918 lines
36 KiB
TeX
918 lines
36 KiB
TeX
\documentclass[a4paper]{article}
|
|
\usepackage{amsmath}
|
|
\usepackage{amsthm}
|
|
\usepackage{amssymb}
|
|
|
|
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{textcomp}
|
|
\usepackage{url}
|
|
% \usepackage{subcaption}
|
|
\usepackage{emptypage}
|
|
% \usepackage{multicol}
|
|
\usepackage{cancel}
|
|
\usepackage{mathtools}
|
|
|
|
\usepackage{lscape}
|
|
\usepackage{pdflscape}
|
|
|
|
\usepackage{float}
|
|
|
|
|
|
\usepackage{xifthen}
|
|
\usepackage[skip=10pt]{parskip}
|
|
|
|
\usepackage{comment}
|
|
\usepackage[margin=0.5in]{geometry}
|
|
\setlength{\parindent}{0pt}
|
|
|
|
\usepackage{1231num}
|
|
|
|
\theoremstyle{definition}
|
|
\newtheorem*{defn}{Defn}
|
|
|
|
\newtheorem*{propos}{Proposition}
|
|
|
|
\renewcommand{\qedsymbol}{}
|
|
|
|
\newtheorem{innertheorem}{Theorem}
|
|
\newenvironment{theorem}[1]
|
|
{\renewcommand\theinnertheorem{#1}\innertheorem}
|
|
{\endinnertheorem}
|
|
|
|
|
|
\author{Yadunand Prem}
|
|
|
|
\title{Midterms Cheatsheet}
|
|
|
|
\begin{document}
|
|
|
|
\section{Math}
|
|
|
|
\begin{defn}{Even and Odd Integers}\\
|
|
n is even $\Leftrightarrow \exists$ an integer $k$ s.t. $n = 2k$\\
|
|
n is odd $\Leftrightarrow \exists$ an integer $k$ s.t. $n = 2k + 1$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Divisibility}\\
|
|
$n$ and $d$ are integers and $d \not= 0$ \\
|
|
$d | n \Leftrightarrow \exists k \in \mathbb{Z}$ s.t. $n = dk$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{4.2.1}
|
|
Every Integer is a rational number
|
|
\end{theorem}
|
|
|
|
\begin{theorem}{4.2.2}
|
|
The sum of any two rational numbers is rational
|
|
\end{theorem}
|
|
|
|
\begin{theorem}{4.3.1}
|
|
For all $a, b \in \mathbb{Z}^+$, if $a | b$, then $a \leq b$
|
|
\end{theorem}
|
|
\begin{theorem}{4.3.2}
|
|
Only divisors of $1$ are $1$ and $-1$
|
|
\end{theorem}
|
|
\begin{theorem}{4.3.3}
|
|
$\forall a, b, c \in \mathbb{Z}$ if $a | b$, $b | c$, $a | c$
|
|
\end{theorem}
|
|
\begin{theorem}{4.6.1}
|
|
There is no greatest integer
|
|
\end{theorem}
|
|
\begin{propos}{4.6.4}
|
|
For all integers $n$, if $n^2$ is even, then $n$ is even.
|
|
\end{propos}
|
|
|
|
\begin{defn}{Rational}
|
|
$r$ is rational $\Leftrightarrow \exists a, b \in \mathbb{Z}$ s.t. $r = \frac{a}{b}$ and $b \not=0$
|
|
\end{defn}
|
|
\begin{defn}{Fraction in lowest term:}
|
|
fraction $\frac{a}{b}$ is lowest term if largest $\mathbb{Z}$ that divies both $a$ and $b$ is 1
|
|
\end{defn}
|
|
|
|
\begin{theorem}{4.7.1}
|
|
$\sqrt{2}$ is irrational
|
|
\end{theorem}
|
|
|
|
|
|
\section{Logic of Combound Statements}
|
|
|
|
\begin{theorem}{3.2.1} Negation of universal stmt
|
|
$\sim(\forall x \in D, P(x)) \equiv \exists x \in D$ s.t. $\sim P(x)$
|
|
\end{theorem}
|
|
\begin{theorem}{3.2.1} Negation of existential stmt
|
|
$\sim(\exists x \in D$ s.t. $P(x)) \equiv \forall x \in D, \sim P(x)$
|
|
\end{theorem}
|
|
|
|
\begin{defn}{Contrapositive}
|
|
of $p \Rightarrow q \equiv \sim q \Rightarrow p$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Converse}
|
|
of $p \Rightarrow q$ is $q \Rightarrow p$
|
|
\end{defn}
|
|
\begin{defn}{Inverse}
|
|
of $p \Rightarrow q$ is $\sim p \Rightarrow \sim q$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Only if:}
|
|
$p$ only if $q$ means $\sim q \Rightarrow \sim p \equiv p \Rightarrow q$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Biconditional:}
|
|
$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
|
|
\end{defn}
|
|
\begin{defn}
|
|
$r$ is sufficient condition for $s$ means if $r$ then $s$, $r \Rightarrow s$
|
|
\end{defn}
|
|
\begin{defn}
|
|
$r$ is necessary condition for $s$ means if $\sim r$ then $\sim s$, $s \Rightarrow r$
|
|
\end{defn}
|
|
|
|
|
|
\begin{defn}{Proof by Contradiction}\\
|
|
If you can show that the supposition that sttatement $p$ is false leads to a contradiction, then you can conclude that $p$ is true
|
|
\end{defn}
|
|
|
|
\section{Methods of Proof}
|
|
|
|
\begin{tabular} {|c|l|}
|
|
\hline
|
|
Statement & Proof Approach \\
|
|
$\forall x \in D\ P(X)$ & Direct: Pick arbitrary x, prove P is true for that x. \\
|
|
& Contradiction: Suppose not, i.e. $ \exists x(\sim p)$... Hence supposition $\sim p$ is false (P3) \\
|
|
\hline
|
|
$\exists x \in D\ P(X)$ & Direct: Find x where P is true. \\
|
|
& Contradiction: Suppose not, i.e. $\forall x (\sim p)$... Hence supposition $\sim p$ is false (P3) \\
|
|
\hline
|
|
$P \Rightarrow Q$ & Direct: Assume P is true, prove Q \\
|
|
& Contradiction: Assume P is true and Q is false, then derive contradiction \\
|
|
& Contrapositive: Assume $\sim Q$, then prove $\sim P$ \\
|
|
\hline
|
|
$P \Leftrightarrow Q$ & Prove both $P \Rightarrow Q$ and $Q \Rightarrow P$ \\
|
|
\hline
|
|
$xRy$. Prove R is equivalence & Prove Reflexive, Symmetric and Transitive \\
|
|
\hline
|
|
Reflexive & \\
|
|
\hline
|
|
Symmetric & \\
|
|
\hline
|
|
Antisymmetric & \\
|
|
\hline
|
|
Transitive & \\
|
|
\hline
|
|
|
|
|
|
\end{tabular}
|
|
|
|
\begin{defn}{Proof by Contraposition}\\
|
|
1. Statement to be proved $\forall x \in D\ (P(x) \Rightarrow Q(x))$\\
|
|
2. Contrapositive Form: $\forall x \in D\ (\sim Q(x) \Rightarrow \sim P(x))$\\
|
|
3. Prove by direct proof\\
|
|
3.1 Suppose x is an element of D s.t. $Q(X)$ is false\\
|
|
3.2 Show that P(x) is false.\\
|
|
4. Therefore, original statement is true
|
|
\end{defn}
|
|
|
|
|
|
\section{Set Theory}
|
|
|
|
\begin{defn}{Set: Unordered collection of objects}\\
|
|
Order and duplicates don't matter
|
|
\end{defn}
|
|
|
|
\begin{defn}{Membership of Set $\in$: }
|
|
If $S$ is set, $x \in S$ means $x$ is an element of $S$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Cardinality of Set $|S|$: }
|
|
The number of elements in $S$
|
|
\end{defn}
|
|
|
|
Common Sets:
|
|
|
|
$\mathbb{N}$ - Natural Numbers, $\{0, 1, 2\}$
|
|
|
|
$\mathbb{Z}$ - Integers
|
|
|
|
$\mathbb{Q}$ - Rational
|
|
|
|
$\mathbb{R}$ - Real
|
|
|
|
$\mathbb{C}$ - Complex
|
|
|
|
$\mathbb{Z}^\pm$ - Positive/Negative Integers
|
|
|
|
\begin{defn}{Subset}
|
|
$A \subseteq B \Leftrightarrow$ Every element of $A$ is also an element of $B$\\
|
|
$A \subseteq B \Leftrightarrow \forall x(x\in A \Rightarrow x \in B)$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Proper Subset}
|
|
$A \subsetneq B \Leftrightarrow (A \subseteq B \land A \not = B)$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{6.2.4}
|
|
An empty set is a subset of every set, i.e. $\emptyset \subseteq A$ for all sets $A$
|
|
\end{theorem}
|
|
|
|
\begin{defn}{Cartesian Product}
|
|
$A \times B = \{(a, b): a \in A \land b \in B\} $
|
|
\end{defn}
|
|
|
|
\begin{defn}{Set Equality}
|
|
$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$ \\
|
|
$A = B \Leftrightarrow \forall x (x \in A \Leftrightarrow x \in B)$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Union:}
|
|
$A \cup B = \{x \in U: x \in A \lor x \in B\}$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Intersection:}
|
|
$A \cap B = \{x \in U: x \in A \land x \in B\}$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Difference:}
|
|
$B \setminus A = \{x \in U: x \in B \land x \not\in A\}$
|
|
\end{defn}
|
|
|
|
\begin{defn}{Disjoint:}
|
|
$A \cap B = \emptyset$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{4.4.1} Quotient-Remainder
|
|
$n \in \mathbb{Z}, d \in \mathbb{Z}^+$\\ there exists unique integers q and r such that $n = dq + r$ and $0 \leq r < d$
|
|
\end{theorem}
|
|
|
|
\begin{defn}{Power Set:}
|
|
The set of all subsets of $A$, has $2^n$ elements.
|
|
\end{defn}
|
|
|
|
\begin{theorem}{6.3.1}
|
|
Suppose $A$ is a finite set with $n$ elements, then $P(A)$ has $2^n$ elements.
|
|
$|P(A)| = 2^{|n|}$
|
|
\end{theorem}
|
|
|
|
\begin{defn}{Cartesian Product of $A_n$}
|
|
$= A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2,...a_n): a_1 \in A_1 \land a_2 \in A_2...$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{6.2.1} Subset Relations
|
|
\begin{numpf*}
|
|
\pfln Inclusion of Intersection: $A \cup B \subseteq A, A \cup B \subseteq B$
|
|
\pfln Inclusion in Union $A \subseteq A \cup B, B \subseteq A \cup B$
|
|
\pfln Transitive Property of Substs: $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
|
|
\end{numpf*}
|
|
\end{theorem}
|
|
|
|
\section{Relations}
|
|
|
|
\begin{defn} Relation from A to B is a subset of $A \times B$\\
|
|
Given an ordered pair$(x, y) \in A\times B$, $x$ is
|
|
related to y by $R$ is written $xRy \Leftrightarrow (x, y) \in R$
|
|
\end{defn}
|
|
|
|
\begin{defn} Domain, Co-domain, Range\\
|
|
Let $A$ and $B$ be sets and $R$ be a relation from $A$ to $B$
|
|
\begin{numpf*}
|
|
\pfln Domain of R: is set $\{a \in A: aRb$ for some $b \in B\}$
|
|
\pfln Codomain of R: Set B
|
|
\pfln Range of R: is set $\{b \in B: aRb$ for some $a \in A\}$
|
|
\end{numpf*}
|
|
\end{defn}
|
|
|
|
\begin{defn} Inverse Relation\\
|
|
Let $R$ be a relation from $A$ to $B$,
|
|
$R^{-1} = \{(y, x) \in B\times A: (x, y) \in R\}$\\
|
|
$\forall x \in A, \forall y \in B ((y, x) \in R^{-1} \Leftrightarrow (x, y) \in R)$
|
|
\end{defn}
|
|
|
|
\begin{defn}
|
|
Relation on a Set $A$ is a relation from $A$ to $A$.
|
|
\end{defn}
|
|
|
|
\begin{defn} Composition of Relations\\
|
|
A, B and C be sets. $R \subseteq A \times B$ be a relation. $S \subset B \times C$ be relation. Composition of R with S, denoted $S \circ R$ is relation from A to C such that: \\
|
|
$\forall x \in A, \forall z \in C(x S \circ R z \Leftrightarrow (\exists y \in B (xRy \land ySz)))$
|
|
\end{defn}
|
|
|
|
\begin{propos} Composition is Associative
|
|
$A, B, C, D$ be sets. $R \subseteq A \times B$, $S \subseteq B \times C$, $T \subseteq C \times D$\\
|
|
$T \circ ( S \circ R) = T \circ S \circ R$
|
|
\end{propos}
|
|
|
|
\begin{propos} Inverse of Composition
|
|
$A, B, C$ be sets. $R \subseteq A \times B$, $S \subseteq B \times C$\\
|
|
$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$
|
|
\end{propos}
|
|
|
|
\begin{defn} \textbf{Reflexivity, Symmetry, Transitivity}
|
|
\begin{numpf*}
|
|
\pfln Reflexivity: $\forall x \in A (xRx)$
|
|
\pfln Symmetry: $\forall x,y \in A (xRy \Rightarrow yRx)$
|
|
\pfln Transitivity:$\forall x,y,z \in A (xRy \land yRz \Rightarrow xRz)$
|
|
\end{numpf*}
|
|
Refer to proof 6
|
|
\end{defn}
|
|
|
|
\begin{defn} Transitive Closure\\
|
|
Transitive closure of R is relation $R^t$ on A that satiesfies
|
|
\begin{numpf*}
|
|
\pfln $R^t$ is transitive
|
|
\pfln $R \subseteq R^t$
|
|
\pfln If $S$ is any other transitive relation that contains $R$, then $R^t \subseteq S$
|
|
\end{numpf*}
|
|
\end{defn}
|
|
|
|
\begin{defn} Partition\\
|
|
$P$ is partition of set A if
|
|
\begin{numpf*}
|
|
\pfln $P$ is a set of which all elements are non empty subsets of A, $\emptyset \not = S \subseteq A$ for all $S \in P$
|
|
\pfln Every element of $A$ is in exactly on element of P, \\
|
|
$\forall x \in A\ \exists S \in P (x \in S)$ and \\
|
|
$\forall x \in A\ \exists S_1, S_2 \in P(x \in S_1 \land x \in S_2 \Rightarrow S_1 = S_2)$
|
|
\end{numpf*}
|
|
OR $\forall x \in A\ \exists!S \in P(x \in S)$\\
|
|
Elements of a partition are called components
|
|
\end{defn}
|
|
|
|
\begin{defn} Relation Induced by a partition\\
|
|
Given partition $P$ of $A$, the relation $R$ induced by partition: \\
|
|
$\forall x, y \in A, xRy \Rightarrow \exists$ a component of $S$ of $P$ s.t. $x, y \in S$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{8.3.1}[Relation Induced by a Partition]
|
|
Let $A$ be a set with a partition and let R be a relation induced by the partition. Then $R$ is reflexive, symmetric and transitive
|
|
\end{theorem}
|
|
|
|
\begin{defn}[Equivalence Relation]
|
|
$A$ be set and $R$ be relation. $R$ is equivalence relation iff $R$ is reflexive, symmetric and transitive
|
|
\end{defn}
|
|
|
|
\begin{defn} Equivalence Class\\
|
|
Suppose $A$ is set and $\sim$ is equivalence relation on A. For each $A \in A$, equivalence class of $a$, denoted $[a]$ and called class of $a$ is set of all elements $x \in A$ s.t. $a\sim x$\\
|
|
$[a]_{\sim} = \{x \in A: a \sim x \}$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{8.3.4} The partition induced by an Equivalence Relation\\
|
|
If $A$ is a set and $R$ is an equivalence relation on $A$, then distinct equivalence classes of $R$ form a partition of $A$; that is, the union of the equivalence classes is all of $A$, and the intersection of any 2 disctinct classes is empty.
|
|
\end{theorem}
|
|
|
|
\begin{defn} Congruence\\
|
|
Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then $a$ is congruent to $b$ modulo $n$ iff $a - b = nk$, for some $k \in \mathbb{Z}$. In other words, $n | (a - b)$. We write $a \equiv b (\text{mod}\ n)$
|
|
\end{defn}
|
|
|
|
\begin{defn} Set of equivalence classes\\
|
|
Let $A$ be set and $\sim$ be an equivalence relation on $A$. Denote by $A/\sim$, the set of all equivalence classes with respect to $\sim$, i.e.
|
|
|
|
$A/\sim = \{[x]_\sim: x \in A\}$
|
|
\end{defn}
|
|
|
|
\begin{theorem}{Equivalence Classes} form a partition
|
|
Let $\sim$ be an equiv. relation on $A$. Then $A/\sim$ is a partition of A.
|
|
\end{theorem}
|
|
|
|
\begin{defn}[Antisymmetry]
|
|
$R$ is antisymmetric iff $\forall x, y \in A(xRy \land yRx \Rightarrow x = y)$ \textit{(DOES NOT IMPLY NOT SYMMETRIC)}
|
|
\end{defn}
|
|
|
|
\begin{defn}[Partial Order Relation]
|
|
$R$ is Partial Order iff R is \textit{reflexive}, \textit{antisymmetric} and \textit{transitive}.
|
|
\end{defn}
|
|
|
|
\begin{defn}{Partially Ordered Set}
|
|
Set A is called poset with respect to partial order relation $R$ on $A$, denoted by $(A, R)$ (Proof 7)
|
|
\end{defn}
|
|
|
|
\begin{defn}{$x \preccurlyeq y$}
|
|
is used as a general partial order relation notation
|
|
\end{defn}
|
|
|
|
\begin{defn}[Hasse Diagram]
|
|
Let $\preccurlyeq$ be a partial order on set $A$. Hasse diagram satisfies the following condition for all distinct $x, y, m \in A$ \\
|
|
If $x \preccurlyeq y$ and no $m \in A$ is s.t. $x \preccurlyeq m \preccurlyeq y$, then x is placed below y with a line joining them, else no line joins $x$ and $y$.
|
|
\end{defn}
|
|
|
|
\begin{defn}[Comparability]
|
|
$a, b \in A$ are comparable iff $a \preccurlyeq b$ or $b \preccurlyeq a$. Otherwise, they are \textbf{noncomparable}
|
|
\end{defn}
|
|
|
|
\begin{defn}[Maximal, Minimal, Largest Smallest]
|
|
Set $A$ be partially ordered w.r.t. a relation $\preccurlyeq$ and $c \in A$
|
|
\begin{numpf}
|
|
\pfln c is maximal element of $A$ iff $\forall x \in A$, either $x \preccurlyeq c$ or $x$ and $c$ are non-comparable. OR $\forall x in A(c \preccurlyeq x \Rightarrow c = x)$
|
|
\pfln c is minimal element of $A$ iff $\forall x \in A$, either $c \preccurlyeq x$ or $x$ and $c$ are non-comparable. OR $\forall x in A(x \preccurlyeq c \Rightarrow c = x)$
|
|
\pfln c is largest element of $A$ iff $\forall x \in A (x \preccurlyeq c)$
|
|
\pfln c is smallest element of $A$ iff $\forall x \in A (c \preccurlyeq x)$
|
|
\end{numpf}
|
|
\end{defn}
|
|
|
|
\begin{propos} A smallest element is minimal\\
|
|
Consider a partial order $\preccurlyeq$ on set $A$. Any smallest element is minimal.
|
|
\begin{numpf}
|
|
\pfln Let $c$ be smallest elemnt
|
|
\pfln Take any $x \in A$ s.t. $x \preccurlyeq c$
|
|
\pfln By smallestness, we know $c \preccurlyeq x$ too.
|
|
\pfln So $c = x$ by antisymmetry
|
|
\end{numpf}
|
|
\end{propos}
|
|
|
|
\begin{defn}[Total Order Relations] All elements of the set are comparable\\
|
|
R is total order iff $R$ is a partial order and $\forall x, y \in A (xRy \lor yRx)$
|
|
\end{defn}
|
|
|
|
\begin{defn}[Linearization of a partial order]
|
|
Let $\preccurlyeq$ be a partial order on set $A$. A linearization of $\preccurlyeq$ is a total order $\preccurlyeq *$ on $A$ s.t. $\forall x, y \in A (x \preccurlyeq y \Rightarrow x \preccurlyeq *\ y)$
|
|
\end{defn}
|
|
|
|
\begin{defn}[Kahn's Algorithm]
|
|
Input: A finite set $A$ and partial order $\preccurlyeq$ on $A$
|
|
\begin{numpf}
|
|
\pfln Set $A_0 := A$ and $i := 0$
|
|
\pfln Repeat until $A_i = \emptyset$
|
|
\begin{subpf}
|
|
\pfln Find minimal element $c_i$ of $A_i$ wrt $\preccurlyeq$
|
|
\pfln Set $A_{i+1} = A_i \setminus {c_i}$
|
|
\pfln Set $i = i+1$
|
|
\end{subpf}
|
|
\end{numpf}
|
|
|
|
Output: A linearization $\preccurlyeq *$ of $\preccurlyeq$ defined by setting, for all indicies $i, j$\\ $c_i \preccurlyeq*\ c_j \Leftrightarrow i \leq j$
|
|
\end{defn}
|
|
|
|
\begin{defn}[Well ordered set] Let $\preccurlyeq$ be a total order on set $A$. $A$ is well ordered iff every nonempty subset of A contains a smallest element. OR\\
|
|
$\forall S \in P(A), S \not = \emptyset \Rightarrow (\exists x \in S \forall y \in S (x \preccurlyeq y))$ E.g. $(\mathbb{N}, \leq)$ is well ordered but $(\mathbb{Z}, \leq)$ is not as there is no smallest integer (Theorem 4.6.1)
|
|
|
|
\end{defn}
|
|
|
|
\section{Proofs}
|
|
|
|
\begin{proof} [\proofname\ L1S28]
|
|
Prove that the product of two consecutive odd numbers is always odd.
|
|
\begin{numpf*}
|
|
\pfln Let $a$ and $b$ be two consecutive odd numbers
|
|
\begin{subpf*}
|
|
\pfln Without loss of generality, assume that $a < b$, hence $b = a + 2$
|
|
\pfln Now, $a = 2k+1$ (by defn of odd numbers)
|
|
\pfln Similarly, $b = a + 2 = 2k + 3$
|
|
\pfln Therefore, $ab = (2k+1)(2k+3) = (4k^2 + 6k) + (2k + 3) = 4k^2 + 8k + 3 = 2(2k^2 + 4k + 1) + 1$ (by Basic Algebra)
|
|
\pfln Let $m = (2k^2 + 4k + 1)$ which is an integer (by closure of integers under $\times$ and $+$)
|
|
\pfln Then $ab = 2m + 1$ which is odd (by defn of odd numbers)
|
|
\end{subpf*}
|
|
\pfln Therefore, the product of two consecutive odd numbers is always odd.
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ L4S16] Sum of 2 even $\mathbb{Z}$ is even
|
|
\begin{numpf*}
|
|
\pfln Let m and n be two particular but arbitrarily chosen even intergers
|
|
\begin{subpf*}
|
|
\pfln Then $m = 2r$ and $n = 2s$ for some $\mathbb{Z}$ $r$ and $s$ (by defn of even number)
|
|
\pfln $m + n = 2r + 2s = 2(r+s)$ (by basic algebra)
|
|
\pfln 2(r+s) is an integer(closure of int under $\times$ and $+$) and an even number (by defn of even number)
|
|
\pfln Hence $m+n$ is an even number
|
|
\end{subpf*}
|
|
\pfln Therefore sum of any two even integers is even
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ T 4.6.1] There is no greatest integer (Contradiction)
|
|
\begin{numpf*}
|
|
\pfln Suppose not, i.e. there is a greatest intger
|
|
\begin{subpf*}
|
|
\pfln Lets call this greatest integer g, and $g \geq n$ for all integers n
|
|
\pfln Let $G = g + 1$
|
|
\pfln Now, $G$ is an integer (closure of integers under $+$) and $G > g$
|
|
\pfln Hence, g is not the greatest integer, contradicting 1.1
|
|
\end{subpf*}
|
|
\pfln Hence, the supposition that there is a greatest integer is false.
|
|
\pfln Therefore there is no greatest integer
|
|
\end{numpf*}
|
|
\end{proof}
|
|
\begin{proof}[\proofname\ L5S19] L5S19 Two sets are equal
|
|
\begin{numpf*}
|
|
\pfln Let sets $X$ and $Y$ be given. To prove $X$ = $Y$
|
|
\pfln ($\subseteq$) Prove $X \subseteq Y$
|
|
\pfln ($\supseteq$) Prove $X \supseteq Y$
|
|
\pfln From (2) and (3), we can conclude that $X = Y$
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ L5S22] L5S22 $\{x \in Z: x^2 = 1\} = \{1, -1\}$
|
|
\begin{numpf*}
|
|
\pfln $\rightarrow$
|
|
\begin{subpf*}
|
|
\pfln Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$
|
|
\pfln Then $z \in \mathbb{Z}$ and $z^2 = 1$
|
|
\pfln So, $z^2 -1 = (z-1)(z+1) = 0$ (by basic algebra)
|
|
\pfln $\therefore$ $z-1 = 0$ or $z +1 = 0$
|
|
\pfln $\therefore$ $z = 1$ or $z = -1$
|
|
\pfln So, $z \in \{1, -1\}$
|
|
\end{subpf*}
|
|
\pfln $\leftarrow$
|
|
\begin{subpf*}
|
|
\pfln Take any $z \in \{1, -1\}$
|
|
\pfln Then $z = 1$ or $z=-1$
|
|
\pfln In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$
|
|
\pfln So, $z \in \{x \in \mathbb{Z} : x^2 = 1\}$
|
|
\end{subpf*}
|
|
\pfln Therefore, $\{x \in Z: x^2 = 1\} = \{1, -1\}$ (from (1) and (2))
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ L6S27] $\forall x,y \in \mathbb{Z} (xRy \Leftrightarrow 3 | (x-y))$ is reflexive, symmetric, transitive
|
|
\begin{numpf*}
|
|
\pfln Proof of Reflexivity
|
|
\begin{subpf*}
|
|
\pfln Let $a$ be an arbitrarily chosen integer.
|
|
\pfln Now $a - a = 0$
|
|
\pfln $3 | 0 $(since $ 0 = 3 \cdot 0)$, hence $3 |(a - a)$
|
|
\pfln Therefore $aRa$ (by defn of R)
|
|
\end{subpf*}
|
|
\pfln Proof of Symmetry
|
|
\begin{subpf*}
|
|
\pfln Let a, b be arbitrarily chosen integers
|
|
\pfln Then $3|(a-b)$ (by defn of R), hence $a-b = 3k$ for some integer k (by defn of divisibility)
|
|
\pfln Multiplying both sides by $-1$ gives $b-a = 3(-k)$
|
|
\pfln Since $-k$ is an integer, $3 | (b-a)$ (by defn of divisibility)
|
|
\pfln Therefore, $aRb \Rightarrow bRa$ (by defn of R)
|
|
\end{subpf*}
|
|
\pfln Proof of Transitivity
|
|
\begin{subpf*}
|
|
\pfln Let a, b, c be arbitrarily chosen integers
|
|
\pfln Then, $3 | (a - b)$ and $3 | (b - c)$ (by defn of R), hence $a-b = 3r$ and $b-c = 3s$ (by defn of divisiblity)
|
|
\pfln Adding both equations gives $a - c = 3r + 3s$
|
|
\pfln Since $r+s$ is an integer, $3 | (a - c)$ (by defn of divisiblity)
|
|
\pfln Therefore $aRb \land bRc \Rightarrow aRc$ (by defn of R)
|
|
\end{subpf*}
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[Lemma Equivalence Class L6S47] Let $\sim$ be an equivalence relation on $A$. The following are equivalent for all $x, y \in A$ (i) $x\sim y$, (ii) $[x] = [y]$, (iii) $[x] \cap [y] \not = \emptyset$
|
|
\begin{numpf*}
|
|
\pfln $x \sim y \Rightarrow [x] = [y]$
|
|
\begin{subpf*}
|
|
\pfln Suppose $x \sim y$
|
|
\pfln Then $y \sim x$ (by symmetry)
|
|
\pfln For every $z \in [x]$
|
|
\begin{subpf*}
|
|
\pfln $x \sim z$ (by defn of x)
|
|
\pfln $\therefore y \sim z$ (by transitivity of $y\sim x$)
|
|
\pfln $\therefore z \in [y]$ (by defn of $[y]$)
|
|
\end{subpf*}
|
|
\pfln This shows $[x] \subseteq [y]$
|
|
\pfln Switching roles of $x$ and $y$, we can also see that $[y] \subseteq [x]$
|
|
\pfln Therefore, $[x] = [y]$
|
|
\end{subpf*}
|
|
\pfln $[x] = [y] \Rightarrow [x] \cap [y] \not = \emptyset$
|
|
\begin{subpf*}
|
|
\pfln Suppose $[x] = [y]$
|
|
\pfln Then $[x] \cap [y] = [x]$ (by idempotent law for $\cap$)
|
|
\pfln However, we know $x\sim x$ (by reflexivity of $\sim$)
|
|
\pfln This shows $x \in [x] = [x] \cap [y]$ (by defn of [x] and (2.2))
|
|
\pfln Therefore $[x] \cap [y] \not = \emptyset$
|
|
\end{subpf*}
|
|
\pfln $[x] \cap [y] \not = \emptyset \Rightarrow x \sim y$
|
|
\begin{subpf*}
|
|
\pfln Suppose $[x] \cap [y] \not = \emptyset$
|
|
\pfln Take $z \in [x] \cap [y]$
|
|
\pfln Then $z \in [x]$ and $z \in [y]$ (by defn of $\cap$)
|
|
\pfln Then $x \sim z$ and $y \sim z$ (by defn of $[x]$ and $[y]$)
|
|
\pfln $y \sim z$ implies $z \sim y$ (by defn of symmetry)
|
|
\pfln Therefore, $x \sim y$ (by transitivity)
|
|
\end{subpf*}
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[Proposition L6S54] Congruence-mod $n$ is an equivalence relation on $\mathbb{Z}$ for every $n \in \mathbb{Z}^+$
|
|
\begin{numpf*}
|
|
\pfln (Reflexivity) For all $a \in \mathbb{Z}$
|
|
\begin{subpf*}
|
|
\pfln $a - a = 0 = n \times 0$
|
|
\pfln So $a \equiv a (\text{mod}\ n)$ (by defn of congruence)
|
|
\end{subpf*}
|
|
\pfln (Symmetry)
|
|
\begin{subpf*}
|
|
\pfln Let $a, b \in \mathbb{Z}$ s.t. $a \equiv a (\text{mod}\ n)$
|
|
\pfln Then there is a $k \in \mathbb{Z}$ s.t. $a - b = nk$
|
|
\pfln Then $b - a = -(a - b) = -nk = n(-k)$
|
|
\pfln $-k \in \mathbb{Z}$ (by closure of integers under $\times$), so $b \equiv a (\text{mod}\ n)$ (by defn of congruence)
|
|
\end{subpf*}
|
|
\pfln (Transitivity)
|
|
\begin{subpf*}
|
|
\pfln Let $a, b,c \in \mathbb{Z}$ s.t. $a \equiv a (\text{mod}\ n)$ and $b \equiv c (\text{mod}\ n)$
|
|
\pfln Then there is a $k,l \in \mathbb{Z}$ s.t. $a - b = nk$ and $b - c = nl$
|
|
\pfln Then $a - c = (a - b) + (b - c) = nk + nl = n(k + 1)$
|
|
\pfln $k + l \in \mathbb{Z}$ (by closure of integers under $+$), so $a \equiv c (\text{mod}\ n)$ (by defn of congruence)
|
|
\end{subpf*}
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ L6S69] $\forall a, b \in \mathbb{Z}^+, \forall a | b \Leftrightarrow b = ka$ for some integer $k$. Prove $|$ is a partial order relation on $A$
|
|
\begin{numpf*}
|
|
\pfln $|$ is reflexive: Suppose $a \in A$. Then $a = 1 \dot a$, so $a|a$ (by defn of divisiblity)
|
|
\pfln $|$ is antisymmetric
|
|
\begin{subpf*}
|
|
\pfln Suppose $a, b \in \mathbb{Z}^+$ such that $aRb$ and $bRa$
|
|
\pfln Then $b = ra$ and $a = sb$ for some integers $r$ and $s$ (by defn of divides). It follows that $b = ra = r(sb)$
|
|
\pfln Dividing both sides by $b$ gives $1 = rs$
|
|
\pfln Only product of two positive integers that equals 1 is $1 \dot 1$.
|
|
\pfln Thus $r = s = 1$, and so $a = sb = 1 \dot b = b$
|
|
\pfln Therefore, $|$ is antisymmetric
|
|
\end{subpf*}
|
|
OR
|
|
\begin{subpf*}
|
|
\pfln Suppose $a, b \in \mathbb{Z}^+$ such that $a|b$ and $b|a$
|
|
\pfln then $a \leq b$ and $b \leq a$ (by theorem 4.3.1)
|
|
\pfln So $a = b$
|
|
\end{subpf*}
|
|
\pfln $|$ is transitive: Show that $\forall a, b, c \in A, a|b \land b|c \Rightarrow a |c)$ (theorem 4.3.3)
|
|
\end{numpf*}
|
|
|
|
\end{proof}
|
|
|
|
|
|
\begin{proof}[\proofname\ T01Q9] The product of any two odd integers is an odd integer
|
|
\begin{numpf*}
|
|
\pfln Take any 2 odd numbers $a$ and $b$
|
|
\pfln Then $a = 2k+1$ and $b = 2p + 1$ for $k,p \in Z$ (by defn of odd number)
|
|
\pfln Then $a\cdot b = (2k+1)(2p+1) = (4kp + 2k) + (2p + 1) = 2(2kp + p + k) +1$ (by defn of odd number)
|
|
\pfln Let $q = 2kp + p +k$ which is an integer (by closure of int under $+$ and $\times$
|
|
\pfln Then nm = 2q + 1 which is odd (by defn of odd numbers)
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ T01Q10] Let $n$ be an integer. Then $n^2$ is odd iff $n$ is odd
|
|
\begin{numpf*}
|
|
\pfln Proof By Contraposition, that is "if n is even, $n^2$ is even $(\Rightarrow)$
|
|
\begin{subpf*}
|
|
\pfln Suppose $n$ is even.
|
|
\pfln Then $\exists k \in \mathbb{Z}$ s.t. $n = 2k$ (by defn of even integers)
|
|
\pfln $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
|
|
\pfln Hence, $n^2$ = 2p, where $p = 2k^2 \in \mathbb{Z}$ (by closure of integers under $\times$)
|
|
\pfln Therefore, $n^2$ is even and this proves that if $n^2$ is odd, $n$ is odd.
|
|
\end{subpf*}
|
|
\pfln If $n$ is odd, then $n \times n = n^2$ is odd (T01Q9)
|
|
\pfln Therefore $n^2$ is odd if and only if $n$ is odd.
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ T02Q3] Rational numbers are closed under addition
|
|
\begin{numpf*}
|
|
\pfln Let r and s be rational numbers
|
|
\pfln $\exists a,b,c,d \in \mathbb{Z}$ s.t. $r =\frac{a}{b}, s = \frac{c}{d}$ and $b \not = 0, d \not = 0$ (by defn of rational numbers)
|
|
\pfln Hence $r + s = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ (by basic algebra)
|
|
\pfln $ad + bd \in Z$ and $bd \in Z$ (closure of integers under $+$ and $\times$)
|
|
\pfln $bd \not = 0$ since $b \not = 0, d \not = 0$
|
|
\pfln Hence $r+s$ is rational, therefore rational numbers are closed under addition
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ T02Q10] if $n$ is a product of 2 positive integers $a$ and $b$, then $a \leq n^{1/2}$ or $b \leq n^{1/2}$
|
|
\begin{numpf*}
|
|
\pfln Proof by contraposition, that is if $a > n^{1/2}$ and $b > n^{1/2}$, then $n$ is not a product of $a$ and $b$
|
|
\pfln Suppose $a > n^{1/2}$ and $b > n^{1/2}$, then $ab > n^{1/2} \cdot n^{1/2} = n$ (by Appendix A T27)
|
|
\pfln Since $ab \not = n$, the contrapositive statement is true
|
|
\end{numpf*}
|
|
or by contradiction
|
|
\begin{numpf*}
|
|
\pfln Proof by contradiction, that is $n = ab$ and $a > n^{1/2}$ and $b > n^{1/2}$
|
|
\pfln Since $a > n^{1/2}$ and $b > n^{1/2}$, then $ab > n^{1/2} \cdot n^{1/2} = n$ (by Appendix A T27)
|
|
\pfln This contradicts $n = ab$. Therefore original statement is true
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ T03Q04] Let $A = \{2n+1: n \in \mathbb{Z}\}$ and $B = \{2n-5: n \in \mathbb{Z}\}$. Is $A$ = $B$?
|
|
\begin{numpf*}
|
|
\pfln $\subseteq$
|
|
\begin{subpf}
|
|
\pfln Let $a \in A$, and $a = 2n + 1, n \in \mathbb{Z}$
|
|
\pfln Then $a = 2n + 1 = 2 (n+3) - 5$
|
|
\pfln $n + 3 \in Z$ (by closure of int under $+$)
|
|
\pfln Therefore, $a \in B$ (by defn of B)
|
|
\end{subpf}
|
|
\pfln $\supseteq$
|
|
\begin{subpf}
|
|
\pfln Let $b \in A$, and $b = 2n - 5, n \in \mathbb{Z}$
|
|
\pfln Then $b = 2n - 5 = 2 (n-3) + 1$
|
|
\pfln $n - 3 \in Z$ (by closure of int under $-$)
|
|
\pfln Therefore, $b \in A$ (by defn of B)
|
|
\end{subpf}
|
|
\pfln Therefore, A = B
|
|
\end{numpf*}
|
|
\end{proof}
|
|
\begin{proof}[\proofname\ T03Q05] Prove $\forall A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus C$
|
|
\begin{numpf*}
|
|
\pfln $A \cap (B \setminus C) = \{x: x \in A \land x \in (B \setminus C) \}$ (by defn of $\cap$)
|
|
\pfln $ = \{x: x \in A \land (x \in B \land x \not \in C) \}$ (by defn of $\setminus$)
|
|
\pfln $ = \{x: x \in (A \land x \in B) \land x \not \in C \}$ (by associativity of $\land$)
|
|
\pfln $ = \{x: x \in (A \cap B) \land x \not \in C \}$ (by defn of $\cap$)
|
|
\pfln $ = \{x: x \in (A \cap B) \setminus C$ (by defn of $\setminus$)
|
|
\end{numpf*}
|
|
\end{proof}
|
|
\begin{proof}[\proofname\ T03Q05] Prove $\forall A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus C$
|
|
\begin{numpf*}
|
|
\pfln $A \cap (B \setminus C) = \{x: x \in A \land x \in (B \setminus C) \}$ (by defn of $\cap$)
|
|
\pfln $ = \{x: x \in A \land (x \in B \land x \not \in C) \}$ (by defn of $\setminus$)
|
|
\pfln $ = \{x: x \in (A \land x \in B) \land x \not \in C \}$ (by associativity of $\land$)
|
|
\pfln $ = \{x: x \in (A \cap B) \land x \not \in C \}$ (by defn of $\cap$)
|
|
\pfln $ = \{x: x \in (A \cap B) \setminus C$ (by defn of $\setminus$)
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname T03Q8] Let $A$ and $B$ be set. Show that $A \subseteq B$ if and only if $A \cup B = B$\\
|
|
To show $A \cup B = B$, we need to show $A \cup B \subseteq B$ and $B \subseteq A \cup B$
|
|
\begin{numpf*}
|
|
\pfln $\implies$
|
|
\begin{subpf}
|
|
\pfln Suppose $A \subseteq B$
|
|
\pfln (Show $A \cup B \subseteq B$)
|
|
\begin{subpf}
|
|
\pfln Let $z \in A \cup B$
|
|
\pfln Then $z \in A$ or $z \in B$ (by defn of $\cup$)
|
|
\pfln Case 1: Suppose $z \in A$, then $Z \in B$ as $A \subseteq B$ line (1.1)
|
|
\pfln Case 2: Suppose $z \in B$, then $z \in B$. We have $z\in B$ in either case
|
|
\end{subpf}
|
|
\pfln (Show $A \cup B \supseteq B$)
|
|
\begin{subpf}
|
|
\pfln Let $z \in B$
|
|
\pfln Then $z \in A$ or $z \in B$ (by generalization)
|
|
\pfln So $z \in A \cup B$ (by defn of $\cup$)
|
|
\end{subpf}
|
|
\pfln Therefore $A \cup B = B$
|
|
\end{subpf}
|
|
\pfln $\impliedby$
|
|
\begin{subpf}
|
|
\pfln Suppose $A \cup B = B$
|
|
\pfln Let $z \in A$
|
|
\begin{subpf}
|
|
\pfln Then $z \in A$ or $z \in B$ (by generalization)
|
|
\pfln So $z \in A \cup B$ (by defn of $\cup$)
|
|
\pfln So $z \in B$ since $A \cup B = B$ (2.1)
|
|
\end{subpf}
|
|
\pfln Therefore $A \subseteq B$
|
|
\end{subpf}
|
|
\pfln Therefore, $A \subseteq B$ if and only iff $A \cup B = B$
|
|
\end{numpf*}
|
|
\end{proof}
|
|
|
|
\begin{proof}[\proofname\ T04Q05] Relation $S = \{(m,n) \in \mathbb{Z}^2: m^3 + n^3 \text{is even} \}$, Proof $S \circ S = S$
|
|
\begin{numpf*}
|
|
\pfln ($\subseteq$) Suppose $(x, z) \in S \circ S$
|
|
\begin{subpf}
|
|
\pfln Then $(x, y) \in S$ and $(y, z) \in S$ for some $y \in Z$ (defn of composition of relations)
|
|
\pfln So $x^3 + y^3$ is even and $y^3 + z^3$ is even
|
|
\pfln This implies that $x^3 + 2y^3 + z^3$ is even
|
|
\pfln This implies that $x^3 + z^3$ is even as $2y^3$ is even
|
|
\pfln Therefore, $(x, z) \in S$ (by defn of $S$)
|
|
\end{subpf}
|
|
\pfln ($\supseteq$) Suppose $(x,z) \in S$
|
|
\begin{subpf}
|
|
\pfln Then $x^3 + z^3$ is even (by defn of S)
|
|
\pfln Case 1: $x^3$ is odd.
|
|
\begin{subpf}
|
|
\pfln Then $z^3$ is also odd.
|
|
\pfln This implies that $x^3 + 1^3$ is even and $1^3 + z^3$ is even
|
|
\pfln Thus, $(x,1) \in S$ and $(1,z) \in S$ (by defn of S)
|
|
\pfln So, $(x,z) \in S \circ S$
|
|
\end{subpf}
|
|
\pfln Case 2: $x^3$ is even.
|
|
\begin{subpf}
|
|
\pfln Then $z^3$ is also even.
|
|
\pfln This implies that $x^3 + 0^3$ is even and $0^3 + z^3$ is even
|
|
\pfln Thus, $(x,0) \in S$ and $(0,z) \in S$ (by defn of S)
|
|
\pfln So, $(x,z) \in S \circ S$
|
|
\end{subpf}
|
|
\pfln In all cases, $(x,z) \in S \circ S$
|
|
\end{subpf}
|
|
OR
|
|
\pfln ($\supseteq$) Suppose $(x,z) \in S$
|
|
\begin{subpf}
|
|
\pfln Note that $(x, x) \in S$ as $x^3 + x^3$ is even
|
|
\pfln Since $(x, x) \in S$ and $(x,z) \in S$, we have $(x, z) \in S \circ S$ (by defn of composition of relations)
|
|
\end{subpf}
|
|
\end{numpf*}
|
|
|
|
\end{proof}
|
|
|
|
\begin{proof} $R$ is asymmetric if and only if $R$ is antisymmetric and irreflexive.
|
|
\begin{numpf}
|
|
\pfln $\implies$
|
|
\begin{subpf}
|
|
\pfln R is irreflexive (R is irreflexive $\implies$ R is antisymmetric and irreflexive)
|
|
\begin{subpf}
|
|
\pfln Let $x \in A$ s.t. $xRx \implies x \not R x$ (R is Asymmetric)
|
|
\pfln Since $x\not R x$, R is irreflexive (by defn of irreflexive)
|
|
\end{subpf}
|
|
\end{subpf}
|
|
\begin{subpf}
|
|
\pfln R is antisymmetric (Tutorial Qn 6c)
|
|
\end{subpf}
|
|
\pfln $\impliedby$ (R is antisymmetric and irreflexive $\implies$ asymmetry)
|
|
\begin{subpf}
|
|
\pfln Let $x, y \in A$, s.t. xRy is antisymmetric and irreflexive
|
|
\pfln There is 2 cases to consider, $x = y$ and $x \not = y$
|
|
\pfln $x = y$
|
|
\begin{subpf}
|
|
\pfln $xRx$ is not valid as it contradicts irreflexive, $\forall x \in A(x\not R x)$
|
|
\pfln Therefore, $xRx \implies x\not R x$
|
|
\end{subpf}
|
|
\pfln $x \not = y$
|
|
\begin{subpf}
|
|
\pfln $xRy \land yRx \implies x = y$
|
|
\end{subpf}
|
|
\end{subpf}
|
|
\end{numpf}
|
|
\end{proof}
|
|
|
|
|
|
\pagebreak
|
|
|
|
\section{Tables}
|
|
|
|
\begin{tabular} {|l|c|c|}
|
|
Commutative & $p \land q \equiv q \land p$ & $p \lor q \equiv q \lor p$\\
|
|
Associative & $p \land q \land r \equiv (p \land q) \land r$&\\
|
|
Distributive & $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$&$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$\\
|
|
Identity & $p \land \text{true} \equiv p$ & $p \lor \text{false} \equiv p$\\
|
|
Negation & $p \lor \sim p \equiv \text{true}$ & $p \land \sim p \equiv \text{false}$\\
|
|
Double Negative & $\sim(\sim p) \equiv p$ & \\
|
|
Idempotent & $p \lor p \equiv p$ & $p \land p \equiv p$\\
|
|
Universal bound & $p \lor \text{true} \equiv \text{true}$ & $p \land \text{false} \equiv \text{false}$\\
|
|
de Morgan's & $\sim(p \land q) \equiv \sim p \lor \sim q$ & $\sim(p \lor q) \equiv \sim p \land \sim q$\\
|
|
Absorption & $p \lor (p \land q) \equiv p$ & $p \land (p \lor q) \equiv p$\\
|
|
Implication & $p \Rightarrow q \equiv \sim p \lor q$ & $$\\
|
|
$\sim$(Implication) & $\sim (p \Rightarrow q) \equiv p \land \sim q$ & \\
|
|
\hline & & \\
|
|
Modus Ponens &$p \implies q, p$& $q$ \\
|
|
Modus Tollens &$p \implies q, \sim q$& $\sim p$ \\
|
|
Generalization &$p$& $p \lor q$ \\
|
|
Specialization &$p \land q$& $p$ \\
|
|
Conjunction &$p, q$& $p \land q$ \\
|
|
Elimination &$p \lor q, \sim q$& $p$ \\
|
|
Transitivity &$p \implies q, q \implies r$& $p \implies r$ \\
|
|
Division into cases &$p \land q, p \implies r, q \implies r$& $r$ \\
|
|
Contradiction &$\sim p \implies \text{false}$& $p$ \\
|
|
\hline & & \\
|
|
Commutative & $A \cup B = B \cup A$ & \\
|
|
Associative & $(A \cup B) \cup C = A \cup (B \cup C)$ & \\
|
|
Distributive & $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ & $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$\\
|
|
Identity & $A \cup \emptyset = A$ & $A \cap U = A$\\
|
|
Complement & $A \cup \bar A = U$ & $A \cap \bar A = \emptyset$\\
|
|
Double Complement & $\bar{\bar A} = A$ & \\
|
|
Idempotent & $A \cup A = A$ & $A \cap A = A$\\
|
|
Universal Bound & $A \cup U = U$ & $A \cap \emptyset = \emptyset$ \\
|
|
De Morgan's & $\overline{A \cup B} = \bar{A} \cap \bar{B}$ & $\overline{A \cap B} = \bar{A} \cup \bar{B}$\\
|
|
Absorption & $A \cup (A \cap B) = A$ & $A \cap (A \cup B) = A$\\
|
|
Complements of U and $\emptyset$ & $\bar U =\emptyset$ & $\bar \emptyset = U$\\
|
|
Set Difference & $A \setminus B = A \cap \bar B$ &\\
|
|
\hline & & \\
|
|
F1 Commutative & $a + b = b + a$ & $ab = ba$ \\
|
|
F2 Associative & $(a + b)+c = a + (b + c)$ & $(ab)c = a(bc)$ \\
|
|
F3 Distributive & $a(b+c) = ab + ac$ & $(b+c)a = ba + ca$ \\
|
|
F4 Identity & $0 +a = a + 0 = a$ & $1 \cdot a = a \cdot 1 = a $ \\
|
|
F5 Additive inverses & $a + (-a) = (-a) + a = 0$ & \\
|
|
F6 Reciprocals & $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ & $a \not = 0$ \\
|
|
\hline & & \\
|
|
T1 Cancellation Add & $a + b = a + c$ & $b = c$ \\
|
|
T2 Possibility of Sub & There is one $x, a + x = b$ & $x = b - a$ \\
|
|
T3 & $b - a = b + (-a)$ & \\
|
|
T4 & $-(-a) = a$ & \\
|
|
T5 & $a(b-c)=ab-ac$ & \\
|
|
T6 & $0 \cdot a = a \cdot 0 = 0$ & \\
|
|
T7 Cancellation Mul & $ab = ac$ & $b = c, a \not = 0$ \\
|
|
T8 Possibility of Div & $a \not = 0, ax = b$ & $x = \frac{b}{a}$ \\
|
|
T9 & $a \not = 0, \frac{b}{a} = b \cdot a^{-1}$ & \\
|
|
T10 & $a \not = 0, (a^{-1})^{-1} = a$ & \\
|
|
T11 Zero Product& $ab = 0 \Rightarrow a = 0 \lor b = 0$ & \\
|
|
T12 Mul with -ve & $(-a)b = a(-b) - -(ab)$ & $-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$\\
|
|
T13 Equiv Frac & $\frac{a}{b} = \frac{ac}{bc}$ & $b \not = 0, c \not = 0$\\
|
|
T14 Add Frac & $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ & $b \not = 0, d \not = 0$\\
|
|
T15 Mul Frac & $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ & $b \not = 0, d \not = 0$\\
|
|
T16 Div Frac & $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ac}{bd}$ & $b \not = 0, d \not = 0$\\
|
|
\end{tabular}
|
|
|
|
\begin{tabular} {|l|c|c|}
|
|
\hline & & \\
|
|
Ord1 & $\forall a,b \in \mathbb{R}^+$ & $a + b > 0, ab > 0$\\
|
|
Ord2 & $\forall a,b \in \mathbb{R}_{\not = 0}$ & $a$ is positive or negative and not both\\
|
|
Ord3 & 0 is not positive & \\
|
|
$a < b$ & means $b + (-a)$ is positive & \\
|
|
$a \leq b$ & means $a < b$ or $a = b$ & \\
|
|
$a < 0$ & means a is negative& \\
|
|
T17 Trichotomy Law & $a < b \lor b > a \lor a = b$ & \\
|
|
T18 Transitive Law & $a < b$ and $b < c$ & $a < c$\\
|
|
T19 & $a < b$ & $a + c < b + c$ \\
|
|
T20 & $a < b$ and $c > 0$ & $ac < bc$ \\
|
|
T21 & $a \not = 0$ & $a^2 > 0$ \\
|
|
T22 & $1 > 0$ & \\
|
|
T23 & $a < b$ and $c < 0$ & $ac > bc$ \\
|
|
T24 & $a < b$ & $-a > -b$ \\
|
|
T25 & $ab > 0$ & a and b are both positive or negative \\
|
|
T26 & $a < c$ and $b < d$ & $a+b < c+d$ \\
|
|
T30 & $0 < a < c$ and $<0 < b < d$ & $0 < ab < cd$ \\
|
|
\end{tabular}
|
|
|
|
\end{document}
|