEU*-Te`xUPEb$2a^!#9nC+dGsq-ER6JILvfBWi0KkA4&D)#k49_DcFKEoG(Zwdt|2rowUk^eY)@kMBH`lpGcPmv~Ms z6j+S4^fC$xvh{_3QlqhOd{OhDmbJ%{x|!4BN@cP&N28gGZ`u?qqwei9Q$_xy{zW4XeFbeL zr(|2Xk}8H*VuO7ceUQ#L>xyHuKYxwR0B5<5US`IfJsEW7pa&1}^3=t?XY0Rz39?lH zu*Gi4I5THSFWoseKWFAj;YCYEbya!FXDofA<>T?Dc~1!SK+O)_Lp3;YdH@nO=f*E` zy=t zbH%}YHLvbuLD`(WI*APCi2vkh1sM$j%rz*WwS@Z|-0;xM@CLUpz0msIHH5CI>Am1p zHqs|ptmZ0n>fuiFXt@Zv$t~YPBT9E-AEv-i-dqtD-_~D#-SjB!F%flHLGUF999f{N zb6u{wHqx&A-SeZ`*3r%zLeSgP)1QgkMZOitXEsfAiv%epOtcQqCmqjAB8nLS5N*3D zL41mRuSI%+vo&OkPlSkQlXqqT@YcW>q!0O416&NEn=+#eyE74@9p5e`^0~P;jN1wO zM?7{F`s}UWzF zgmFh8UW|s$f5})y;hQ0luAM34qPyY_2*p01uKZB^%2L$6fguVD+nBa%ai#pdL(b@O99Mv&j6x*jciu zr)(=*aN=!(jF2&X954$$&nVzYaVo6K>?|ps9i{YLOPLdQXN|dfz&dkji%Wg@BY&TH z>Ffk?S7TN?_oXxbS83v)XtBb52*pXR7I>Hs4BEH{iWMJ;^xKHl0o`Vf%j-kNpNOWM z0Yv?2b^;8_j$cKDtpwke#sUi_9*acEv7-MX?_NsZ zx(t`$+-IE7bKoAz&*6MIj%$Jwl5kdN`}vQ~jqU_0jQM>BEc?w=nU7B|RSoEs(3TEY z3pSbMzM?_&Qs56Kt|Ic}eRILfkme#mro50#rZjr!q>H zNA`4QemG_U*V&^-UtTc;UbFT;DL!$iOXxzP0>{UjvF5<_oYKLWP2u!r4J7RXMX%fi z%pcee9CL5?3FAEy|q3?4%= z*q8BWhjNodw%Wn$eDRFI?rfDcqnhs;sM((-I2lj@qFQoC{xah#b62MaL@(?5J>lI> z(b_}?UODv)_nMjS(L_1FYw*Fdk=JY&_5M2Nel9RbvMzG7qsNHBsOGx))3o!7aao7_ zeA%{e$Yd?`-l_-xE=)j;q1U0n6l<09k4hXS8T}w3Ubgi^#k948%o0jJ=R z?$a^HKrF8^DG_0*%jRzz-iEpKsgW$|1nD^>VF$|}jM zP4&c2B0{95Q+88a&`@9Ofw@&&SIIn`4X?{}xJKoN+72u^!}PIKXrxktL5i6Gy?TjV z?QIJj$qCgMiikae`tosD+M6o|JxrUCt4Z68L@IUzW<7g?ln}^;#k(=DQwLQ0G^ifA zlPn*|8K`H|i+F~64BrcInV=bX+9*za%xU8MZfBPNjOskx{~6V}S$Y0nEeB<+fwi(Z zMsE*%=yJH)SZ#b$ij{MnrD$DyYdVifx{IvU)K9i1FSL`a+#p#-w;*FX_z!SwBtYgs z`InXrTy?wi7||L%8xH!HnKU|E%kyCbi;}^^L5F+PLqAcs!L-}7+wI3RX{>w*jQ`5K z%Px>{dD#t4$lv87SsrFGK-`Y+!bBT^zfVP>5@LU%Ebrp)j+~6a8Rd=wZ%q+{3IGWz#IGo>5g5@POn{9U-4>>v~>* z+}uL^D{tMp+4VIrV@DUMBjmE~PJYhMud z?s#76##+1D&AR_JJYpa4LvVA<)BQDZb85CJu9CyG*7jGOAA3t( zU$5t{7s(8zSuNqU0!uU5tADAVN$CQe%uGsHCOY~*1pe6h+z zx2IT8*_nFeW=cS_*R~Z7br7G_BA?K%z@(a;EHbf_?`$IR0lI zT$C2Hu8PK6H)=dSYQX_sd7G!5{Vs&$S-HzzwW>oSH=1dUVLys+a-}`Ycs7}=sTeA0 z-yE6cQo9wQ&1Ta>fq~vf;j2EM_t(}J#Cv!3m0&*{7xhu+k;m2@-;5V|er46SIH^Uu zmvFUo5|`^iKzi@!7Z^W73KncY5b0<#I=9TWxPN`hwjm`#?eLvV72~?LTae*`;n;EC zADtml8X1hgGq)Wdgt4nglrvB-Ye+4+?uNYn`Cdw7GBOWE`-%RqypUw47i3QS97OuE zd|m#cA0p(`a`vv-tOn?4We;~Zh-&}RAhY?VZ@tUC4FaNDzdY%7)78i znPtv_1@Nk361Z>+oZ!xJ3!Uma?K&sMV>X7F3|N63$qH2c(QW2nWbTi6qc+H0vt){5^^O!71_#=%T^Z&EQvUBw8a>T zla(h*F&8Bh=^j{`!nNhvl+M1nS+W)7FD61C0MZ^x-HF5p3XqDzsxU=GB4y09ncru?93~tzeLzS~qdU6gb$H{OF`s>d_god>D%ht;={O8@x?k$1DisRbk_aQ`+pxZmWdt<8mp|Uvo z=L`I#!rdD;{=hv1!c(+CGk7mPl60vb1t`!%)bxW6O(hpGY3rm1z1U7JDcFUBgqXj$ zn>GnqTA}hNZx^U~VoSgK0$*t_jYxSM$R;LGwQx06!AX)9| zB59ZV<*)`eW(kYgctiUmbi(~C)JGdVrj>%jl7Db2!cm$sen`2}pbN)f$Xm_A)y`xS zTa{4-!p0={S0ueDrOa|c*ZsRrNNvUjI`QsbW5zxhygnmLaxp)K`Gej$_>P-p2h__D z6l7T8=G6i6%3n=q$G`b%%@X^4X2*<1pGVwbMmAhFYZ-b2LiX6RJ5(z3X8?0jh3+$K zbUkHlW$jLl_T~pwU3B=33g~|%$mWwh((Rt2x2m?bHERn4i)kHt z1R+W!uOlbn-ypY!>C*(Ibp4#+lHy@8E6h{y^@?#k_~^|6=R>^ndH_Y1B?|iM9HPL` zm{6*Ld)3AiD?44BnE=O#8KL>q+JD3mW@Imy*!7^jxI*8B-$fC2fpQxvdKUTJgO6J; z+Do$LZnM|sUhiBmZpb9CgjwSDIDM;K)H_P@q(rm&SYA6+tCm!ntwQ^Po_Caj+O+Jt zt1C@EE)?m`Ux@8+3pjwc%aA%xFM<{NHr*0!^@IYUTzm3v}Ind3+$)xbMg7&AeYjH? z_|im%uC_$=cg;PLt4ssi`$sYWKr|1Gr%W?r4HJ2&_4D?T@W{vFq%R<+a7dlWA}438 zF7vEBCOGS30qYd+DJ3|+4z&y)eqLyhN%orWmIEZBz_m{TbttsAIKNnN#dZbi& zAO5)T9$B(!u_NH|>`Vv01g~?*&}z{q&5*mUtn-d&2W~R0!HRzM4ooZgS9IcM5_|Q= z;aCd!Bh}SvGjZ+-D>{Yy#&>z>Be&kU+7eB)2_qsT^zN5?wAzs}ooP!@`Iy2q6&>OwV^Az^xMl ztk=l-Oe5Z=K`@~UehsIudF0|@)(&9(#w%oM_{SDrIJj9!K0vg)---DAwtaMZpM!`M zENZKA%l<{kl?GQW{T2R*hV$W;;DM&%`#^oYV+9K-)ajw8jRz;A%Uk=)2SuSU zWfIutthUBzQ%EE};`sb)S*8vS$p{t;)!H(<0P3;Vsj%h{*3CNBgaQ=8Ai}H%<n=Cn%-w|lhh>i%^7rwmYI-r1-pU>$}L#or8y^&#c$XLu)H^cn0WM26- zW5jN%xkGy)W?ltGbqdyiW9rTJeigAm_1vLT(&fagsd@))5%pbp<;t+KxT~j`Uvw((V zOnwa!zX&6~NA2Y)_0z)#4)T5~q=S3z%*k*BwjwGr+E|no%bEMCO8f}<&y~B!&J905 z^{l7!DWv`d4TwiW%3C9!#8H&V3jH1aXQcC&2{ZWR_|9%B4;%NWdydXk(CA)5?|p?7 z*e){oIXxfQnn57c5PfGkC#dA{CxA^;3_Ly~JmI~Z_~#Pp;_)TC`~B*ecFw6h+c&+q zx)EgDmIQYxx!BEP-Lyv1_&RaXTISZAWgHLTq-zx$>?CaAnX6|6&;o>#zleg@QO$)7ugKWFQ=S8XkO{_yW;l%{V2bB>8=emO8b;~5{PoqS;L06#wx1SjV* zKC%;Q=eIwt$lOK=TB?$?ZZOR1BEm-<$>mE(EvgrAvP+J7u=meVzGrA$`Lqhvq$P#L z>NjcT9=S0!u6vnw%ixgUYcrkufe_lo?=78ix>6lxy_78B&s9T}@uh!A8X(aB+z!WY zU1Lw*TSs-y_*b?D@IZvX0;O4eQ{E367(G-O<)7{Nl-&2OO-dtyNMy@)j$2g3Z*x1a zG<<#|VS3OG`Syys$wHszb;Me?;S}@?Hdb&YF_BUcrlPP}>fYwUpRR5{MNUxo$7gT) zI_BpmF#F4#@ygrvBlcX)hf``P)7m^bJW4OlDdk%N8Cg`_a>39203>+I(cZBAlC@(y z0qZ|_UNWXmGczFRZLdGY6!IFqvU~rKbJ4?v?h;8b&}t7y>$UXrXDS5fqZLEWyvk+Q ze3axHRr?=bhQWu75B&USvi2N51$?_o!YcsmoT5OdPsRQ_jpyl`z4n5aldtH*;V<>U zI=Li6r*W9CC82j#0KA(Sgsqp^F0}G*f`PE&?*e8nPbwn+7iy>8KldJU%MZHDT_`&T zD?GE*9o(4}WAtAFhY_*?{Cr% zZ}uyBikCQC7wFj23TMUXLyUU*PeIsMzT_`gTo?vF`7FA}^{m?TU6Q-JmuO_MvWD3`;uv3E%tlA^N*n4EPflP<@asz;rkI-7Ly%77-Hjeuz=za8#^V?- zsHBhTEj2KiL)5)r7x00`j>+qg8p63vSy)`cRF8qA4_F1G7BVnf;hle%Ixvkd&IJ@y zdgY!`8>-L9!J6%?0Nd?@jVV;0?sNv z=YJf#{~!l3sMAXjRrwMuoOB4f*~FGp4RId_eScF#4cu86LB0 zxIrODVD0x7!(Km|qV_kPU{+dp`yyE-b!THsZEvuWS5@8OkNs;LEaVJ+)CeptYnqL| z9L*NNGV*(I&F*eKU2PPV0<9XwAmDcuHDJ<>C2_g`SeO?H!%0vSe7lmA+B=wEd4Hd& z%gDr3l3Om*elyvHqpUieV$enA-bjrrtOPG=$+Q%XS0l2hMrXu+eY>XtuZkO6Cc|QfSDl&8NtCi=29n z=nfuy zAwA8B7_*^POoV2Tl!|s%?KHdy7C;wNqqh}bRSSaD($W=X8MjmFeHN+hwvPy4sg=r1 zh(M5l+%f4LPB3if$%ui)MmI;gWw86UDvC7D!sU{z)cmK9I({T=eV-S5|x4=Eaf57kVZ=2p*eU7vhG%2?|Q!4JncDCoq2yZE;v@ zwwAE^Z3BtCJ)z*YuMPFIfFzrwLp{5QtsqM9YqWcF9ac`QoF-!o3F5S%q%@g5-zo#k z!78#5w^z#SS?uS97I=fEjU2k=|U#=o2Du*?wr zUSsN~(0nQey z;`-6npJNKAZo)3IK0CYXq(I9_xm@01QpjC|jiU$P$R={3e0DjIb6%b-nu%q0f^onO zfj5~X+i`q~V(W?_@~FK+?U2?;p{6D)RER!uu*-}%uovN1)_58|#zl4Kvu^P}zFc`srHJkxiRc zsa7L9eW^XIT(EBlXxRG)rd#GyjS2b$l_F4xVRem>B(a&f%Xcagydnm5Ck9r~RVPH( z9Ej8Im^WAjgS^J*=p}Wuuhapp!-4m29&B9<-fmbTKyan?CuHpR-bzh5jGkLK(zi9v z36u%M4co1Eh21A!yT@mrD110$j=MP0LIlctv_xPoeW8b$2OmOOEv%fDk83|>6f=!?7klX|PzT3VG#?zR|BDCV^TyVGzx z?eDPu6a*oAsPY7CSUZ}b0jRfvNWp!~((aK%C z_EaB#FMW6Zip(lOV*aMs8LgO~-i5JR0*WV0waw%qiWm=m2k7w@9V^~_9MGIsQ&TDS zoPTWb*8h$+$E-q$`B<{fv$4)2o~&wlv{>87bwnRtaqgR%;W)akK4MNI9#p%*f`yp6rY*;W(K8!$e834gtla=yX_*3A5|2bOHfkAA*7SUtVWn{%;Z{hlMRhD;p+p~zMze+vyMM@nF%tPFubSIurOIP9~Kq~wz<-| zR0sJTvu=-;xzv5Lzt=vhqDxinN7)AeP@*lYrK18Dlt0t?0tm$6gOmMrbi0e(Kr!Vx zU_ed|A<+@WqR~Ol^ zJ5V89w@3ffHl^Qc7`EQ|WbVnJdCtMf_)WfxkyU~ag8&<)nbh?>$LIA>F#P>`(a@5c zBOFgIDsNbMue7D~W)b2auxhYj! zWGb!w{>0lq z*e{!^{RLs35RDQmN|LfXb9c{BQWVk&ly|{|J+kbCdU3dAL$qB2bt@2oQr`HtpXZvs z0FdzOFHK+n$M#Rx4S0T17#w+W;u>{z8)2P5NC{QtB7ghG&q{^b3gqT3fxa4+Uv@sC zLpvYRX6@FbZUzB$sbBRhhV3}R)AKu>?0h0aza#@hZ;uRQt3v1?r%k}MKPv1aS5+d* z#XIpdDcub3TNzlot?*+&AopZrG9cdM8G!}*C$@o*5<&xzfLvm3AwfnNUxYdtoc%|X zm}_0sI2<}5-iWUGUx;2T$dF-rF_f+v9;=sn2b>$!CohDuS9ja5@6agX8#O&p3}HxU zVC3pn10FTGD!eUWu>+i!{OWG$&|ZNTonmj(XWG)f-@Y*hWK^Ejo=ygc9b_Yzj04H+ ziN+|kwBYLu_J<{M)t~Ndr92%E6U3_KKZNvNRiEz@t|H`bg+AB`osx{>$4YBS8Gu$j=?J}n2yYwM}4#jGIELi zyNhO@7>+0SV@+~P>e(@EWI2ypOaa)td=1K%TTQX;d0!}DK#?=~#F>(;g~B62fK={5 zN9xizV*?qo8q8~^m%h0#fGFCp?)uTUb`1Su=R26&zd+XT^=(_o^?jo8=2;2gYgQ5X z8lG)#9v1oWO*isH;! zYr!Pqf~v6VB9y`~by9+AP&+l`RvLegOyBz0{}lM(9IFtuzMpy`syIb@m5^>GGfH7E zVG#IDNbzwvuJ9^*{*JInKmKLd)+`7?z+|4GK|iCXK*VJYMidVH$qgmp>s{Gitgk!f zNR(T9_()|3tIL`-@(6QY4G@WzSY`|jxF{R(1I?6t`SF9glHnCf{vu;>l@>TZ;(Nu{ z=pC4NMGb3|2MkFC9Qm?m_E=`!(>+v=1w|9LbA!|34h3a2!Gf5BceIU^tEijTDP<<1 zMhm}+YFoE;cKziggU^hZG|ZcOJHfA`wdO!R$^o$ToXUN6wE0bGfQC*yr|FxDX3{pg zK+1?HBJ*(|Oi9|fNMnn@-EjC`zQ<<$W`hTxLq7Utgqnh69|g|VWBv~Ua9T=v^ZJaa z5IUrl#>Hlg<(pYHd}J7oc=q;cn*fKY`f@FY^Gj+sqYXW}HaIL=zjXSl4QgGEWn!L^ z*P#!ZpS8yvE{$84fJe)F;Mm!__s`N=LdEXfz_6ApVPs)Mu0*+uU)8B_y^Y)Fc`s;!IaNk|b7EY265ktW0J*@UUYV6kTzLL&+S1iJ z@RPg1skQq;iX^~9`QkG;Ts_argLuHup7jd^2{A0%To@Cg{Ea!1mnx;-lCoBXcsmYt z!g&V|6slh9E&LwZ!~PTXIGxXDPCX0MW;y&uV1o7I%rIcLj$J0Z|8nUn^anEzryb@slit+=p2ZNHb(N8v z9ME!n^R($n0Ol(bi6dkmc6{T~xrSguH06o$Mze+h{E2xd3Q85#CM5kL0;6-TA;uh1 zn%Q5tRWwtR**l%W(<{yCU6R10hE|>2u3L!zrSInjhQB*FIy?CQTRz1@r_&$A@O>uG zgLZ3yC>OLw=cwjVp@;n_x0fM&t;L-bZ%VR8Vwir8NnyQFM=iC1jmu!$y1;l{;n>RE z{=3f^P>$hbc*p4QRULj#RuCm1o0D9&>nT2zNV)tcIY|Sa+dI+`F`Z3#dsAjmkEH^gdR&lMP8l7w=@08~S6>$<~ji;ugVKf4*t;EgwtQCRc5-?qMkt9e3{6>Q!u?bOW!6sR>*KX!_Z6?3YjVeMc%DX zh!gFO0~LSs!9QQ1ZXR_0!E6;@!-C4S`}q_vYKD8*+=~&U_ShQ_xk~M`gh@^PW^wE~gKYz;1cATn zZoPc=fxuTp!YhhGXJ;6NpmewFz3sl_n_&Fe7}CP){0}UJxG)-6$%Y$ki~>vt2@Qtn zSgRAfDy*S9?qSvw$l$wBE*vr!u#%-A;8cl%xPY|ehn%?*+sp}4PNTbIxDn6RK8A^F zJ&qA84xL)PscByE8SK;&1r~-m=8e~_8`gg4EQ!h5N*Brm+a$6g-OMi?V(rA<&!QPC zwQTRutXGd?<58!0uKgbaLA1mP9lTd)l%rzIes7&@oX7a^`-Xi?Q8hHe|4qabYLHSj74~9@>HDZq*rWc zTd<$+KIQ*&Vf~D+V#j+*gP8791+tW4gt3Xpp=ZP z6LYp@0D&nTlPix2G=(%d>j3`%6Jp36pNR98u(H2@hG@1#X}n{NVz43mR|IDWtnjx_ ztDkpcq^n+>;X}ouMUraJdykNiLlV$lIoF_cU@UfBd3@d;#a*?8 z$`S8(9#xUSQxXijTrI~!10SK0qJe0td)Yf<&vuvO*CglmGmw9S%C-ap1i&se3Nu5Q zgLo!MbGrq@jvy38l`AM7TC?$f+MWKK}e^s zhDmOr%^MlLy5<#GF5Fu5`~8VtU)P8_W{D>4BP!rtN8&%_a{SG><+EYd%bk5k`xqqK zPs!r-M+DNI85#n|fS!o(4nxfi{sP6nlL66^r_a{ipHx`>W zL*>8X(AZd%)w_4r_!!hNZd$mWNkXrER?A`Vy&i9li10azOqLd`fFckMi}^+C&J?nu`CkWyLPmIn zAg-JX-i(!$o41Y-c1j&Pk}Q4Ba0#;t3WvN5D73$XK$H=A))z@CYId!lgvax#T@@s0 z3gHABYO5wTQTXBmAUS7qC#yBc7{n4M2i=ebHB($PXav zn{Eq=Tqe5yRHtH7gG@PcUGoBEZ(E?&R9;O`=Q(gR-zY^eS7J3amKEoWe~mSwJ-3Wm zXYAgZJipf^c}K;9Mj-oETCTg@04K{c{ny*Hq@2(vbkCNJ1u}ui z?Qglx0Y(|>ntPHh0C$TarqO9yLC6$;Z9AF%xuyp*I7Z!*6t-5HVS|&C+`Z*e`SI#N z$sUVWFNfZWjS%ndi)JD&^=_Lrn#{UhY*tnZQ)9~louE&ww4>Fycy10Vapj~n4A+Er zfXM;}u;Ljd8&CaPdo_6lr(FT29DXKC-ME3#&Ni;F{TU<)SjDI_4XItVnDn$cTHgF= zyIfF6l1K5K-Ho9KHAdXMca2}kOL;JPws22-Y?Uh&jw z9b>ckz^ot(6Rf0yp?#8uYFofbd|tw;_S6#dy^oE8&HvtrJ8K(R1A| z42R_j2J^{_3Wgo>XdJ}wRa1^nuu0Hy#!tFoj*^a6kdcaR!HudiHztZv^~e%#>nJ45 zfx9?oS*YWarfF4n=&r*Y?#uKG5~t}97gFjB2CC44m_wYaINr6xISa7M(T zfSW{V_mM?^Hyv~Mg`yhcnp+ZqS1467qRc913AW4>NscQSY)+0`{0_C*r$pyh>ir#& z_|hbpZ3bxvO@9P1-V+Gd`&(->{~{|OeUM`NN4;e(Je*wsI?!;2%p(&F{nc(O%Wb|Z(XF!ade5D^!>b+T84FDD)eTRL$bTPdVl2OFFW4V%%;#T77#Zxv zy?cJ@EI^;N;9URSNi)vXw;N?$v1U7NLDhDhrNYkN1X~s(G!pXD_2IA>ygokQdD94k zhO@NPR@?Y?YT@2xAY_qvr4s{S`zvoRVz_U)zq-jnk=9>j2j$73op=T6qWst{gz}>! zuTnthlh89>gD%76Ow&eg3>#sLT=cHLI0nVPq-1tuloc%dP524PvNmn=sS^=xQ*CQe z#^=jwxO_;E*Ir#VI=N-@^q5L`e!(F-Sm6NDWkxqoT^_H+D4K0_VrBq5F3Q~QY0!&- zJ%>RCEoQkH!htMyOX(=*|4#N8l#6zq}Rm&)jrtCj+vr9^5_< z?M7nt@@65=S3b-_q$EEtyYwJ{IVuvwpV`**_E1@k!CG3!P8&?*B#RgKTDn& z@4OW>oMe870PXSP<#xcxm#!D#rX_Z9T=n*HJ%mSKVQG?r<`|c>Ic42z>c8dxl`UCI z;_}Hn>b$uPdL1IC5t8MJ3R(c6b1G>HQv-9uL~`^uMqx^Ct-P{)#XvWqVp%7rTSj!N z8aKhUIw;OPTxJuNN@BP()JkF~Htw3~M-8VT8}`B50tP2cXB?pMyI!#{HPQfNsvr10 zE-Pk10XSHFREF4;N3${HJn53_1db7{zKD}kurTV>i_Y-FoKeuhw~eSfgjSb_e3e_r z=A~;6o**+1GIMv(Atw8q9C?5A&fGR!N?ym?nY%&cO~TH64_wzrmm1bJp|ei`};Ra zh^k$V^O)kJK*W{(Lc%r}R9tN005H$(Pv_WRP#t)S&v1^PF9c}>n)5~Vc3`L-H!VUW zur_LDHbeBBu{5e5IW+X=cz7-0`k2I*{1FOE_;M%4!t#LHuYyw{YZpyZG3D4A4ELSG zwg~elI26X3V%fVNn>SjK@}pbQ;Wd;znNkZR+@>Djrb*f17Y-mXOObrKpUKlq62oL_ zQCO5Pdg7CRH1auUzQ#v#5Ay^U4i;TP^jK6 zfKJnCaUl{>T3k=Ak=P|{62Hv{`^W3l9E9nrOc7gq6l?A(((k<&Fl5DzTICt;>3S4U(Wv$Lr|p@cY>nRbUxc}{lkhsD+T(0!*YY{ zZo*XkZ=Z0t{9_&qL4k3wro@4PQl>}^fO3Ly^89ydCITlrlf*AaCub54wtoy|7El6! zhl~CHl?^m$|8iQFK>Nrx@Ux>+lgWNtlWCI)A*73^uc9Dk89<+?bIvzdwdl2ELXZzOK$w_d2m4Z82qBMkWqm;i?qe~cbYomPO^|MRZ{r9TyFH zMg|C9%vS=&IGn24=CA_*uZOe_hpzHRX1zNj`V8g%+Mr2gaA&R$SzR$4EClR(ECp$k zbR)H#RCCA==&Z(;Fqr3g0g8D1Q2%sgh)K9vB}fD$MP>K|oN4r5fdf(fQ9-r@F_8o0 zGz?t_tt?^v78?+$5dS7``eFQN=;>7mOM6%sqtct>VHuedh+#YcIS3ZPPszVAQ2Cj| zG%(N_)+vfYiX_sPA&~kfWH>pDcJBt@7`og1Rb-<7 zvOadNJ;%s9=IPO{!RIX1344eMiN>J+!i?G_I6hyFV?$VyvU;>%)7dV2S-WPDxM|(c zpfrbXU|s-Jh5TLiUg>B9q&`=6YX*te*B=HuaR>_4nq98##wbN9oM9AYUI?eZg1(y1 zIOIcC4WH7X+)it+IcwVIvJ>)C>X6M`zgNG$fE;!yT=fwIY2tBRNJt`j4;ls=2AT<0 z&HFk;Bz>P&>iNfTg{i621CHNU_Tv+HrrHEQ=T?9#D1wvLs}u5!_Ow^;3PCt?;`^&l zh$9%QeZR4*#lSyB70q^*MQqM5gRt{6-vpO$pP)AT7!Y!NTiz2mqG1E!72oLho-pw&}Lp1}B5+z1p)B!f~!wOlphu8}4OeyJJPe+ z1r(|AcDd!X=zM8?=d5GR!W|3OtV@{a1*TqzBa2P$<-31AlvMHaM%o)*@pFjzCjP)B z)WVIb&Wb0hF^E?^TUwykaqvIuz)dZK&}LZD0vJ+u+%N;#3yOZB59QcQTSTNGagk-7 zEj3eS2s~L3p2AIxDM~VIz3J0e)a09dr00Y%p>Z-f@Y*A^DedUN{Q!UTzyzH4aN8F3>-Z!vlk6)CAR znTTepGpnuy2X(eI>SW+?60KN`Dw(>MOyF_aHn)HuMto>J?1SNQYBa0!&s3lt_xrsG zrnDaex8A62D2ZL*%T018>Jw-PiJCrp;?Foz{k!bA;f1VTRb7bINm-dwe!j zit-pFIQ)dRYf}&&+#s-IZWO3ZeBPVO!Y zxOIdW2z>qv4A9>w0Vj2P4EK#0*5^xBa|O6tzZrx1W~3|~J6N@7=$fscJ1)_Tzy`W6P2HdoKy)=;5K0M#PU6C#|^-F4bC6ZlP1QruYyY%F> zV3j8QyBb%`e7ksCFU(=h?cPpo(xm8=zJy*)1Op_@PjYGgPXI^?xAn7M`1GIWt$(j4 z7E)@v210uLHt%N?bL&KxK+P&N{eKF}XEbfX&(0L~opO6#$3Z&R|Mxc^KAi6Vynk{o_>xn|Z-k3E z!`7>*M_4#P%Ol!!&O*sF27fesfx?D~MP#5vsoNk)yZWseSpb%{Sb9IqMrAtau_3)Y z>Ss4qeK#V7*swn?+27fyV8tL~)n5gx?nYV0Zi?}U-Q-_0R^|_^%)Vv=7ENG-90RY5 zeu0iZ$7!EkvmVP>&IYVtC9AgQ9@PYGbBaQXBF`5n5>1MvoKv)W^nY&u%Mn&PIb6k& z{HHnE5&9LMZe%AXL^DyvrFF%ZnaBzQ0ddKPyXiORvf@ zL=(2h_SqYD$d1@Cd(Y0;Is3pqvy@%Uc=#{-AG?oi4B4M-M4YfOdti_3?*=z5v^FNk z%QiV`fgIl8hBvm)$A5#5zh0hWwTs_ZaihM28$M%(uct-xRkX;E>;y~2FJhQO9^9fu zw`sZ02iPL_<9?M7`;Y88A6?^om^QD*{eD(W`KdQVIvN#!)!QrHUKQ0{eb>9{H~P_v zkMhAyK0w4{gX}iG5H0&@dB?^BY(H$>KD$as4dz-{ZqA%(Gk<3nn9~jFte7*mzx(#$ z%Q5X?x6GS#XS^f^=_g+SS{@)*QRZKw0kPhMFJaGH>}?rY2QXVEFf)NGk`Uq zJ~%jh^XXIEk}I$_FB-qRShZ2a6mTb&01vzkIEAHic8M^wDhO5Vu>ot-(x-8qq8P;D zF(BtCdOrv8?SIkPZx`<&`pxH6k;ZO{BL7yLnYyZWt6Wu6wr1nst2IK5Y(pp8(0$Dw zD&#q3PJ-v2yO-ZKoOjlmJX&~m%dST0b=H1Jt!mg9h{kMK^Zu%u-{0rGx{*E1rCc@l z(X>Giri0=GG|Dj!Eec|2RP$CZFNgiK=>sjIHr`x8wSP8O(2HR#%-zDMxm%olyu3W7 zcZw6xYkU%Cuc$O|WX<*syGK6x(TVaO;n8t>+;Aw)^YR(eLr( zSrMT8iyh)&Wo$Ay#En28z?bt2JIp_Mh%X<@)M$X(wDfs}=;ePd-<=;f3Z2@lmncQu zVksJaq<<7OcKut6)+;XKCvPnj{ogl$zq?GGvLYyN=DdB+8;o^OHcL|9DoNvC0yiy5 z*NA_1QCerOt*SJHZ&#(0%~${BrMdY`BR_CvuJ8NPlil;vpHD7!Pgb35;h#U*_;U0D z_u49OuLRYfs@r<=xKPog4|!SM6{AVMOU-ypG(k36%cxD`m*K54#PG#3L~zqAMBE(2 zqqEP)rzbJp%#gGRRg`IHBkHiRrdv#AAOSO%vCIJ`e=;*P zK0XR_baG{3Z3=kWHP%^BmSq&c@pC{FM8pLZQ4thS!5!Q{5m#_aHVv0DOSIB*H#1R7 zsay~$OD)NLO%xP0b3+vIu9;>iyJ@EBre>PDXj*2PhQ9BAjyJzK^M7ByPoMYUc@Yt5 zZ4D7^kKIoCVhUFkLogKEU>Nrd z!ZaL0Z_7N4xgCaM1h&UW?0`|&5u>pacE&E)6=Sd)cE=tVi#;(8dtqX*!czV5O2vGiLiWu;!mQEsc0Z}E~zxvR2o zzn3h^J(YtgUdB`I^SxO(e@^9SgI}G%)kc+b`ChUq4^?VYy-cJusa#L+lEddHj;Bmw z&Q`h8&hME_2~lbK)5{b}8zQrcZsBd*fE#fW-od;020vwMyNt4#xfEAW z-ek5_vX!xQ*n)3SRx)41t#}=8pq)`=coXm8Hf+HA*ofP4e+NFqNBB11Wp7D)8@|JA zC-4Z$PG;M6OVIY%E-a@kWv<6}DRxrj;3WEc%#(2q<$Y#bd0Xw}^xe1z_u^MvwfF2k zW;=niC>8hx#on0vnR{U$w6|m>R#6hs-jW|MC!@U|?alZhv%McL;ztyF``G(s6#W2x zOtJUK7|JKifA$8kcZ8kN2bt~6&!!y08j78Mb18@MQ%XJ-P(EX}Q?7_|36J1qti@`q z!z*|d?XRh$cnpuL{MPLIVFOmF#*t4!gd$RU4?MWR#dkXe+e{AIs;bFA3we>v0+saO=i+CK5 z;%PjA=g@YY?a#}21+U>vyn)Sl2OIDKKH?iYVknAgO%hL`#sBh*z$le}lY)QQ{+AiF zwIO(?{^)mhQ4K8#mgx3gx~g`n4VI)TFEOeqVZk!^7cbpZhXy}Q(<{7mSIzjx=N_s# z61 0$ + +\subsubsection{Linear Equation} +Linear eqn in $n$ variables (unknowns) is an eqn in the form +$$ a_1x_1 + a_2x_2 + ... + a_nx_n = b$$ +where $a_1, a_2, ..., a_n, b$ are constants. + +\begin{note} +In a linear system, we don't assume that $a_1, a_2, ..., a_n$ are not all 0 +\begin{itemize} + \item If $a_1 = ... = a_n = 0$ but $b \neq 0$, it is \textbf{inconsistent} + + E.g. $0x_1 + 0x_2 = 1$ + + \item If $a_1 = ... = a_n = b = 0$, it is a \textbf{zero equation} + + E.g. $0x_1 + 0x_2 = 0$ + \item Linear equation which is not a zero equation is a \textbf{nonzero equation} + + E.g. $2x_1 - 3x_2 = 4$ + \item The following are not linear equations + \begin{itemize} + \item $xy = 2$ + \item $\sin\theta + \cos\phi = 0.2$ + \item $x_1^2 + x_2^2 + ... + x_n^2 = 1$ + \item $x = e^y$ + \end{itemize} +\end{itemize} +\end{note} + +In the $xyz$ space, linear equation $ax + by + cz = d$ where $a, b, c > 0$ represents a plane + +\subsubsection{Solutions to a Linear Equation} +Let $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ be a linear eqn in n variables \\ +For real numbers $s_1+ s_2+ ... + s_n$, if $a_1s_1 + a_2s_2 + ... + a_ns_n = b$, then $x_1 = s_1, x_2 = s_2, x_n = s_n$ is a solution to the linear equation \\ +The set of all solutions is the \textbf{solution set}\\ +Expression that gives the entire solution set is the \textbf{general solution} + +\textbf{Zero Equation} is satified by any values of $x_1, x_2,... x_n$ + +General solution is given by $(x_1, x_2, ..., x_n) = (t_1, t_2, ..., t_n)$ + + +\subsubsection{Examples: Linear equation $4x-2y = 1$} +\begin{itemize} + \item x can take any arbitary value, say t + \item $x = t \Rightarrow y = 2t - \frac{1}{2}$ + \item General Solution: + $ + \begin{cases} + x = t & \text{t is a parameter}\\ + y = 2t - \frac{1}{2} + \end{cases} + $ + \item y can take any arbitary value, say s + \item $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}$ + \item General Solution: + $ + \begin{cases} + y = s & \text{s is a parameter}\\ + x = \frac{1}{2}s + \frac{1}{4} + \end{cases} + $ +\end{itemize} + +\subsubsection{Example: Linear equation $x_1 - 4x_2 + 7x_3 = 5$} + +\begin{itemize} + \item $x_2$ and $x_3$ can be chosen arbitarily, $s$ and $t$ + \item $x_1 = 5 + 4s -7t$ + \item General Solution: + $ + \begin{cases} + x_1 = 5 + 4s -7t \\ + x_2 = s & s, t \text{ are arbitrary parameters}\\ + x_3 = t \\ + \end{cases} + $ +\end{itemize} + + +\subsection{Linear System} +Linear System of m linear equations in n variables is +\begin{equation} +\begin{cases} + a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ + a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\ + \vdots \\ + a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\ +\end{cases} +\end{equation} +where $a_{ij}, b$ are real constants and $a_{ij}$ is the coeff of $x_j$ in the $i$th equation + +\begin{note} Linear Systems + \begin{itemize} + \item If $a_{ij}$ and $b_i$ are zero, linear system is called a \textbf{zero system} + \item If $a_{ij}$ and $b_i$ is nonzero, linear system is called a \textbf{nonzero system} + \item If $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$ is a solution to \textbf{every equation} in the system, then its a solution to the system + \item If every equation has a solution, there might not be a solution to the system + \item \textbf{Consistent} if it has at least 1 solution + \item \textbf{Inconsistent} if it has no solutions + \end{itemize} +\end{note} + + +\subsubsection{Example} +\begin{equation} +\begin{cases} +a_1x + b1_y = c_1 \\ +a_2x + b2_y = c_2 \\ +\end{cases} +\end{equation} + +where $a_1, b_1, a_2, b_2$ not all zero + +In $xy$ plane, each equation represents a straight line, $L_1, L_2$ + +\begin{itemize} + \item If $L_1, L_2$ are parallel, there is no solution + \item If $L_1, L_2$ are not parallel, there is 1 solution + \item If $L_1, L_2$ coinside(same line), there are infinitely many solution +\end{itemize} + +\begin{equation} +\begin{cases} +a_1x + b1_y + c_1z = d_1 \\ +a_2x + b2_y + c_2z = d_2 \\ +\end{cases} +\end{equation} + +where $a_1, b_1, c_1, a_2, b_2, c_2$ not all zero + +In $xyz$ space, each equation represents a plane, $P_1, P_2$ + +\begin{itemize} + \item If $P_1, P_2$ are parallel, there is no solution + \item If $P_1, P_2$ are not parallel, there is $\infty$ solutions (on the straight line intersection) + \item If $P_1, P_2$ coinside(same plane), there are infinitely many solutions + \item Same Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1: d_2$ + \item Parallel Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$ + \item Intersect Plane $\Leftrightarrow a_1 : a_2, b_1 : b_2, c_1 : c_2$ are not the same +\end{itemize} + +\subsection{Augmented Matrix} +$ + \begin{amatrix}{3} + a_{11} & a_{12} & a_{1n} & b_1 \\ + a_{21} & a_{12} & a_{2n} & b_2 \\ + a_{m1} & a_{m2} & a_{mn} & b_m \\ + \end{amatrix} +$ + +\subsection{Elementary Row Operations} +To solve a linear system we perform operations: +\begin{itemize} + \item Multiply equation by nonzero constant + \item Interchange 2 equations + \item add a constant multiple of an equation to another +\end{itemize} + +Likewise, for a augmented matrix, the operations are on the \textbf{rows} of the augmented matrix + +\begin{itemize} + \item Multiply row by nonzero constant + \item Interchange 2 rows + \item add a constant multiple of a row to another row +\end{itemize} + \subsection{Recap} Given the linear equation $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ @@ -350,4 +526,88 @@ Given the augmented matrix is in row-echelon form. \end{enumerate} \end{note} +\subsection{Review} +\begin{align*} + I: & cR_i, c \neq 0 \\ + II: & R_i \Leftrightarrow R_j \\\ + III: & R_i \Rightarrow R_i + cR_j +\end{align*} + +Solving REF: +\begin{enumerate} + \item Set var -> non-pivot cols as params + \item Solve var -> pivot cols backwards + + \# of nonzero rows = \# pivot pts = \# of pivot cols +\end{enumerate} + +Gaussian Elimination +\begin{enumerate} + \item Given a matrix $A$, find left most non-zero \textbf{column}. If the leading number is NOT zero, use $II$ to swap rows. + \item Ensure the rest of the column is 0 (by subtracting the current row from tht other rows) + \item Cover the top row and continue for next rows +\end{enumerate} + +\subsection{Consistency} +\begin{defn}[Consistency]\ \\ + Suppose that $A$ is the Augmented Matrix of a linear system, and $R$ is a row-echelon form of $A$. + \begin{itemize} + \item When the system has no solution(inconsistent)? + \subitem There is a row in $R$ with the form $(0 0 ... 0 | \otimes)$ where $\otimes \neq 0$ + \subitem Or, the last column is a pivot column + \item When the system has exactly one solution? + \subitem Last column is non-pivot + \subitem All other columns are pivot columns + \item When the system has infinitely many solutions? + \subitem Last column is non-pivot + \subitem Some other columns are non-pivot columns. + \end{itemize} +\end{defn} + +\begin{note} Notations\ \\ + For elementary row operations + \begin{itemize} + \item Multiply $i$th row by (nonzero) const $k$: $kR_i$ + \item Interchange $i$th and $j$th rows: $R_i \leftrightarrow R_j$ + \item Add $K$ times $i$th row to $j$th row: $R_j + kR_i$ + \end{itemize} + \textbf{Note} + \begin{itemize} + \item $R_1 + R_2$ means "add 2nd row to the 1st row". + \item $R_2 + R_1$ means "add 1nd row to the 2st row". + \end{itemize} + + \textbf{Example} +$$ \begin{pmatrix} a \\ b \end{pmatrix} +\xrightarrow{R_1 + R_2} \begin{pmatrix} a + b \\ b \end{pmatrix} +\xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} a + b \\ -a \end{pmatrix} +\xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix} +\xrightarrow{(-1)R_2}\begin{pmatrix} b \\ a \end{pmatrix} + $$ +\end{note} + +\subsection{Homogeneous Linear System} + +\begin{defn}[Homogeneous Linear Equation \& System]\ where + \begin{itemize} + \item Homogeneous Linear Equation: $a_1x_1 + a_2x_2 + ... + a_nx_n = 0 \iff x_1 = 0, x_2 = 0,... , x_n = 0$ + \item Homogeneous Linear Equation: $\begin{cases} + a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 0 \\ + a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0 \\ + \vdots \\ + a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = 0 \\ + \end{cases}$ + + \item This is the trivial solution of a homogeneous linear system. + \end{itemize} + + You can use this to solve problems like Find the equation $ax^2 + by^2 + cz^2 = d$, in the $xyz$ plane which contains the points $(1, 1, -1), (1, 3, 3), (-2, 0, 2)$. + + \begin{itemize} + \item Solve by first converting to Augmented Matrix, where the last column is all 0. During working steps, this column can be omitted. + \item With the \hyperref[def:rref]{RREF}, you can set $d$ as $t$ and get values for $a, b, c$ in terms of $t$. + \item sub in $t$ into the original equation and factorize $t$ out from both sides, for values where $t \neq 0$ + \end{itemize} + +\end{defn} diff --git a/ma1522/ch_02.tex b/ma1522/ch_02.tex new file mode 100644 index 0000000..59e507b --- /dev/null +++ b/ma1522/ch_02.tex @@ -0,0 +1,446 @@ +\subsection{Introduction} + +\begin{defn}[Matrix]\ \\ + \begin{itemize} + \item $\begin{pmatrix} + a_{11} & a_{12} & ... & a_{1n} \\ + a_{21} & a_{22} & ... & a_{2n} \\ + \vdots \\ + a_{m1} & a_{m2} & ... & a_{mn} + \end{pmatrix}$ + \item $m$ is no of rows, $n$ is no of columns + \item size is $m \times n$ + \item $A = (a_{ij})_{m \times n}$ + + \end{itemize} +\end{defn} + +\subsubsection{Special Matrix} + +\begin{note}[Special Matrices]\ \\ + \begin{itemize} + \item Row Matrix : $\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$ + \item Column Matrix + \subitem $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ + \item \textbf{Square Matrix}, $n \times n$ matrix / matrix of order $n$. + \subitem Let $A = (a_{ij})$ be a square matrix of order $n$ + \item Diagonal of $A$ is $a_{11}, a_{22}, ..., a_{nn}$. + \item \textbf{Diagonal Matrix} if Square Matrix and non-diagonal entries are zero + \subitem Diagonals can be zero + \subitem \textbf{Identity Matrix} is a special case of this + \item \textbf{Square Matrix} if Diagonal Matrix and diagonal entries are all the same. + \item \textbf{Identity Matrix} if Scalar Matrix and diagonal = 1 + \subitem $I_n$ is the identity matrix of order $n$. + \item \textbf{Zero Matrix} if all entries are 0. + \subitem Can denote by either $\overrightarrow{0}, 0$ + \item Square matrix is \textbf{symmetric} if symmetric wrt diagonal + \subitem $A = (a_{ij})_{n \times n}$ is symmetric $\iff a_{ij} = a_{ji},\ \forall i, j$ + \item \textbf{Upper Triangular} if all entries \textbf{below} diagonal are zero. + \subitem $A = (a_{ij})_{n \times n}$ is upper triangular $\iff a_{ij} = 0 \text{ if } i > j$ + \item \textbf{Lower Triangular} if all entries \textbf{above} diagonal are zero. + \label{def:ltm} + \subitem $A = (a_{ij})_{n \times n}$ is lower triangular $\iff a_{ij} = 0 \text{ if } i < j$ + \subitem if Matrix is both Lower and Upper triangular, its a Diagonal Matrix. + \end{itemize} +\end{note} + +\subsection{Matrix Operations} + +\begin{defn}[Matrix Operations]\ \\ + Let $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$ + \begin{itemize} + \item Equality: $B = (b_{ij})_{p \times q}$, $A = B \iff m = p \ \& \ n = q \ \& \ a_{ij} = b_{ij} \forall i,j$ + \item Addition: $A + B = (a_{ij} + b_{ij})_{m \times n}$ + \item Subtraction: $A - B = (a_{ij} - b_{ij})_{m \times n}$ + \item Scalar Mult: $cA = (ca_{ij})_{m \times n}$ + \end{itemize} +\end{defn} + +\begin{defn}[Matrix Multiplication] \ \\ + Let $A = (a_{ij})_{m \times p}, B = (b_{ij})_{p \times n}$ + \begin{itemize} + \item $AB$ is the $m \times n$ matrix s.t. $(i,j)$ entry is $$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj} = \sum^p_{k=1}a_{ik}b_{kj}$$ + \item No of columns in $A$ = No of rows in $B$. + \item Matrix multiplication is \textbf{NOT commutative} + \end{itemize} +\end{defn} + +\begin{theorem}[Matrix Properties]\ \\ + Let $A, B, C$ be $m \times p, p \times q, q \times n$ matrices + \begin{itemize} + \item Associative Law: $A(BC) = (AB)C$ + \item Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$ + \item Distributive Law: $(B_1 + B_2)A = B_1A + B_2A$ + \item $c(AB) = (cA)B = A(cB)$ + \item $A\textbf{0}_{p \times n} = \textbf{0}_{m \times n}$ + \item $A\textbf{I}_{n} = \textbf{I}_{n}A = A$ + \end{itemize} +\end{theorem} + + +\begin{defn}[Powers of Square Matricss]\ \\ + Let $A$ be a $m \times n$. + + $AA$ is well defined $\iff m = n \iff A$ is square. + + \textbf{Definition.} Let $A$ be square matrix of order $n$. Then Powers of a are + $$ + A^k = \begin{cases} + I_n & \text{if } k = 0 \\ + AA...A & \text{if } k \geq 1. + \end{cases} + $$ + + \textbf{Properties.} + \begin{itemize} + \item $A^mA^n = A^{m+n}, (A^m)^n = A^{mn}$ + \item $(AB)^2 = (AB)(AB) \neq A^2B^2 = (AA)(BB)$ + \end{itemize} +\end{defn} + +Matrix Multiplication Example: + +\begin{itemize} + \item Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$ + \item Let $a_1 = \begin{pmatrix}1 & 2 & 3 \end{pmatrix}, a_2 = \begin{pmatrix}4 & 5 & 6 \end{pmatrix}$ + \item $AB = \begin{pmatrix} a_1 & a_2 \end{pmatrix}B = \begin{pmatrix} a_1B \\ a_2B \end{pmatrix}$. + \item $\begin{pmatrix} + \begin{pmatrix}1 & 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \\ + \begin{pmatrix}4 & 5 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} + \end{pmatrix} = \begin{pmatrix} + \begin{pmatrix}2 & 1\end{pmatrix} \\ + \begin{pmatrix}8 & 7\end{pmatrix} \\ + \end{pmatrix} + $ +\end{itemize} + +\begin{note}[Representation of Linear System] \ \\ + \begin{itemize} + \item $\begin{cases} + a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n & = b_1 \\ + a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n & = b_2 \\ + \vdots & \vdots \\ + a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n & = b_m \\ + \end{cases}$ + + \item A = $\begin{pmatrix} + a_{11} & a_{12} & ... & a_{1n} \\ + a_{21} & a_{22} & ... & a_{2n} \\ + \vdots & \vdots & & \vdots \\ + a_{m1} & a_{m2} & ... & a_{mn} \\ + \end{pmatrix}$, Coefficient Matrix, $A_{m\times n}$ + \item $x = \begin{pmatrix} + x_{1} \\ + \vdots \\ + x_{n} \\ + \end{pmatrix}$, Variable Matrix, $x_{n \times 1}$ + \item $b = \begin{pmatrix} + b_{1} \\ + \vdots \\ + b_{m} \\ + \end{pmatrix}$, Constant Matrix, $b_{m \times 1}$. Then $Ax = b$ + \item $A = (a_{ij})_{m\times n} $ + \item $m$ linear equations in $n$ variables, $x_1, ..., x_n$ + \item $a_{ij}$ are coefficients, $b_i$ are the constants + \item Let $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$. + \subitem $x_1 = u_1, \hdots, x_n = u_n$ is a solution to the system + \subitem $\iff Au = b \iff u$ is a solution to $Ax = b$ + \item Let $a_j$ denote the $j$th column of $A$. Then + \subitem $b = Ax = x_1a_1 + ... + x_na_n = \sum^n_{j=1}x_ja_j$ + \end{itemize} +\end{note} + +\begin{defn}[Transpose]\ \\ + \begin{itemize} + \item Let $A = (a_{ij})_{m\times n}$ + \item The transpose of $A$ is $A^T = (a_{ji})_{n \times m}$ + \item $(A^T)^T = A$ + \item A is symmetric $\iff A = A^T$ + \item Let $B$ be $m \times n$, $(A+B)^T = A^T + B^T$ + \item Let $B$ be $n \times p$, $(AB)^T = B^TA^T$ + \end{itemize} +\end{defn} + +\begin{defn}[Inverse]\ \\ + \begin{itemize} + \item Let $A, B$ be matrices of same size + \subitem $A + X = B \implies X = B - A = B + (-A)$ + \subitem $-A$ is the \textit{additive inverse} of $A$ + \item Let $A_{m\times n}, B_{m\times p}$ matrix. + \subitem $AX = B \implies X = A^{-1}B$. + \end{itemize} + + + Let A be a \textbf{square matrix} of order $n$. + \begin{itemize} + \item If there exists a square matrix $B$ of order $N$ s.t. $AB = I_{n}$ and $BA = I_{n}$, then $A$ is \textbf{invertible} matrix and $B$ is inverse of $A$. + \item If $A$ is not invertible, A is called singular. + \item suppose $A$ is invertible with inverse $B$ + \item Let $C$ be any matrix having the same number of rows as $A$. + $$\begin{aligned} + AX = C &\implies B(AX) = BC \\ + &\implies (BA)X = BC \\ + &\implies X = BC. + \end{aligned}$$ + \end{itemize} + + +\end{defn} + +\begin{theorem}[Properties of Inversion]\ \\ + Let $A$ be a square matrix. + \begin{itemize} + \item Let $A$ be an invertible matrix, then its inverse is unique. + \item Cancellation Law: Let $A$ be an invertible matrix + \subitem $AB_1 = AB_2 \implies B_1 = B_2$ + \subitem $C_1A = C_2A \implies C_1 = C_2$ + \subitem $AB = 0 \implies B = 0, CA = 0 \implies C = 0$ ($A$ is invertible, A cannot be 0) + \subitem This fails if $A$ is singular + \item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ + \subitem $A$ is invertible $\iff ad - bc \neq 0$ + \subitem $A$ is invertible $A^{-1} = \dfrac{1}{ad - bc} \begin{pmatrix}d & -b \\ -c & a \end{pmatrix}$ + + \end{itemize} + Let $A$ and $B$ be invertible matrices of same order + \begin{itemize} + \item Let $c \neq 0$. Then $cA$ is invertible, $(cA^{-1} = \frac{1}{c}A^{-1}$ + \item $A^T$ is invertible, $(A^T)^{-1} = (A^{-1})^T$ + \item $AB$ is invertible, $(AB)^{-1} = (B^{-1}A^{-1})$ + \end{itemize} + + Let $A$ be an invertible matrix. + + \begin{itemize} + \item $A^{-k} = (A^{-1})^k$ + \item $A^{m+n} = A^mA^n$ + \item $(A^m)^n = A^{mn}$ + \end{itemize} + + +\end{theorem} + +\begin{defn}[Elementary Matrices] If it can be obtained from $I$ by performing single elementary row operation + \begin{itemize} + \item $cRi, c \neq 0: \begin{pmatrix} + 1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 \\ + 0 & 0 & c & 0 \\ + 0 & 0 & 0 & 1 + \end{pmatrix}(cR_3)$ + \item $R_i \leftrightarrow R_j, i \neq j,: \begin{pmatrix} + 1 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 1 \\ + 0 & 0 & 1 & 0 \\ + 0 & 1 & 0 & 0 + \end{pmatrix}(R_2 \leftrightarrow R_4)$ + \item $R_i + cR_j, i \neq j,: \begin{pmatrix} + 1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & c \\ + 0 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 1 + \end{pmatrix}(R_2 + cR_4)$ + \item Every elementary Matrix is invertible + \end{itemize} +\end{defn} + +$A = \begin{pmatrix} + a_{11}&a_{12}&a_{13}\\ + a_{21}&a_{22}&a_{23}\\ + a_{31}&a_{32}&a_{33}\\ + a_{41}&a_{42}&a_{43} +\end{pmatrix}$, $E = \begin{pmatrix} + 1&0&0&0\\ + 0&1&0&0\\ + 0&0&c&0\\ + 0&0&0&1 +\end{pmatrix}(cR_3)$, $EA = \begin{pmatrix} + a_{11}&a_{12}&a_{13}\\ + a_{21}&a_{22}&a_{23}\\ + ca_{31}&ca_{32}&ca_{33}\\ + a_{41}&a_{42}&a_{43} +\end{pmatrix}$ + +\begin{theorem} Main Theorem for Invertible Matrices \\ + Let $A$ be a square matrix. Then the following are equivalent + \begin{enumerate} + \item $A$ is an invertible matrix. + \item Linear System $Ax = b$ has a unique solution + \item Linear System $Ax = 0$ has only the trivial solution + \item RREF of $A$ is $I$ + \item A is the product of elementary matrices + \end{enumerate} +\end{theorem} + +\begin{theorem} Find Inverse + \begin{itemize} + \item Let $A$ be an invertible Matrix. + \item RREF of $(A | I)$ is $(I | A^{-1})$ + \end{itemize} + + How to identify if Square Matrix is invertible? + + \begin{itemize} + \item Square matrix is invertible + \subitem $\iff$ RREF is $I$ + \subitem $\iff$ All columns in its REF are pivot + \subitem $\iff$ All rows in REF are nonzero + \item Square matrix is singular + \subitem $\iff$ RREF is \textbf{NOT} $I$ + \subitem $\iff$ Some columns in its REF are non-pivot + \subitem $\iff$ Some rows in REF are zero. + \item $A$ and $B$ are square matrices such that $AB = I$ + \subitem then $A$ and $B$ are invertible + \end{itemize} +\end{theorem} + +\begin{defn}[LU Decomposition with Type 3 Operations]\ \\ + \begin{itemize} + \item Type 3 Operations: $(R_i + cR_j, i > j)$ + \item Let $A$ be a $m \times n$ matrix. Consider Gaussian Elimination $A \dashrightarrow R$ + \item Let $R \dashrightarrow A$ be the operations in reverse + \item Apply the same operations to $I_m \dashrightarrow L$. Then $A = LR$ + \item $L$ is a \hyperref[def:ltm]{lower triangular matrix} with 1 along diagonal + \item If $A$ is square matrix, $R = U$ + \end{itemize} + + Application: + \begin{itemize} + \item $A$ has LU decomposition $A = LU$, $Ax = b$ i.e., $LUx = b$ + \item Let $y = Ux$, then it is reduced to $Ly = b$ + \item $Ly = b$ can be solved with forward substitution. + \item $Ux = y$ is the REF of A. + \item $Ux = y$ can be solved using backward substitution. + + \end{itemize} +\end{defn} + +\begin{defn}[LU Decomposition with Type II Operations]\ \\ + \begin{itemize} + \item Type 2 Operations: $(R_i \leftrightarrow R_j)$, where 2 rows are swapped + \item $A \xrightarrow[]{E_1} \bullet \xrightarrow[]{E_2}\bullet \xrightarrow[E_3]{R_i \iff R_j}\bullet \xrightarrow[]{E_4}\bullet \xrightarrow[]{E_5} R$ + \item $A = E^{-1}_1E^{-1}_2E^{}_3E^{-1}_4E^{-1}_5R$ + \item $E_3A = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5R$ + \item $P = E_3, L = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5, R = U$, $PA = LU$ + + \end{itemize} +\end{defn} + +\begin{defn}[Column Operations]\ \\ + \begin{itemize} + \item Pre-multiplication of Elementary matrix $\iff$ Elementary row operation + \subitem $A \to B \iff B = E_1E_2...E_kA$ + \item Post-Multiplication of Elementary matrix $\iff$ Elementary Column Operation + \subitem $A \to B \iff B = AE_1E_2...E_k$ + \item If $E$ is obtained from $I_n$ by single elementary column operation, then + \subitem $I \xrightarrow[]{kC_i}E \iff I \xrightarrow[]{kR_i}E$ + \subitem $I \xrightarrow[]{C_i \leftrightarrow C_j}E \iff I \xrightarrow[]{R_i \leftrightarrow R_j}E$ + \subitem $I \xrightarrow[]{C_i + kC_j}E \iff I \xrightarrow[]{R_j + kR_i}E$ + \end{itemize} +\end{defn} + +\subsection{Determinants} + +\begin{defn}[Determinants of $2 \times 2$ Matrix]\ \\ + \begin{itemize} + \item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ + \item $\det(A) = |A| = ad - bc$ + \end{itemize} + Solving Linear equations with determinants for $2 \times 2$ + \begin{itemize} + \item $x_1 = + \dfrac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}} + {\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$, $x_2 = + \dfrac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}} + {\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$ + \end{itemize} +\end{defn} + +\begin{defn}[Determinants]\ \\ + \begin{itemize} + \item Suppose $A$ is invertible, then there exists EROs such that + \item $A \xrightarrow{ero_1} A_1 \rightarrow ... \rightarrow A_{k-1} \xrightarrow{ero_k}A_k = I$ + \item Then $\det(A)$ can be evaluated backwards. + \subitem E.g. $A \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{3R_2} \bullet \xrightarrow{R_2 + 2R_4} I \implies det(A) = 1 \to 1 \to \frac{1}{3} \to -\frac{1}{3}$ + \item Let $M_{ij}$ be submatrix where the $i$th row and $j$th column are deleted + \item Let $A_{ij} = (-1)^{i+j}\det(M_{ij})$, which is the $(i, j)$-cofactor + \item $\det(A) = a_{11}A_{11} + a_{12}A_{12} + ... + a_{1n}A_{1n}$ + + \item $\det(I) = 1$ + \item $A \xrightarrow{cR_i} B \implies \det(B) = c\det(A)$ + \subitem $I \xrightarrow{cR_i} E \implies \det(E) = c$ + \item $A \xrightarrow{R_1 \leftrightarrow R_2} B \implies \det(B) = -\det(A)$ + \subitem $I \xrightarrow{R_1 \leftrightarrow R_2} E \implies \det(E) = -1$ + \item $A \xrightarrow{R_i + cR_j} B \implies \det(B) = \det(A), i \neq j$ + \subitem $I \xrightarrow{R_i + cR_j} E \implies \det(E) = 1$ + \item $\det(EA) = \det(E)\det(A)$ + \end{itemize} + + Calculating determinants easier + \begin{itemize} + \item Let $A$ be square matrix. Apply Gaussian Elimination to get REF $R$ + \item $A \xrightarrow{E_1} \bullet \xrightarrow{E_2} \bullet ... \bullet \xrightarrow{E_k} R$ + \item $A \xleftarrow{E^{-1}_1} \bullet \xleftarrow{E^{-1}_2} \bullet ... \bullet \xleftarrow{E^{-1}_k} R$ + \item Since $E_i$ and $E^{-1}_k$ is type $II$ or $III$, $\det(E_i) = -1 / 1$ + \subitem $\det(A) = (-1)^t\det(R)$, where $t$ is no of type $II$ or $III$ operations + \item If $A$ is singluar, then $R$ has a zero row, and then $det(A) = 0$ + \item If A is invertible, then all rows of $R$ are nonzero + \subitem $\det(R) = a_{11}a_{22}...{a_nn}$, the product of diagonal entries. + \end{itemize} +\end{defn} + +\subsection{Recap} +\begin{itemize} + \item If A has a REF + \subitem If there is a zero row => Singular matrix + \subitem All rows are nonzero => invertible Matrix + \item If A is invertible, Using Gauss Jordan Elim $(A | I) \to (I | A^{-1})$ + \item +\end{itemize} + +\subsection{More about Determinants} + +\begin{defn}[Determinant Properties]\ \\ + $A$ is a Square Matrix +\begin{itemize} + \item $\det(A) = 0 \implies A$ is singular + \item $\det(A) \neq 0 \implies A$ is invertible + \item $\det(A) = \det(A^T)$ + \item $\det(cA) = c^n\det(A)$, where $n$ is the order of the matrix + \item If $A$ is triangular, $\det(A)$ product of diagonal entries + \item $\det(AB) = \det(A)\det(B)$ + \item $\det(A^{-1}) = [\det(A)]^{-1}$ +\end{itemize} + +Cofactor Expansion: +\begin{itemize} + \item To eavluate determinant using cofactor expansion, expand row/column with most no of zeros. +\end{itemize} +\end{defn} + +\subsection{Finding Determinants TLDR} +\begin{defn}[Finding Determinants]\ \\ + \begin{itemize} + \item If $A$ has zero row / column, $\det(A) = 0$ + \item If $A$ is triangular, $det(A) = a_{11}a_{22}...a_{nn}$ + \item If Order $n = 2 \to \det(A) = a_{11}a_{22} - a_{12}a_{21}$ + + \item If row/column has many 0, use cofactor expansion + \item Use Gaussian Elimination to get REF + \subitem $\det(A) = (-1)^t\det(R), t$ is no of type $II$ operations + \end{itemize} +\end{defn} + +\begin{defn}[Finding Inverse with Adjoint Matrix]\ \\ +\begin{itemize} + \item $\text{adj}(A) = (A_{ji})_{n\times n} = (A_{ij})^T_{n\times n}$ + \item $A^{-1} = [\det(A)]^{-1}\text{adj}(A)$ +\end{itemize} +\end{defn} + +\begin{defn}[Cramer's Rule] Suppose $A$ is an invertible matrix of order $n$ + \begin{itemize} + \item Liner system $Ax = b$ has unique solution + \item $x = \dfrac{1}{\det(A)}\begin{pmatrix}\det(A_1) \\ \vdots \\ det(A_n) \end{pmatrix}$, + \item $A_j$ is obtained by replacing the $j$th column in $A$ with $b$. + \end{itemize} +\end{defn} diff --git a/ma1522/ch_03.tex b/ma1522/ch_03.tex new file mode 100644 index 0000000..b98d1aa --- /dev/null +++ b/ma1522/ch_03.tex @@ -0,0 +1,12 @@ + +\subsection{Euclidian n-Spaces} + +\begin{defn}[Vector Definitions]\ \\ + \begin{itemize} + \item $n$-vector : $v = (v_1, v_2, ..., v_n)$ + \item $\vec{PQ} // \vec{P'Q'} \implies \vec{PQ} = \vec{P'Q'}$ + \item $|| \vec{PQ} || = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2}$ + \item $u + v = (u_1 + v_1, u_2 + v_2), u = (u_1, u_2), v = (v_1, v_2)$ + \item $n$-vector can be viewed as a row matrix / column matrix + \end{itemize} +\end{defn} diff --git a/ma1522/lec_01.tex b/ma1522/lec_01.tex deleted file mode 100644 index bbc8715..0000000 --- a/ma1522/lec_01.tex +++ /dev/null @@ -1,177 +0,0 @@ -\subsection{Linear Algebra} -\begin{itemize} - \item \textbf{Linear} The study of items/planes and objects which are flat - \item \textbf{Algebra} Objects are not as simple as numbers -\end{itemize} - -\subsection{Linear Systems \& Their Solutions} - -Points on a straight line are all the points $(x, y)$ on the $xy$ plane satisfying the linear eqn: $ax + by = c$, where $a, b > 0$ - -\subsubsection{Linear Equation} -Linear eqn in $n$ variables (unknowns) is an eqn in the form -$$ a_1x_1 + a_2x_2 + ... + a_nx_n = b$$ -where $a_1, a_2, ..., a_n, b$ are constants. - -\begin{note} -In a linear system, we don't assume that $a_1, a_2, ..., a_n$ are not all 0 -\begin{itemize} - \item If $a_1 = ... = a_n = 0$ but $b \neq 0$, it is \textbf{inconsistent} - - E.g. $0x_1 + 0x_2 = 1$ - - \item If $a_1 = ... = a_n = b = 0$, it is a \textbf{zero equation} - - E.g. $0x_1 + 0x_2 = 0$ - \item Linear equation which is not a zero equation is a \textbf{nonzero equation} - - E.g. $2x_1 - 3x_2 = 4$ - \item The following are not linear equations - \begin{itemize} - \item $xy = 2$ - \item $\sin\theta + \cos\phi = 0.2$ - \item $x_1^2 + x_2^2 + ... + x_n^2 = 1$ - \item $x = e^y$ - \end{itemize} -\end{itemize} -\end{note} - -In the $xyz$ space, linear equation $ax + by + cz = d$ where $a, b, c > 0$ represents a plane - -\subsubsection{Solutions to a Linear Equation} -Let $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ be a linear eqn in n variables \\ -For real numbers $s_1+ s_2+ ... + s_n$, if $a_1s_1 + a_2s_2 + ... + a_ns_n = b$, then $x_1 = s_1, x_2 = s_2, x_n = s_n$ is a solution to the linear equation \\ -The set of all solutions is the \textbf{solution set}\\ -Expression that gives the entire solution set is the \textbf{general solution} - -\textbf{Zero Equation} is satified by any values of $x_1, x_2,... x_n$ - -General solution is given by $(x_1, x_2, ..., x_n) = (t_1, t_2, ..., t_n)$ - - -\subsubsection{Examples: Linear equation $4x-2y = 1$} -\begin{itemize} - \item x can take any arbitary value, say t - \item $x = t \Rightarrow y = 2t - \frac{1}{2}$ - \item General Solution: - $ - \begin{cases} - x = t & \text{t is a parameter}\\ - y = 2t - \frac{1}{2} - \end{cases} - $ - \item y can take any arbitary value, say s - \item $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}$ - \item General Solution: - $ - \begin{cases} - y = s & \text{s is a parameter}\\ - x = \frac{1}{2}s + \frac{1}{4} - \end{cases} - $ -\end{itemize} - -\subsubsection{Example: Linear equation $x_1 - 4x_2 + 7x_3 = 5$} - -\begin{itemize} - \item $x_2$ and $x_3$ can be chosen arbitarily, $s$ and $t$ - \item $x_1 = 5 + 4s -7t$ - \item General Solution: - $ - \begin{cases} - x_1 = 5 + 4s -7t \\ - x_2 = s & s, t \text{ are arbitrary parameters}\\ - x_3 = t \\ - \end{cases} - $ -\end{itemize} - - -\subsection{Linear System} -Linear System of m linear equations in n variables is -\begin{equation} -\begin{cases} - a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ - a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\ - \vdots \\ - a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\ -\end{cases} -\end{equation} -where $a_{ij}, b$ are real constants and $a_{ij}$ is the coeff of $x_j$ in the $i$th equation - -\begin{note} Linear Systems - \begin{itemize} - \item If $a_{ij}$ and $b_i$ are zero, linear system is called a \textbf{zero system} - \item If $a_{ij}$ and $b_i$ is nonzero, linear system is called a \textbf{nonzero system} - \item If $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$ is a solution to \textbf{every equation} in the system, then its a solution to the system - \item If every equation has a solution, there might not be a solution to the system - \item \textbf{Consistent} if it has at least 1 solution - \item \textbf{Inconsistent} if it has no solutions - \end{itemize} -\end{note} - - -\subsubsection{Example} -\begin{equation} -\begin{cases} -a_1x + b1_y = c_1 \\ -a_2x + b2_y = c_2 \\ -\end{cases} -\end{equation} - -where $a_1, b_1, a_2, b_2$ not all zero - -In $xy$ plane, each equation represents a straight line, $L_1, L_2$ - -\begin{itemize} - \item If $L_1, L_2$ are parallel, there is no solution - \item If $L_1, L_2$ are not parallel, there is 1 solution - \item If $L_1, L_2$ coinside(same line), there are infinitely many solution -\end{itemize} - -\begin{equation} -\begin{cases} -a_1x + b1_y + c_1z = d_1 \\ -a_2x + b2_y + c_2z = d_2 \\ -\end{cases} -\end{equation} - -where $a_1, b_1, c_1, a_2, b_2, c_2$ not all zero - -In $xyz$ space, each equation represents a plane, $P_1, P_2$ - -\begin{itemize} - \item If $P_1, P_2$ are parallel, there is no solution - \item If $P_1, P_2$ are not parallel, there is $\infty$ solutions (on the straight line intersection) - \item If $P_1, P_2$ coinside(same plane), there are infinitely many solutions - \item Same Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1: d_2$ - \item Parallel Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$ - \item Intersect Plane $\Leftrightarrow a_1 : a_2, b_1 : b_2, c_1 : c_2$ are not the same -\end{itemize} - -\subsection{Augmented Matrix} -$ - \begin{amatrix}{3} - a_{11} & a_{12} & a_{1n} & b_1 \\ - a_{21} & a_{12} & a_{2n} & b_2 \\ - a_{m1} & a_{m2} & a_{mn} & b_m \\ - \end{amatrix} -$ - -\subsection{Elementary Row Operations} -To solve a linear system we perform operations: -\begin{itemize} - \item Multiply equation by nonzero constant - \item Interchange 2 equations - \item add a constant multiple of an equation to another -\end{itemize} - -Likewise, for a augmented matrix, the operations are on the \textbf{rows} of the augmented matrix - -\begin{itemize} - \item Multiply row by nonzero constant - \item Interchange 2 rows - \item add a constant multiple of a row to another row -\end{itemize} - -To note: all these operations are revertible diff --git a/ma1522/lec_03.tex b/ma1522/lec_03.tex deleted file mode 100644 index 9bbb2c1..0000000 --- a/ma1522/lec_03.tex +++ /dev/null @@ -1,60 +0,0 @@ -\subsection{Review} - -\begin{align*} - I: & cR_i, c \neq 0 \\ - II: & R_i \Leftrightarrow R_j \\\ - III: & R_i \Rightarrow R_i + cR_j -\end{align*} - -Solving REF: -\begin{enumerate} - \item Set var -> non-pivot cols as params - \item Solve var -> pivot cols backwards - - \# of nonzero rows = \# pivot pts = \# of pivot cols -\end{enumerate} - -Gaussian Elimination -\begin{enumerate} - \item Given a matrix $A$, find left most non-zero \textbf{column}. If the leading number is NOT zero, use $II$ to swap rows. - \item Ensure the rest of the column is 0 (by subtracting the current row from tht other rows) - \item Cover the top row and continue for next rows -\end{enumerate} - -\subsection{Consistency} -\begin{defn}[Consistency]\ \\ - Suppose that $A$ is the Augmented Matrix of a linear system, and $R$ is a row-echelon form of $A$. - \begin{itemize} - \item When the system has no solution(inconsistent)? - \subitem There is a row in $R$ with the form $(0 0 ... 0 | \otimes)$ where $\otimes \neq 0$ - \subitem Or, the last column is a pivot column - \item When the system has exactly one solution? - \subitem Last column is non-pivot - \subitem All other columns are pivot columns - \item When the system has infinitely many solutions? - \subitem Last column is non-pivot - \subitem Some other columns are non-pivot columns. - \end{itemize} -\end{defn} - -\begin{note} Notations\ \\ - For elementary row operations - \begin{itemize} - \item Multiply $i$th row by (nonzero) const $k$: $kR_i$ - \item Interchange $i$th and $j$th rows: $R_i \leftrightarrow R_j$ - \item Add $K$ times $i$th row to $j$th row: $R_j + kR_i$ - \end{itemize} - \textbf{Note} - \begin{itemize} - \item $R_1 + R_2$ means "add 2nd row to the 1st row". - \item $R_2 + R_1$ means "add 1nd row to the 2st row". - \end{itemize} - - \textbf{Example} -$$ \begin{pmatrix} a \\ b \end{pmatrix} -\xrightarrow{R_1 + R_2} \begin{pmatrix} a + b \\ b \end{pmatrix} -\xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} a + b \\ -a \end{pmatrix} -\xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix} -\xrightarrow{(-1)R_2}\begin{pmatrix} b \\ a \end{pmatrix} - $$ -\end{note} diff --git a/ma1522/lec_04.tex b/ma1522/lec_04.tex deleted file mode 100644 index bedf46b..0000000 --- a/ma1522/lec_04.tex +++ /dev/null @@ -1,92 +0,0 @@ -\subsection{Homogeneous Linear System} - -\begin{defn}[Homogeneous Linear Equation \& System]\ where - \begin{itemize} - \item Homogeneous Linear Equation: $a_1x_1 + a_2x_2 + ... + a_nx_n = 0 \iff x_1 = 0, x_2 = 0,... , x_n = 0$ - \item Homogeneous Linear Equation: $\begin{cases} - a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 0 \\ - a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0 \\ - \vdots \\ - a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = 0 \\ - \end{cases}$ - - \item This is the trivial solution of a homogeneous linear system. - \end{itemize} - - You can use this to solve problems like Find the equation $ax^2 + by^2 + cz^2 = d$, in the $xyz$ plane which contains the points $(1, 1, -1), (1, 3, 3), (-2, 0, 2)$. - - \begin{itemize} - \item Solve by first converting to Augmented Matrix, where the last column is all 0. During working steps, this column can be omitted. - \item With the \hyperref[def:rref]{RREF}, you can set $d$ as $t$ and get values for $a, b, c$ in terms of $t$. - \item sub in $t$ into the original equation and factorize $t$ out from both sides, for values where $t \neq 0$ - \end{itemize} - -\end{defn} - -\subsection{Matrix} - -\begin{defn}[Matrix]\ \\ - \begin{itemize} - \item $\begin{pmatrix} - a_{11} & a_{12} & ... & a_{1n} \\ - a_{21} & a_{22} & ... & a_{2n} \\ - \vdots \\ - a_{m1} & a_{m2} & ... & a_{mn} - \end{pmatrix}$ - \item $m$ is no of rows, $n$ is no of columns - \item size is $m \times n$ - \item $A = (a_{ij})_{m \times n}$ - - \end{itemize} -\end{defn} - -\subsection{Special Matrix} - -\begin{note}[Special Matrices]\ \\ - \begin{itemize} - \item Row Matrix : $\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$ - \item Column Matrix - \subitem $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ - \item \textbf{Square Matrix}, $n \times n$ matrix / matrix of order $n$. - \subitem Let $A = (a_{ij})$ be a square matrix of order $n$ - \item Diagonal of $A$ is $a_{11}, a_{22}, ..., a_{nn}$. - \item \textbf{Diagonal Matrix} if Square Matrix and non-diagonal entries are zero - \subitem Diagonals can be zero - \subitem \textbf{Identity Matrix} is a special case of this - \item \textbf{Square Matrix} if Diagonal Matrix and diagonal entries are all the same. - \item \textbf{Identity Matrix} if Scalar Matrix and diagonal = 1 - \subitem $I_n$ is the identity matrix of order $n$. - \item \textbf{Zero Matrix} if all entries are 0. - \subitem Can denote by either $\overrightarrow{0}, 0$ - \item Square matrix is \textbf{symmetric} if symmetric wrt diagonal - \subitem $A = (a_{ij})_{n \times n}$ is symmetric $\iff a_{ij} = a_{ji},\ \forall i, j$ - \item \textbf{Upper Triangular} if all entries \textbf{below} diagonal are zero. - \subitem $A = (a_{ij})_{n \times n}$ is upper triangular $\iff a_{ij} = 0 \text{ if } i > j$ - \item \textbf{Lower Triangular} if all entries \textbf{above} diagonal are zero. - \label{def:ltm} - \subitem $A = (a_{ij})_{n \times n}$ is lower triangular $\iff a_{ij} = 0 \text{ if } i < j$ - \subitem if Matrix is both Lower and Upper triangular, its a Diagonal Matrix. - \end{itemize} -\end{note} - -\subsection{Matrix Operations} - -\begin{defn}[Matrix Operations]\ \\ - Let $A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}$ - \begin{itemize} - \item Equality: $B = (b_{ij})_{p \times q}$, $A = B \iff m = p \ \& \ n = q \ \& \ a_{ij} = b_{ij} \forall i,j$ - \item Addition: $A + B = (a_{ij} + b_{ij})_{m \times n}$ - \item Subtraction: $A - B = (a_{ij} - b_{ij})_{m \times n}$ - \item Scalar Mult: $cA = (ca_{ij})_{m \times n}$ - \end{itemize} -\end{defn} - -\begin{defn}[Matrix Multiplication] \ \\ - Let $A = (a_{ij})_{m \times p}, B = (b_{ij})_{p \times n}$ - \begin{itemize} - \item $AB$ is the $m \times n$ matrix s.t. $(i,j)$ entry is $$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{ip}b_{pj} = \sum^p_{k=1}a_{ik}b_{kj}$$ - \item No of columns in $A$ = No of rows in $B$. - \item Matrix multiplication is \textbf{NOT commutative} - \end{itemize} -\end{defn} - diff --git a/ma1522/lec_05.tex b/ma1522/lec_05.tex deleted file mode 100644 index 8cb9728..0000000 --- a/ma1522/lec_05.tex +++ /dev/null @@ -1,121 +0,0 @@ -\begin{theorem}[Matrix Properties]\ \\ - Let $A, B, C$ be $m \times p, p \times q, q \times n$ matrices - \begin{itemize} - \item Associative Law: $A(BC) = (AB)C$ - \item Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$ - \item Distributive Law: $(B_1 + B_2)A = B_1A + B_2A$ - \item $c(AB) = (cA)B = A(cB)$ - \item $A\textbf{0}_{p \times n} = \textbf{0}_{m \times n}$ - \item $A\textbf{I}_{n} = \textbf{I}_{n}A = A$ - \end{itemize} -\end{theorem} - - -\begin{defn}[Powers of Square Matricss]\ \\ - Let $A$ be a $m \times n$. - - $AA$ is well defined $\iff m = n \iff A$ is square. - - \textbf{Definition.} Let $A$ be square matrix of order $n$. Then Powers of a are - $$ - A^k = \begin{cases} - I_n & \text{if } k = 0 \\ - AA...A & \text{if } k \geq 1. - \end{cases} - $$ - - \textbf{Properties.} - \begin{itemize} - \item $A^mA^n = A^{m+n}, (A^m)^n = A^{mn}$ - \item $(AB)^2 = (AB)(AB) \neq A^2B^2 = (AA)(BB)$ - \end{itemize} -\end{defn} - -Matrix Multiplication Example: - -\begin{itemize} - \item Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$ - \item Let $a_1 = \begin{pmatrix}1 & 2 & 3 \end{pmatrix}, a_2 = \begin{pmatrix}4 & 5 & 6 \end{pmatrix}$ - \item $AB = \begin{pmatrix} a_1 & a_2 \end{pmatrix}B = \begin{pmatrix} a_1B \\ a_2B \end{pmatrix}$. - \item $\begin{pmatrix} - \begin{pmatrix}1 & 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \\ - \begin{pmatrix}4 & 5 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} - \end{pmatrix} = \begin{pmatrix} - \begin{pmatrix}2 & 1\end{pmatrix} \\ - \begin{pmatrix}8 & 7\end{pmatrix} \\ - \end{pmatrix} - $ -\end{itemize} - -\begin{note}[Representation of Linear System] \ \\ - \begin{itemize} - \item $\begin{cases} - a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n & = b_1 \\ - a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n & = b_2 \\ - \vdots & \vdots \\ - a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n & = b_m \\ - \end{cases}$ - - \item A = $\begin{pmatrix} - a_{11} & a_{12} & ... & a_{1n} \\ - a_{21} & a_{22} & ... & a_{2n} \\ - \vdots & \vdots & & \vdots \\ - a_{m1} & a_{m2} & ... & a_{mn} \\ - \end{pmatrix}$, Coefficient Matrix, $A_{m\times n}$ - \item $x = \begin{pmatrix} - x_{1} \\ - \vdots \\ - x_{n} \\ - \end{pmatrix}$, Variable Matrix, $x_{n \times 1}$ - \item $b = \begin{pmatrix} - b_{1} \\ - \vdots \\ - b_{m} \\ - \end{pmatrix}$, Constant Matrix, $b_{m \times 1}$. Then $Ax = b$ - \item $A = (a_{ij})_{m\times n} $ - \item $m$ linear equations in $n$ variables, $x_1, ..., x_n$ - \item $a_{ij}$ are coefficients, $b_i$ are the constants - \item Let $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$. - \subitem $x_1 = u_1, \hdots, x_n = u_n$ is a solution to the system - \subitem $\iff Au = b \iff u$ is a solution to $Ax = b$ - \item Let $a_j$ denote the $j$th column of $A$. Then - \subitem $b = Ax = x_1a_1 + ... + x_na_n = \sum^n_{j=1}x_ja_j$ - \end{itemize} -\end{note} - -\begin{defn}[Transpose]\ \\ - \begin{itemize} - \item Let $A = (a_{ij})_{m\times n}$ - \item The transpose of $A$ is $A^T = (a_{ji})_{n \times m}$ - \item $(A^T)^T = A$ - \item A is symmetric $\iff A = A^T$ - \item Let $B$ be $m \times n$, $(A+B)^T = A^T + B^T$ - \item Let $B$ be $n \times p$, $(AB)^T = B^TA^T$ - \end{itemize} -\end{defn} - -\begin{defn}[Inverse]\ \\ - \begin{itemize} - \item Let $A, B$ be matrices of same size - \subitem $A + X = B \implies X = B - A = B + (-A)$ - \subitem $-A$ is the \textit{additive inverse} of $A$ - \item Let $A_{m\times n}, B_{m\times p}$ matrix. - \subitem $AX = B \implies X = A^{-1}B$. - \end{itemize} - - - Let A be a \textbf{square matrix} of order $n$. - \begin{itemize} - \item If there exists a square matrix $B$ of order $N$ s.t. $AB = I_{n}$ and $BA = I_{n}$, then $A$ is \textbf{invertible} matrix and $B$ is inverse of $A$. - \item If $A$ is not invertible, A is called singular. - \item suppose $A$ is invertible with inverse $B$ - \item Let $C$ be any matrix having the same number of rows as $A$. - $$\begin{aligned} - AX = C &\implies B(AX) = BC \\ - &\implies (BA)X = BC \\ - &\implies X = BC. - \end{aligned}$$ - \end{itemize} - - -\end{defn} diff --git a/ma1522/lec_06.tex b/ma1522/lec_06.tex deleted file mode 100644 index 00e3c26..0000000 --- a/ma1522/lec_06.tex +++ /dev/null @@ -1,72 +0,0 @@ -\begin{theorem}[Properties of Inversion]\ \\ - Let $A$ be a square matrix. - \begin{itemize} - \item Let $A$ be an invertible matrix, then its inverse is unique. - \item Cancellation Law: Let $A$ be an invertible matrix - \subitem $AB_1 = AB_2 \implies B_1 = B_2$ - \subitem $C_1A = C_2A \implies C_1 = C_2$ - \subitem $AB = 0 \implies B = 0, CA = 0 \implies C = 0$ ($A$ is invertible, A cannot be 0) - \subitem This fails if $A$ is singular - \item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ - \subitem $A$ is invertible $\iff ad - bc \neq 0$ - \subitem $A$ is invertible $A^{-1} = \dfrac{1}{ad - bc} \begin{pmatrix}d & -b \\ -c & a \end{pmatrix}$ - - \end{itemize} - Let $A$ and $B$ be invertible matrices of same order - \begin{itemize} - \item Let $c \neq 0$. Then $cA$ is invertible, $(cA^{-1} = \frac{1}{c}A^{-1}$ - \item $A^T$ is invertible, $(A^T)^{-1} = (A^{-1})^T$ - \item $AB$ is invertible, $(AB)^{-1} = (B^{-1}A^{-1})$ - \end{itemize} - - Let $A$ be an invertible matrix. - - \begin{itemize} - \item $A^{-k} = (A^{-1})^k$ - \item $A^{m+n} = A^mA^n$ - \item $(A^m)^n = A^{mn}$ - \end{itemize} - - -\end{theorem} - -\begin{defn}[Elementary Matrices] If it can be obtained from $I$ by performing single elementary row operation - \begin{itemize} - \item $cRi, c \neq 0: \begin{pmatrix} - 1 & 0 & 0 & 0 \\ - 0 & 1 & 0 & 0 \\ - 0 & 0 & c & 0 \\ - 0 & 0 & 0 & 1 - \end{pmatrix}(cR_3)$ - \item $R_i \leftrightarrow R_j, i \neq j,: \begin{pmatrix} - 1 & 0 & 0 & 0 \\ - 0 & 0 & 0 & 1 \\ - 0 & 0 & 1 & 0 \\ - 0 & 1 & 0 & 0 - \end{pmatrix}(R_2 \leftrightarrow R_4)$ - \item $R_i + cR_j, i \neq j,: \begin{pmatrix} - 1 & 0 & 0 & 0 \\ - 0 & 1 & 0 & c \\ - 0 & 0 & 1 & 0 \\ - 0 & 0 & 0 & 1 - \end{pmatrix}(R_2 + cR_4)$ - \item Every elementary Matrix is invertible - \end{itemize} -\end{defn} - -$A = \begin{pmatrix} - a_{11}&a_{12}&a_{13}\\ - a_{21}&a_{22}&a_{23}\\ - a_{31}&a_{32}&a_{33}\\ - a_{41}&a_{42}&a_{43} -\end{pmatrix}$, $E = \begin{pmatrix} - 1&0&0&0\\ - 0&1&0&0\\ - 0&0&c&0\\ - 0&0&0&1 -\end{pmatrix}(cR_3)$, $EA = \begin{pmatrix} - a_{11}&a_{12}&a_{13}\\ - a_{21}&a_{22}&a_{23}\\ - ca_{31}&ca_{32}&ca_{33}\\ - a_{41}&a_{42}&a_{43} -\end{pmatrix}$ diff --git a/ma1522/lec_07.tex b/ma1522/lec_07.tex deleted file mode 100644 index 695f449..0000000 --- a/ma1522/lec_07.tex +++ /dev/null @@ -1,107 +0,0 @@ -\begin{theorem} Main Theorem for Invertible Matrices \\ - Let $A$ be a square matrix. Then the following are equivalent - \begin{enumerate} - \item $A$ is an invertible matrix. - \item Linear System $Ax = b$ has a unique solution - \item Linear System $Ax = 0$ has only the trivial solution - \item RREF of $A$ is $I$ - \item A is the product of elementary matrices - \end{enumerate} -\end{theorem} - -\begin{theorem} Find Inverse - \begin{itemize} - \item Let $A$ be an invertible Matrix. - \item RREF of $(A | I)$ is $(I | A^{-1})$ - \end{itemize} - - How to identify if Square Matrix is invertible? - - \begin{itemize} - \item Square matrix is invertible - \subitem $\iff$ RREF is $I$ - \subitem $\iff$ All columns in its REF are pivot - \subitem $\iff$ All rows in REF are nonzero - \item Square matrix is singular - \subitem $\iff$ RREF is \textbf{NOT} $I$ - \subitem $\iff$ Some columns in its REF are non-pivot - \subitem $\iff$ Some rows in REF are zero. - \item $A$ and $B$ are square matrices such that $AB = I$ - \subitem then $A$ and $B$ are invertible - \end{itemize} -\end{theorem} - -\begin{defn}[LU Decomposition with Type 3 Operations]\ \\ - \begin{itemize} - \item Type 3 Operations: $(R_i + cR_j, i > j)$ - \item Let $A$ be a $m \times n$ matrix. Consider Gaussian Elimination $A \dashrightarrow R$ - \item Let $R \dashrightarrow A$ be the operations in reverse - \item Apply the same operations to $I_m \dashrightarrow L$. Then $A = LR$ - \item $L$ is a \hyperref[def:ltm]{lower triangular matrix} with 1 along diagonal - \item If $A$ is square matrix, $R = U$ - \end{itemize} - - Application: - \begin{itemize} - \item $A$ has LU decomposition $A = LU$, $Ax = b$ i.e., $LUx = b$ - \item Let $y = Ux$, then it is reduced to $Ly = b$ - \item $Ly = b$ can be solved with forward substitution. - \item $Ux = y$ is the REF of A. - \item $Ux = y$ can be solved using backward substitution. - - \end{itemize} -\end{defn} - -\begin{defn}[LU Decomposition with Type II Operations]\ \\ - \begin{itemize} - \item Type 2 Operations: $(R_i \leftrightarrow R_j)$, where 2 rows are swapped - \item $A \xrightarrow[]{E_1} \bullet \xrightarrow[]{E_2}\bullet \xrightarrow[E_3]{R_i \iff R_j}\bullet \xrightarrow[]{E_4}\bullet \xrightarrow[]{E_5} R$ - \item $A = E^{-1}_1E^{-1}_2E^{}_3E^{-1}_4E^{-1}_5R$ - \item $E_3A = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5R$ - \item $P = E_3, L = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5, R = U$, $PA = LU$ - - \end{itemize} -\end{defn} - -\begin{defn}[Column Operations]\ \\ - \begin{itemize} - \item Pre-multiplication of Elementary matrix $\iff$ Elementary row operation - \subitem $A \to B \iff B = E_1E_2...E_kA$ - \item Post-Multiplication of Elementary matrix $\iff$ Elementary Column Operation - \subitem $A \to B \iff B = AE_1E_2...E_k$ - \item If $E$ is obtained from $I_n$ by single elementary column operation, then - \subitem $I \xrightarrow[]{kC_i}E \iff I \xrightarrow[]{kR_i}E$ - \subitem $I \xrightarrow[]{C_i \leftrightarrow C_j}E \iff I \xrightarrow[]{R_i \leftrightarrow R_j}E$ - \subitem $I \xrightarrow[]{C_i + kC_j}E \iff I \xrightarrow[]{R_j + kR_i}E$ - \end{itemize} -\end{defn} - -\subsection{Determinants} - -\begin{defn}[Determinants of $2 \times 2$ Matrix]\ \\ - \begin{itemize} - \item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ - \item $\det(A) = |A| = ad - bc$ - \item $\det(I_2) = 1$ - \item $A \xrightarrow{cR_i} B \implies \det(B) = c\det(A)$ - \item $A \xrightarrow{R_1 \leftrightarrow R_2} B \implies \det(B) = -\det(A)$ - \item $A \xrightarrow{R_i + cR_j} B \implies \det(B) = \det(A), i \neq j$ - \end{itemize} - Solving Linear equations with determinants for $2 \times 2$ - \begin{itemize} - \item $x_1 = - \dfrac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}} - {\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$, $x_2 = - \dfrac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}} - {\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$ - \end{itemize} -\end{defn} - -\begin{defn}[Determinants of $3 \times 3$ Matrix]\ \\ - \begin{itemize} - \item Suppose $A$ is invertible, then there exists EROs such that - \item $A \xrightarrow{ero_1} A_1 \rightarrow ... \rightarrow A_{k-1} \xrightarrow{ero_k}A_k = I$ - \item Then $\det(A)$ can be evaluated backwards. - \subitem E.g. $A \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{3R_2} \bullet \xrightarrow{R_2 + 2R_4} I \implies det(A) = 1 \to 1 \to \frac{1}{3} \to -\frac{1}{3}$ - \end{itemize} -\end{defn} diff --git a/ma1522/lec_08.tex b/ma1522/lec_08.tex deleted file mode 100644 index e69de29..0000000 diff --git a/ma1522/lec_09.tex b/ma1522/lec_09.tex deleted file mode 100644 index e69de29..0000000 diff --git a/ma1522/lec_10.tex b/ma1522/lec_10.tex deleted file mode 100644 index e69de29..0000000 diff --git a/ma1522/lec_11.tex b/ma1522/lec_11.tex deleted file mode 100644 index e69de29..0000000 diff --git a/ma1522/lec_12.tex b/ma1522/lec_12.tex deleted file mode 100644 index e69de29..0000000 diff --git a/ma1522/lec_13.tex b/ma1522/lec_13.tex deleted file mode 100644 index e69de29..0000000 diff --git a/ma1522/preamble.tex b/ma1522/preamble.tex index 1b3ed83..b9c2723 100644 --- a/ma1522/preamble.tex +++ b/ma1522/preamble.tex @@ -22,6 +22,7 @@ \let\implies\Rightarrow \let\impliedby\Leftarrow \let\iff\Leftrightarrow +\let\vec\overrightarrow \newcommand{\HRule}[1]{\rule{\linewidth}{#1}}