feat: 1522 lec 7

This commit is contained in:
Yadunand Prem 2024-02-27 20:34:29 +08:00
parent 2639234e64
commit 21b4fc1f6e
No known key found for this signature in database
4 changed files with 136 additions and 0 deletions

Binary file not shown.

View File

@ -54,6 +54,34 @@
\hr
\input{lec_06.tex}
\newpage
\section{Lecture 7}
\hr
\input{lec_07.tex}
\newpage
\section{Lecture 8}
\hr
\input{lec_08.tex}
\newpage
\section{Lecture 9}
\hr
\input{lec_09.tex}
\newpage
\section{Lecture 10}
\hr
\input{lec_10.tex}
\newpage
\section{Lecture 11}
\hr
\input{lec_11.tex}
\newpage
\section{Lecture 12}
\hr
\input{lec_12.tex}
\newpage
\section{Lecture 13}
\hr
\input{lec_13.tex}
\newpage
\section{Reference}

View File

@ -63,6 +63,7 @@
\item \textbf{Upper Triangular} if all entries \textbf{below} diagonal are zero.
\subitem $A = (a_{ij})_{n \times n}$ is upper triangular $\iff a_{ij} = 0 \text{ if } i > j$
\item \textbf{Lower Triangular} if all entries \textbf{above} diagonal are zero.
\label{def:ltm}
\subitem $A = (a_{ij})_{n \times n}$ is lower triangular $\iff a_{ij} = 0 \text{ if } i < j$
\subitem if Matrix is both Lower and Upper triangular, its a Diagonal Matrix.
\end{itemize}

107
ma1522/lec_07.tex Normal file
View File

@ -0,0 +1,107 @@
\begin{theorem} Main Theorem for Invertible Matrices \\
Let $A$ be a square matrix. Then the following are equivalent
\begin{enumerate}
\item $A$ is an invertible matrix.
\item Linear System $Ax = b$ has a unique solution
\item Linear System $Ax = 0$ has only the trivial solution
\item RREF of $A$ is $I$
\item A is the product of elementary matrices
\end{enumerate}
\end{theorem}
\begin{theorem} Find Inverse
\begin{itemize}
\item Let $A$ be an invertible Matrix.
\item RREF of $(A | I)$ is $(I | A^{-1})$
\end{itemize}
How to identify if Square Matrix is invertible?
\begin{itemize}
\item Square matrix is invertible
\subitem $\iff$ RREF is $I$
\subitem $\iff$ All columns in its REF are pivot
\subitem $\iff$ All rows in REF are nonzero
\item Square matrix is singular
\subitem $\iff$ RREF is \textbf{NOT} $I$
\subitem $\iff$ Some columns in its REF are non-pivot
\subitem $\iff$ Some rows in REF are zero.
\item $A$ and $B$ are square matrices such that $AB = I$
\subitem then $A$ and $B$ are invertible
\end{itemize}
\end{theorem}
\begin{defn}[LU Decomposition with Type 3 Operations]\ \\
\begin{itemize}
\item Type 3 Operations: $(R_i + cR_j, i > j)$
\item Let $A$ be a $m \times n$ matrix. Consider Gaussian Elimination $A \dashrightarrow R$
\item Let $R \dashrightarrow A$ be the operations in reverse
\item Apply the same operations to $I_m \dashrightarrow L$. Then $A = LR$
\item $L$ is a \hyperref[def:ltm]{lower triangular matrix} with 1 along diagonal
\item If $A$ is square matrix, $R = U$
\end{itemize}
Application:
\begin{itemize}
\item $A$ has LU decomposition $A = LU$, $Ax = b$ i.e., $LUx = b$
\item Let $y = Ux$, then it is reduced to $Ly = b$
\item $Ly = b$ can be solved with forward substitution.
\item $Ux = y$ is the REF of A.
\item $Ux = y$ can be solved using backward substitution.
\end{itemize}
\end{defn}
\begin{defn}[LU Decomposition with Type II Operations]\ \\
\begin{itemize}
\item Type 2 Operations: $(R_i \leftrightarrow R_j)$, where 2 rows are swapped
\item $A \xrightarrow[]{E_1} \bullet \xrightarrow[]{E_2}\bullet \xrightarrow[E_3]{R_i \iff R_j}\bullet \xrightarrow[]{E_4}\bullet \xrightarrow[]{E_5} R$
\item $A = E^{-1}_1E^{-1}_2E^{}_3E^{-1}_4E^{-1}_5R$
\item $E_3A = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5R$
\item $P = E_3, L = (E_3E^{-1}_1E^{-1}_2E_3)E^{-1}_4E^{-1}_5, R = U$, $PA = LU$
\end{itemize}
\end{defn}
\begin{defn}[Column Operations]\ \\
\begin{itemize}
\item Pre-multiplication of Elementary matrix $\iff$ Elementary row operation
\subitem $A \to B \iff B = E_1E_2...E_kA$
\item Post-Multiplication of Elementary matrix $\iff$ Elementary Column Operation
\subitem $A \to B \iff B = AE_1E_2...E_k$
\item If $E$ is obtained from $I_n$ by single elementary column operation, then
\subitem $I \xrightarrow[]{kC_i}E \iff I \xrightarrow[]{kR_i}E$
\subitem $I \xrightarrow[]{C_i \leftrightarrow C_j}E \iff I \xrightarrow[]{R_i \leftrightarrow R_j}E$
\subitem $I \xrightarrow[]{C_i + kC_j}E \iff I \xrightarrow[]{R_j + kR_i}E$
\end{itemize}
\end{defn}
\subsection{Determinants}
\begin{defn}[Determinants of $2 \times 2$ Matrix]\ \\
\begin{itemize}
\item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
\item $\det(A) = |A| = ad - bc$
\item $\det(I_2) = 1$
\item $A \xrightarrow{cR_i} B \implies \det(B) = c\det(A)$
\item $A \xrightarrow{R_1 \leftrightarrow R_2} B \implies \det(B) = -\det(A)$
\item $A \xrightarrow{R_i + cR_j} B \implies \det(B) = \det(A), i \neq j$
\end{itemize}
Solving Linear equations with determinants for $2 \times 2$
\begin{itemize}
\item $x_1 =
\dfrac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}
{\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$, $x_2 =
\dfrac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}
{\begin{vmatrix}a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}$
\end{itemize}
\end{defn}
\begin{defn}[Determinants of $3 \times 3$ Matrix]\ \\
\begin{itemize}
\item Suppose $A$ is invertible, then there exists EROs such that
\item $A \xrightarrow{ero_1} A_1 \rightarrow ... \rightarrow A_{k-1} \xrightarrow{ero_k}A_k = I$
\item Then $\det(A)$ can be evaluated backwards.
\subitem E.g. $A \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{3R_2} \bullet \xrightarrow{R_2 + 2R_4} I \implies det(A) = 1 \to 1 \to \frac{1}{3} \to -\frac{1}{3}$
\end{itemize}
\end{defn}