feat: change up organisation

This commit is contained in:
Yadunand Prem 2023-04-24 11:02:37 +08:00
parent 13f372ec5a
commit dd56398b7d
No known key found for this signature in database
378 changed files with 4653 additions and 107 deletions

1
Readme.md Normal file
View File

@ -0,0 +1 @@
Cheatsheets built with reference from [jovyntls/cheatsheets](https://github.com/jovyntls/cheatsheets). Thanks for the great work and reference latex formatting!

View File

@ -0,0 +1,601 @@
%% This is file `1231num.sty',
%% Copyright (C) 2021 by Tin Lok Wong
%%
%% This work may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3 of this
%% license or (at your option) any later version. The latest version
%% of this license is in
%%
%% http://www.latex-project.org/lppl.txt
%%
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This work has the LPPL maintenance status `maintained'.
%%
%% The Current Maintainer of this work is Tin Lok Wong.
%%
%% File last modified: 2021/10/06
% If hyperref is needed, then load it first.
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{1231num}[2021/02/26 v0.0 CS1231 line numbers]
\RequirePackage{amsmath}% to align in math
\RequirePackage{tabto}% for starting a pfarray mid-line
\newlength{\numpf@templen}
\let\pfln\item
\let\lnref\ref
% Parameters that controls the margins for proofs
\newlength{\pfmargin} \setlength{\pfmargin}{1em}
\newlength{\pflabelwdI} \setlength{\pflabelwdI}{1.2em}
\newlength{\pflabelwdII} \setlength{\pflabelwdII}{2.0em}
\newlength{\pflabelwdIII}\setlength{\pflabelwdIII}{2.8em}
\newlength{\pflabelwdIV} \setlength{\pflabelwdIV}{3.6em}
\newlength{\pflabelwdV} \setlength{\pflabelwdV}{4.4em}
\newlength{\pflabelwdi}
\newlength{\pflabelwdii}
\newlength{\pflabelwdiii}
\newlength{\pflabelwdiv}
\newlength{\pflabelwdv}
% Define the usual spacing around and within proofs.
\def\numpf@seti{%
\def\@listi{\leftmargin\pflabelwdi
\advance\leftmargin\labelsep
\labelwidth\pflabelwdi
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setii{%
\def\@listii{\leftmargin\pflabelwdii
\advance\leftmargin\labelsep
\labelwidth\pflabelwdii
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setiii{%
\def\@listiii{\leftmargin\pflabelwdiii
\advance\leftmargin\labelsep
\labelwidth\pflabelwdiii
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setiv{%
\def\@listiv {\leftmargin\pflabelwdiv
\advance\leftmargin\labelsep
\labelwidth\pflabelwdiv
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setv{%
\def\@listv {\leftmargin\pflabelwdv
\advance\leftmargin\labelsep
\labelwidth\pflabelwdv
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
% Alternative set of spacing that saves more space.
\def\numpf@seti@star{%
\def\@listi{\leftmargin\z@
\labelwidth\pflabelwdi
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep \z@}%
}
\def\numpf@setii@star{%
\def\@listii{\leftmargin\pfmargin
\labelwidth\pflabelwdii
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setiii@star{%
\def\@listiii{\leftmargin\pfmargin
\labelwidth\pflabelwdiii
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setiv@star{%
\def\@listiv {\leftmargin\pfmargin
\labelwidth\pflabelwdiv
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
\def\numpf@setv@star{%
\def\@listv {\leftmargin\pfmargin
\labelwidth\pflabelwdv
\topsep \z@
\parsep \z@
\itemsep \z@
\partopsep\z@}%
}
% There are several places in which
% things with beamer are different from standand LaTeX:
% - the max depth of enumerate allowed;
% - the way enumerate displays the numbering;
% - the macros used to display the numbers;
% - the need to specify colours and fonts with beamer;
% - overlay options are available with beamer;
% - beamer sets additional parameters when entering a new enumerate.
\@ifclassloaded{beamer}{%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Definitions for standard BEAMER %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Here I increase the max depth of the enumerate environment.
% Modified from beamerbaselocalstructure.sty
\@definecounter{enumiv}
\@definecounter{enumv}
\setlength\leftmarginiv{2em}
\setlength\leftmarginv {2em}
\def\@listiv {\leftmargin\leftmarginiv
\labelwidth\leftmarginiv
\advance\labelwidth-\labelsep}
\def\@listv {\leftmargin\leftmarginv
\labelwidth\leftmarginv
\advance\labelwidth-\labelsep}
\def\numpf@enumerate{%
\ifnum\@enumdepth>4\relax\@toodeep
\else%
\advance\@enumdepth\@ne%
\edef\@enumctr{enum\romannumeral\the\@enumdepth}%
\advance\@itemdepth\@ne%
\fi%
\beamer@computepref\@enumdepth% sets \beameritemnestingprefix
\edef\beamer@enumtempl{enumerate \beameritemnestingprefix item}%
\@ifnextchar[{\beamer@@enum@}{\beamer@enum@}}
\let\endnumpf@enumerate\endenumerate
\def\beamer@computepref#1{%
\let\beameritemnestingprefix\@empty%
\ifcase#1\or\or\def\beameritemnestingprefix{sub}\or
\def\beameritemnestingprefix{subsub}\or
\def\beameritemnestingprefix{subsubsub}\or
\def\beameritemnestingprefix{subsubsubsub}\or
\@toodeep\fi}
\def\insertsubsubsubenumlabel{\theenumiv}
\def\insertsubsubsubsubenumlabel{\theenumv}
% Modified from beamercolorthemedefault.sty
\setbeamercolor{subsubsubitem}{parent=subsubitem}
\setbeamercolor{subsubsubsubitem}{parent=subsubsubitem}
\setbeamercolor{enumerate subsubsubitem}{parent=subsubsubitem}
\setbeamercolor{enumerate subsubsubsubitem}{parent=subsubsubsubitem}
% Modified from beamerfontthemedefault.sty
\setbeamerfont{enumerate subsubsubitem}{parent=subsubsubitem}
\setbeamerfont{enumerate subsubsubsubitem}{parent=subsubsubsubitem}
\setbeamerfont{itemize/enumerate body}{}
\setbeamerfont{itemize/enumerate subbody}{size=\normalfont}
\setbeamerfont{itemize/enumerate subsubbody}{size=\normalfont}
\setbeamerfont{itemize/enumerate subsubsubbody}{size=\normalfont}
\setbeamerfont{itemize/enumerate subsubsubsubbody}{size=\normalfont}
\setbeamercolor{enumerate subsubsubbody}{}
\setbeamercolor{enumerate subsubsubsubbody}{}
% Modified from beamerinnerthemedefault.sty
\defbeamertemplate*{enumerate subsubsubitem}{default}
{\usebeamertemplate*{enumerate subsubitem}\insertsubsubsubenumlabel.}
\defbeamertemplate*{enumerate subsubsubsubitem}{default}
{\usebeamertemplate*{enumerate subsubsubitem}\insertsubsubsubsubenumlabel.}
\defbeamertemplate*{enumerate subsubsubbody begin}{default}{}
\defbeamertemplate*{enumerate subsubsubbody end}{default}{}
\defbeamertemplate*{enumerate subsubsubsubbody begin}{default}{}
\defbeamertemplate*{enumerate subsubsubsubbody end}{default}{}
% The proof environments in text mode
\newenvironment{numpf}
{\numpf@
\begin{subpf}}
{\end{subpf}\ignorespacesafterend}
\newenvironment{numpf*}
{\numpf@
\begin{subpf*}}
{\end{subpf*}\ignorespacesafterend}
\newcommand{\numpf@}{%
% Modified from beamerbaselocalstructure.sty to make left-aligned numbers
\def\beamer@enum@{%
\beamer@computepref\@itemdepth% sets \beameritemnestingprefix
\usebeamerfont{itemize/enumerate \beameritemnestingprefix body}%
\usebeamercolor[fg]{itemize/enumerate \beameritemnestingprefix body}%
\usebeamertemplate{itemize/enumerate \beameritemnestingprefix body begin}%
\expandafter
\list
{\usebeamertemplate{\beamer@enumtempl}}
{\usecounter\@enumctr%
\def\makelabel####1{{\hss\rlap{{%
\usebeamerfont*{enumerate \beameritemnestingprefix item}%
\usebeamercolor[fg]{enumerate \beameritemnestingprefix item}####1}}}\hfill}}%
\beamer@cramped%
\raggedright%
\beamer@firstlineitemizeunskip}%
% Modified from beamerinnerthemedefault.sty
\setbeamertemplate{enumerate item}{\insertenumlabel.}%
\setbeamertemplate{enumerate subitem}
{\usebeamertemplate*{enumerate item}\insertsubenumlabel.}%
\setbeamertemplate{enumerate subsubitem}
{\usebeamertemplate*{enumerate subitem}\insertsubsubenumlabel.}%
\setbeamertemplate{enumerate subsubsubitem}
{\usebeamertemplate*{enumerate subsubitem}\insertsubsubsubenumlabel.}%
\setbeamertemplate{enumerate subsubsubsubitem}
{\usebeamertemplate*{enumerate subsubsubitem}\insertsubsubsubsubenumlabel.}%
\renewcommand{\theenumi}{\arabic{enumi}}%
\renewcommand{\theenumii}{\arabic{enumii}}%
\renewcommand{\theenumiii}{\arabic{enumiii}}%
\renewcommand{\theenumiv}{\arabic{enumiv}}%
\renewcommand{\theenumv}{\arabic{enumv}}%
\renewcommand{\p@enumi}{}%
\renewcommand{\p@enumii}{\theenumi.}%
\renewcommand{\p@enumiii}{\p@enumii\theenumii.}%
\renewcommand{\p@enumiv}{\p@enumiii\theenumiii.}%
\renewcommand{\p@enumv}{\p@enumiv\theenumiv.}%
\ifcase\@enumdepth
\setlength\pflabelwdi{\pflabelwdI}%
\setlength\pflabelwdii{\pflabelwdII}%
\setlength\pflabelwdiii{\pflabelwdIII}%
\setlength\pflabelwdiv{\pflabelwdIV}%
\setlength\pflabelwdv{\pflabelwdV}%
\or
\setlength\pflabelwdii{\pflabelwdI}%
\setlength\pflabelwdiii{\pflabelwdII}%
\setlength\pflabelwdiv{\pflabelwdIII}%
\setlength\pflabelwdv{\pflabelwdIV}%
\setbeamertemplate{enumerate subitem}{\insertsubenumlabel.}%
\renewcommand{\p@enumii}{}%
\or
\setlength\pflabelwdiii{\pflabelwdI}%
\setlength\pflabelwdiv{\pflabelwdII}%
\setlength\pflabelwdv{\pflabelwdIII}%
\setbeamertemplate{enumerate subsubitem}{\insertsubsubenumlabel.}%
\renewcommand{\p@enumiii}{}%
\or
\setlength\pflabelwdiv{\pflabelwdI}%
\setlength\pflabelwdv{\pflabelwdII}%
\setbeamertemplate{enumerate subsubsubitem}{\insertsubsubsubenumlabel.}%
\renewcommand{\p@enumiv}{}%
\or
\setlength\pflabelwdv{\pflabelwdI}%
\setbeamertemplate{enumerate subsubsubsubitem}{\insertsubsubsubsubenumlabel.}%
\renewcommand{\p@enumv}{}%
\fi}
\newenvironment{subpf}
{\advance\@enumdepth1
\csname numpf@set\romannumeral\the\@enumdepth\endcsname
\advance\@enumdepth-1
\begin{numpf@enumerate}}
{\end{numpf@enumerate}\ignorespacesafterend}
\newenvironment{subpf*}
{\advance\@enumdepth1
\csname numpf@set\romannumeral\the\@enumdepth @star\endcsname
\advance\@enumdepth-1
\begin{numpf@enumerate}}
{\end{numpf@enumerate}\ignorespacesafterend}
\newcommand{\linenum}
{\usebeamertemplate*{\beamer@enumtempl}}
% The \relax seems to help avoid an error
% if the immediately preceding \item has an overlay specification.
\newenvironment<>{pfarray}[1]
{\begin{uncoverenv}#2\pfln\relax\numpf@rray{#1}}
{\endarray\end{math}\end{uncoverenv}\ignorespacesafterend}
\newcommand{\subpfalign@@set}{%
\advance\@enumdepth\@ne
\setcounter{enum\romannumeral\the\@enumdepth}{1}%
\beamer@computepref\@enumdepth% sets \beameritemnestingprefix
\edef\beamer@enumtempl{enumerate \beameritemnestingprefix item}%
\let\numpf@amsmathLet@\Let@
\def\Let@{\let\\\numpf@spf@lignlb}}
}{%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Definitions for standard LaTeX %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Here I define one more layer for the numpf environment.
\@definecounter{enumv}
% Modified from report.cls
\renewcommand\theenumv{\@Roman\c@enumv}
\newcommand\labelenumv{\theenumv.}
\renewcommand\p@enumv{\p@enumiv\theenumiv}
% The proof environments in text mode
\newenvironment{numpf}
{\numpf@
\begin{subpf}}
{\end{subpf}\ignorespacesafterend}
\newenvironment{numpf*}
{\numpf@
\begin{subpf*}}
{\end{subpf*}\ignorespacesafterend}
\newcommand{\numpf@}{%
\renewcommand\labelenumi{\theenumi.}%
\renewcommand\theenumi{\arabic{enumi}}%
\renewcommand\p@enumi{}%
\renewcommand\labelenumii{\labelenumi\theenumii.}%
\renewcommand\theenumii{\arabic{enumii}}%
\renewcommand\p@enumii{\p@enumi\theenumi.}%
\renewcommand\labelenumiii{\labelenumii\theenumiii.}%
\renewcommand\theenumiii{\arabic{enumiii}}%
\renewcommand\p@enumiii{\p@enumii\theenumii.}%
\renewcommand\labelenumiv{\labelenumiii\theenumiv.}%
\renewcommand\theenumiv{\arabic{enumiv}}%
\renewcommand\p@enumiv{\p@enumiii\theenumiii.}%
\renewcommand\labelenumv{\labelenumiv\theenumv.}%
\renewcommand\theenumv{\arabic{enumv}}%
\renewcommand\p@enumv{\p@enumiv\theenumiv.}%
\ifcase\@enumdepth
\setlength\pflabelwdi{\pflabelwdI}%
\setlength\pflabelwdii{\pflabelwdII}%
\setlength\pflabelwdiii{\pflabelwdIII}%
\setlength\pflabelwdiv{\pflabelwdIV}%
\setlength\pflabelwdv{\pflabelwdV}%
\or
\setlength\pflabelwdii{\pflabelwdI}%
\setlength\pflabelwdiii{\pflabelwdII}%
\setlength\pflabelwdiv{\pflabelwdIII}%
\setlength\pflabelwdv{\pflabelwdIV}%
\renewcommand\labelenumii{\theenumii.}%
\renewcommand{\p@enumii}{}%
\or
\setlength\pflabelwdiii{\pflabelwdI}%
\setlength\pflabelwdiv{\pflabelwdII}%
\setlength\pflabelwdv{\pflabelwdIII}%
\renewcommand\labelenumiii{\theenumiii.}%
\renewcommand{\p@enumiii}{}%
\or
\setlength\pflabelwdiv{\pflabelwdI}%
\setlength\pflabelwdv{\pflabelwdII}%
\renewcommand\labelenumiv{\theenumiv.}%
\renewcommand{\p@enumiv}{}%
\or
\setlength\pflabelwdv{\pflabelwdI}%
\renewcommand\labelenumv{\theenumv.}%
\renewcommand{\p@enumv}{}%
\fi}
% Modified from latex.ltx to make left-aligned numbers
\newenvironment{subpf}{%
\ifnum \@enumdepth >4\@toodeep\else
\advance\@enumdepth\@ne
\csname numpf@set\romannumeral\the\@enumdepth\endcsname
\edef\@enumctr{enum\romannumeral\the\@enumdepth}%
\expandafter
\list
\csname label\@enumctr\endcsname
{\usecounter\@enumctr\def\makelabel##1{\hss\rlap{##1}\hfill}}%
\fi}{\endlist}
\newenvironment{subpf*}{%
\ifnum \@enumdepth >4\@toodeep\else
\advance\@enumdepth\@ne
\csname numpf@set\romannumeral\the\@enumdepth @star\endcsname
\edef\@enumctr{enum\romannumeral\the\@enumdepth}%
\expandafter
\list
\csname label\@enumctr\endcsname
{\usecounter\@enumctr\def\makelabel##1{\hss\rlap{##1}\hfill}}%
\fi}{\endlist}
\newcommand{\linenum}
{\csname labelenum\romannumeral\the\@enumdepth\endcsname}
\newenvironment{pfarray}
{\pfln\numpf@rray}
{\endarray\end{math}\ignorespacesafterend}
\newcommand{\subpfalign@@set}{%
\advance\@enumdepth\@ne
\setcounter{enum\romannumeral\the\@enumdepth}{1}%
\let\numpf@amsmathLet@\Let@
\def\Let@{\let\\\numpf@spf@lignlb}}
}
% Here are the proof environments in math mode.
% The stem is ``pfalign''.
% Prefixing by ``sub'' indicates a new layer in the line numbering.
% Suffixing by ``ed'' specifies that the materials are not displayed.
% An asterisk used with ``sub'' specifies that
% the space-saving margins are to be used.
% One can play with the usual parameters to modify the spacing, e.g.,
% \jot=0pt
% \abovedisplayskip=0pt
% \afterdisplayskip=0pt
% These have to be issued before the environment starts.
% Default overlay specifications in beamer do not apply to these commands.
\def\numpf@mknum@norm#1{\makebox[\labelwidth][l]{#1}\hspace{\labelsep}}
\def\numpf@mknum@star#1%
{\hspace{\pfmargin}\hspace{-\labelsep}\hspace{-\labelwidth}%
\makebox[\labelwidth][l]{#1}\hspace{\labelsep}}
\def\numpf@lign@mklbl{%
\edef\@currentlabel
{\csname p@enum\romannumeral\the\@enumdepth\endcsname
\csname theenum\romannumeral\the\@enumdepth\endcsname}%
% Adapted from \make@display@tag in amsmath.sty
\ifmeasuring@\else
\ifx\df@label\@empty\else
\@xp\ltx@label\@xp{\df@label}%
\global\let\df@label\@empty
\fi
\fi
}
\newenvironment{subpfalign}
{\let\numpf@mknum\numpf@mknum@norm\collect@body\subpfalign@}{}
\newenvironment{subpfalign*}
{\let\numpf@mknum\numpf@mknum@star\collect@body\subpfalign@}{}
\newcommand{\subpfalign@}[1]{\bgroup
\ifnum \@enumdepth >4\@toodeep\else\subpfalign@@{#1}\fi
\egroup\ignorespaces}
\newcommand{\subpfalign@@}[1]{\subpfalign@@set
\def\numpf@spf@lignlb{\relax\iffalse{\fi\ifnum0=`}\fi
\@ifstar{\numpf@spf@lignlb@star}{\numpf@spf@lignlb@}}%
\begin{flalign*}
% Hopefully no one uses \Let@ except amsmath.
\global\let\Let@\numpf@amsmathLet@
&\numpf@mknum{\linenum}%
&#1\numpf@lign@mklbl
\end{flalign*}}
% The starred version has one fewer ampersand before the line break.
% Modified from amsmath.sty, especially \math@cr
\def\numpf@spf@lignlb@{%
\new@ifnextchar[\numpf@spf@lignlb@@{\numpf@spf@lignlb@@[\z@]}}
\def\numpf@spf@lignlb@@[#1]{\ifnum0=`{\fi \iffalse}\fi
&\numpf@lign@mklbl\math@cr@@@
\noalign{\vskip#1\relax}%
\refstepcounter{enum\romannumeral\the\@enumdepth}%
&\numpf@mknum{\linenum}&}
\def\numpf@spf@lignlb@star{%
\new@ifnextchar[\numpf@spf@lignlb@@star{\numpf@spf@lignlb@@star[\z@]}}
\def\numpf@spf@lignlb@@star[#1]{\ifnum0=`{\fi \iffalse}\fi
\numpf@lign@mklbl\math@cr@@@
\noalign{\vskip#1\relax}%
\refstepcounter{enum\romannumeral\the\@enumdepth}%
&\numpf@mknum{\linenum}&}
% This should store the current way to show the line number,
% wherever the command is.
% It should also step the counter.
% Currently, it only works for pfaligned.
\newcommand{\numpf@shownum}{}
\newcommand{\numpf@shownum@backup}{}
\newcommand{\skippfnum}{%
\global\let\numpf@shownum@backup\numpf@shownum
\global\def\numpf@shownum
{\global\let\numpf@shownum\numpf@shownum@backup}}
% If needed, one can adjust \minalignsep before pfaligned, as in
% \renewcommand\minalignsep{4cm}
% \jot in pfaligned is by default can set to 0pt.
% To change it back (locally), use
% \pfalignedjot=\jot
% \label's must be put at the beginning of the lines.
\newlength{\pfalignedjot}
\setlength{\pfalignedjot}{0pt}
% The only difference between the beamer and the non-beamer versions
% is the overlay option.
\@ifclassloaded{beamer}{%
\newenvironment<>{pfaligned}[1]
{\def\numpf@pf@ligned@txt{#1}%
\def\numpf@pf@ligned@overlay{#2}%
\collect@body\pfaligned@@}
{\ignorespacesafterend}
\newcommand{\pfaligned@@}[1]{%
\let\numpf@amsmathLet@\Let@
\def\Let@{\let\\\numpf@pf@lignedlb}%
\expandafter\onslide\numpf@pf@ligned@overlay{\pfln
\renewcommand{\numpf@shownum}{%
\refstepcounter{enum\romannumeral\the\@enumdepth}%
\hspace{-\labelwidth}\hspace{-\labelsep}%
\numpf@mknum@norm{\linenum}}%
\makebox[\linewidth][l]{\begin{math}\jot\pfalignedjot\begin{aligned}[t]
% Hopefully no one uses \Let@ except amsmath.
\global\let\Let@\numpf@amsmathLet@
&\text{\numpf@pf@ligned@txt}%
&#1
\end{aligned}\end{math}}}\vspace{\pfalignedjot}}
}{%
\newenvironment{pfaligned}[1]
{\def\numpf@pf@ligned@txt{#1}%
\collect@body\pfaligned@@}{\ignorespacesafterend}
\newcommand{\pfaligned@@}[1]{%
\let\numpf@amsmathLet@\Let@
\def\Let@{\let\\\numpf@pf@lignedlb}%
\pfln
\renewcommand{\numpf@shownum}{%
\refstepcounter{enum\romannumeral\the\@enumdepth}%
\hspace{-\labelwidth}\hspace{-\labelsep}%
\numpf@mknum@norm{\linenum}}%
\makebox[\linewidth][l]{\begin{math}\jot\pfalignedjot\begin{aligned}[t]
% Hopefully no one uses \Let@ except amsmath.
\global\let\Let@\numpf@amsmathLet@
&\text{\numpf@pf@ligned@txt}%
&#1
\end{aligned}\end{math}}\vspace{\pfalignedjot}}
}
% The starred version has one fewer ampersand after the line break.
% Modified from amsmath.sty, especially \math@cr
\def\numpf@pf@lignedlb{\relax\iffalse{\fi\ifnum0=`}\fi
\@ifstar{\numpf@pf@lignedlb@star}{\numpf@pf@lignedlb@}}
\def\numpf@pf@lignedlb@{%
\new@ifnextchar[\numpf@pf@lignedlb@@{\numpf@pf@lignedlb@@[\z@]}}
\def\numpf@pf@lignedlb@@[#1]{\ifnum0=`{\fi \iffalse}\fi
\math@cr@@@
\noalign{\vskip#1\relax}%
&\numpf@shownum&%
\edef\@currentlabel
{\csname p@enum\romannumeral\the\@enumdepth\endcsname
\csname theenum\romannumeral\the\@enumdepth\endcsname}}
\def\numpf@pf@lignedlb@star{%
\new@ifnextchar[\numpf@pf@lignedlb@@star{\numpf@pf@lignedlb@@star[\z@]}}
\def\numpf@pf@lignedlb@@star[#1]{\ifnum0=`{\fi \iffalse}\fi
\math@cr@@@
\noalign{\vskip#1\relax}%
&\numpf@shownum%
\edef\@currentlabel
{\csname p@enum\romannumeral\the\@enumdepth\endcsname
\csname theenum\romannumeral\the\@enumdepth\endcsname}}
% !!! dangerous bend !!!
% Partly from https://tex.stackexchange.com/a/541683
% One left-aligned column is always added at the beginning and
% one right-aligned column is always added at the end.
% Best used with \extracolsep plus \stretch{<factor>} or \fill.
% To temporarily get rid of the added stretchable space,
% issue \extracolsep{0pt}.
\newcommand{\numpf@rray}[1]{%
\tabto{\CurrentLineWidth}%
\begin{math}\everymath={\displaystyle}%
\let\ltx@label\label
\let\label\numpf@rray@label
\setlength{\numpf@templen}{\linewidth}%
\addtolength{\numpf@templen}{-\TabPrevPos}%
% Modified from array and tabular* in latex.ltx
\setlength\dimen@{\numpf@templen}%
\let\@acol\@arrayacol
\let\@classz\@arrayclassz
\let\@classiv\@arrayclassiv
\let\\\numpf@rraylb
\edef\@halignto{to\the\dimen@}\@tabarray[t]
{@{}l@{\extracolsep{\fill}}#1@{\extracolsep{\fill}}r@{}}}
% The starred form removes the ampersand before the line break.
\def\numpf@rraylb{\relax\iffalse{\fi\ifnum0=`}\fi
\@ifstar{\numpf@rraylb@star}{\numpf@rraylb@}}%
\def\numpf@rraylb@{%
\new@ifnextchar[\numpf@rraylb@@{\numpf@rraylb@@[\z@]}%
}
\def\numpf@rraylb@@[#1]{\ifnum0=`{\fi \iffalse}\fi
&\@arraycr[#1]%
\refstepcounter{enum\romannumeral\the\@enumdepth}%
\hspace{-\labelwidth}\hspace{-\labelsep}%
\numpf@mknum@norm{\linenum}}
\def\numpf@rraylb@star{%
\new@ifnextchar[\numpf@rraylb@@star{\numpf@rraylb@@star[\z@]}%
}
\def\numpf@rraylb@@star[#1]{\ifnum0=`{\fi \iffalse}\fi
\@arraycr[#1]%
\refstepcounter{enum\romannumeral\the\@enumdepth}%
\hspace{-\labelwidth}\hspace{-\labelsep}%
\numpf@mknum@norm{\linenum}}
\def\numpf@rray@label#1{%
\edef\@currentlabel
{\csname p@enum\romannumeral\the\@enumdepth\endcsname
\csname theenum\romannumeral\the\@enumdepth\endcsname}%
\ltx@label{#1}}
% You may find \popqed and \qedhere helpful.
% To do
% - keyval list of options to control, say, spacing.
% - option to omit numbering for one line via \skippfnum
% for other environments
% - take care of itemize in addition to enumerate.
\endinput

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -0,0 +1,917 @@
\documentclass[a4paper]{article}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage{url}
% \usepackage{subcaption}
\usepackage{emptypage}
% \usepackage{multicol}
\usepackage{cancel}
\usepackage{mathtools}
\usepackage{lscape}
\usepackage{pdflscape}
\usepackage{float}
\usepackage{xifthen}
\usepackage[skip=10pt]{parskip}
\usepackage{comment}
\usepackage[margin=0.5in]{geometry}
\setlength{\parindent}{0pt}
\usepackage{1231num}
\theoremstyle{definition}
\newtheorem*{defn}{Defn}
\newtheorem*{propos}{Proposition}
\renewcommand{\qedsymbol}{}
\newtheorem{innertheorem}{Theorem}
\newenvironment{theorem}[1]
{\renewcommand\theinnertheorem{#1}\innertheorem}
{\endinnertheorem}
\author{Yadunand Prem}
\title{Midterms Cheatsheet}
\begin{document}
\section{Math}
\begin{defn}{Even and Odd Integers}\\
n is even $\Leftrightarrow \exists$ an integer $k$ s.t. $n = 2k$\\
n is odd $\Leftrightarrow \exists$ an integer $k$ s.t. $n = 2k + 1$
\end{defn}
\begin{defn}{Divisibility}\\
$n$ and $d$ are integers and $d \not= 0$ \\
$d | n \Leftrightarrow \exists k \in \mathbb{Z}$ s.t. $n = dk$
\end{defn}
\begin{theorem}{4.2.1}
Every Integer is a rational number
\end{theorem}
\begin{theorem}{4.2.2}
The sum of any two rational numbers is rational
\end{theorem}
\begin{theorem}{4.3.1}
For all $a, b \in \mathbb{Z}^+$, if $a | b$, then $a \leq b$
\end{theorem}
\begin{theorem}{4.3.2}
Only divisors of $1$ are $1$ and $-1$
\end{theorem}
\begin{theorem}{4.3.3}
$\forall a, b, c \in \mathbb{Z}$ if $a | b$, $b | c$, $a | c$
\end{theorem}
\begin{theorem}{4.6.1}
There is no greatest integer
\end{theorem}
\begin{propos}{4.6.4}
For all integers $n$, if $n^2$ is even, then $n$ is even.
\end{propos}
\begin{defn}{Rational}
$r$ is rational $\Leftrightarrow \exists a, b \in \mathbb{Z}$ s.t. $r = \frac{a}{b}$ and $b \not=0$
\end{defn}
\begin{defn}{Fraction in lowest term:}
fraction $\frac{a}{b}$ is lowest term if largest $\mathbb{Z}$ that divies both $a$ and $b$ is 1
\end{defn}
\begin{theorem}{4.7.1}
$\sqrt{2}$ is irrational
\end{theorem}
\section{Logic of Combound Statements}
\begin{theorem}{3.2.1} Negation of universal stmt
$\sim(\forall x \in D, P(x)) \equiv \exists x \in D$ s.t. $\sim P(x)$
\end{theorem}
\begin{theorem}{3.2.1} Negation of existential stmt
$\sim(\exists x \in D$ s.t. $P(x)) \equiv \forall x \in D, \sim P(x)$
\end{theorem}
\begin{defn}{Contrapositive}
of $p \Rightarrow q \equiv \sim q \Rightarrow p$
\end{defn}
\begin{defn}{Converse}
of $p \Rightarrow q$ is $q \Rightarrow p$
\end{defn}
\begin{defn}{Inverse}
of $p \Rightarrow q$ is $\sim p \Rightarrow \sim q$
\end{defn}
\begin{defn}{Only if:}
$p$ only if $q$ means $\sim q \Rightarrow \sim p \equiv p \Rightarrow q$
\end{defn}
\begin{defn}{Biconditional:}
$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
\end{defn}
\begin{defn}
$r$ is sufficient condition for $s$ means if $r$ then $s$, $r \Rightarrow s$
\end{defn}
\begin{defn}
$r$ is necessary condition for $s$ means if $\sim r$ then $\sim s$, $s \Rightarrow r$
\end{defn}
\begin{defn}{Proof by Contradiction}\\
If you can show that the supposition that sttatement $p$ is false leads to a contradiction, then you can conclude that $p$ is true
\end{defn}
\section{Methods of Proof}
\begin{tabular} {|c|l|}
\hline
Statement & Proof Approach \\
$\forall x \in D\ P(X)$ & Direct: Pick arbitrary x, prove P is true for that x. \\
& Contradiction: Suppose not, i.e. $ \exists x(\sim p)$... Hence supposition $\sim p$ is false (P3) \\
\hline
$\exists x \in D\ P(X)$ & Direct: Find x where P is true. \\
& Contradiction: Suppose not, i.e. $\forall x (\sim p)$... Hence supposition $\sim p$ is false (P3) \\
\hline
$P \Rightarrow Q$ & Direct: Assume P is true, prove Q \\
& Contradiction: Assume P is true and Q is false, then derive contradiction \\
& Contrapositive: Assume $\sim Q$, then prove $\sim P$ \\
\hline
$P \Leftrightarrow Q$ & Prove both $P \Rightarrow Q$ and $Q \Rightarrow P$ \\
\hline
$xRy$. Prove R is equivalence & Prove Reflexive, Symmetric and Transitive \\
\hline
Reflexive & \\
\hline
Symmetric & \\
\hline
Antisymmetric & \\
\hline
Transitive & \\
\hline
\end{tabular}
\begin{defn}{Proof by Contraposition}\\
1. Statement to be proved $\forall x \in D\ (P(x) \Rightarrow Q(x))$\\
2. Contrapositive Form: $\forall x \in D\ (\sim Q(x) \Rightarrow \sim P(x))$\\
3. Prove by direct proof\\
3.1 Suppose x is an element of D s.t. $Q(X)$ is false\\
3.2 Show that P(x) is false.\\
4. Therefore, original statement is true
\end{defn}
\section{Set Theory}
\begin{defn}{Set: Unordered collection of objects}\\
Order and duplicates don't matter
\end{defn}
\begin{defn}{Membership of Set $\in$: }
If $S$ is set, $x \in S$ means $x$ is an element of $S$
\end{defn}
\begin{defn}{Cardinality of Set $|S|$: }
The number of elements in $S$
\end{defn}
Common Sets:
$\mathbb{N}$ - Natural Numbers, $\{0, 1, 2\}$
$\mathbb{Z}$ - Integers
$\mathbb{Q}$ - Rational
$\mathbb{R}$ - Real
$\mathbb{C}$ - Complex
$\mathbb{Z}^\pm$ - Positive/Negative Integers
\begin{defn}{Subset}
$A \subseteq B \Leftrightarrow$ Every element of $A$ is also an element of $B$\\
$A \subseteq B \Leftrightarrow \forall x(x\in A \Rightarrow x \in B)$
\end{defn}
\begin{defn}{Proper Subset}
$A \subsetneq B \Leftrightarrow (A \subseteq B \land A \not = B)$
\end{defn}
\begin{theorem}{6.2.4}
An empty set is a subset of every set, i.e. $\emptyset \subseteq A$ for all sets $A$
\end{theorem}
\begin{defn}{Cartesian Product}
$A \times B = \{(a, b): a \in A \land b \in B\} $
\end{defn}
\begin{defn}{Set Equality}
$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$ \\
$A = B \Leftrightarrow \forall x (x \in A \Leftrightarrow x \in B)$
\end{defn}
\begin{defn}{Union:}
$A \cup B = \{x \in U: x \in A \lor x \in B\}$
\end{defn}
\begin{defn}{Intersection:}
$A \cap B = \{x \in U: x \in A \land x \in B\}$
\end{defn}
\begin{defn}{Difference:}
$B \setminus A = \{x \in U: x \in B \land x \not\in A\}$
\end{defn}
\begin{defn}{Disjoint:}
$A \cap B = \emptyset$
\end{defn}
\begin{theorem}{4.4.1} Quotient-Remainder
$n \in \mathbb{Z}, d \in \mathbb{Z}^+$\\ there exists unique integers q and r such that $n = dq + r$ and $0 \leq r < d$
\end{theorem}
\begin{defn}{Power Set:}
The set of all subsets of $A$, has $2^n$ elements.
\end{defn}
\begin{theorem}{6.3.1}
Suppose $A$ is a finite set with $n$ elements, then $P(A)$ has $2^n$ elements.
$|P(A)| = 2^{|n|}$
\end{theorem}
\begin{defn}{Cartesian Product of $A_n$}
$= A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2,...a_n): a_1 \in A_1 \land a_2 \in A_2...$
\end{defn}
\begin{theorem}{6.2.1} Subset Relations
\begin{numpf*}
\pfln Inclusion of Intersection: $A \cup B \subseteq A, A \cup B \subseteq B$
\pfln Inclusion in Union $A \subseteq A \cup B, B \subseteq A \cup B$
\pfln Transitive Property of Substs: $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
\end{numpf*}
\end{theorem}
\section{Relations}
\begin{defn} Relation from A to B is a subset of $A \times B$\\
Given an ordered pair$(x, y) \in A\times B$, $x$ is
related to y by $R$ is written $xRy \Leftrightarrow (x, y) \in R$
\end{defn}
\begin{defn} Domain, Co-domain, Range\\
Let $A$ and $B$ be sets and $R$ be a relation from $A$ to $B$
\begin{numpf*}
\pfln Domain of R: is set $\{a \in A: aRb$ for some $b \in B\}$
\pfln Codomain of R: Set B
\pfln Range of R: is set $\{b \in B: aRb$ for some $a \in A\}$
\end{numpf*}
\end{defn}
\begin{defn} Inverse Relation\\
Let $R$ be a relation from $A$ to $B$,
$R^{-1} = \{(y, x) \in B\times A: (x, y) \in R\}$\\
$\forall x \in A, \forall y \in B ((y, x) \in R^{-1} \Leftrightarrow (x, y) \in R)$
\end{defn}
\begin{defn}
Relation on a Set $A$ is a relation from $A$ to $A$.
\end{defn}
\begin{defn} Composition of Relations\\
A, B and C be sets. $R \subseteq A \times B$ be a relation. $S \subset B \times C$ be relation. Composition of R with S, denoted $S \circ R$ is relation from A to C such that: \\
$\forall x \in A, \forall z \in C(x S \circ R z \Leftrightarrow (\exists y \in B (xRy \land ySz)))$
\end{defn}
\begin{propos} Composition is Associative
$A, B, C, D$ be sets. $R \subseteq A \times B$, $S \subseteq B \times C$, $T \subseteq C \times D$\\
$T \circ ( S \circ R) = T \circ S \circ R$
\end{propos}
\begin{propos} Inverse of Composition
$A, B, C$ be sets. $R \subseteq A \times B$, $S \subseteq B \times C$\\
$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$
\end{propos}
\begin{defn} \textbf{Reflexivity, Symmetry, Transitivity}
\begin{numpf*}
\pfln Reflexivity: $\forall x \in A (xRx)$
\pfln Symmetry: $\forall x,y \in A (xRy \Rightarrow yRx)$
\pfln Transitivity:$\forall x,y,z \in A (xRy \land yRz \Rightarrow xRz)$
\end{numpf*}
Refer to proof 6
\end{defn}
\begin{defn} Transitive Closure\\
Transitive closure of R is relation $R^t$ on A that satiesfies
\begin{numpf*}
\pfln $R^t$ is transitive
\pfln $R \subseteq R^t$
\pfln If $S$ is any other transitive relation that contains $R$, then $R^t \subseteq S$
\end{numpf*}
\end{defn}
\begin{defn} Partition\\
$P$ is partition of set A if
\begin{numpf*}
\pfln $P$ is a set of which all elements are non empty subsets of A, $\emptyset \not = S \subseteq A$ for all $S \in P$
\pfln Every element of $A$ is in exactly on element of P, \\
$\forall x \in A\ \exists S \in P (x \in S)$ and \\
$\forall x \in A\ \exists S_1, S_2 \in P(x \in S_1 \land x \in S_2 \Rightarrow S_1 = S_2)$
\end{numpf*}
OR $\forall x \in A\ \exists!S \in P(x \in S)$\\
Elements of a partition are called components
\end{defn}
\begin{defn} Relation Induced by a partition\\
Given partition $P$ of $A$, the relation $R$ induced by partition: \\
$\forall x, y \in A, xRy \Rightarrow \exists$ a component of $S$ of $P$ s.t. $x, y \in S$
\end{defn}
\begin{theorem}{8.3.1}[Relation Induced by a Partition]
Let $A$ be a set with a partition and let R be a relation induced by the partition. Then $R$ is reflexive, symmetric and transitive
\end{theorem}
\begin{defn}[Equivalence Relation]
$A$ be set and $R$ be relation. $R$ is equivalence relation iff $R$ is reflexive, symmetric and transitive
\end{defn}
\begin{defn} Equivalence Class\\
Suppose $A$ is set and $\sim$ is equivalence relation on A. For each $A \in A$, equivalence class of $a$, denoted $[a]$ and called class of $a$ is set of all elements $x \in A$ s.t. $a\sim x$\\
$[a]_{\sim} = \{x \in A: a \sim x \}$
\end{defn}
\begin{theorem}{8.3.4} The partition induced by an Equivalence Relation\\
If $A$ is a set and $R$ is an equivalence relation on $A$, then distinct equivalence classes of $R$ form a partition of $A$; that is, the union of the equivalence classes is all of $A$, and the intersection of any 2 disctinct classes is empty.
\end{theorem}
\begin{defn} Congruence\\
Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then $a$ is congruent to $b$ modulo $n$ iff $a - b = nk$, for some $k \in \mathbb{Z}$. In other words, $n | (a - b)$. We write $a \equiv b (\text{mod}\ n)$
\end{defn}
\begin{defn} Set of equivalence classes\\
Let $A$ be set and $\sim$ be an equivalence relation on $A$. Denote by $A/\sim$, the set of all equivalence classes with respect to $\sim$, i.e.
$A/\sim = \{[x]_\sim: x \in A\}$
\end{defn}
\begin{theorem}{Equivalence Classes} form a partition
Let $\sim$ be an equiv. relation on $A$. Then $A/\sim$ is a partition of A.
\end{theorem}
\begin{defn}[Antisymmetry]
$R$ is antisymmetric iff $\forall x, y \in A(xRy \land yRx \Rightarrow x = y)$ \textit{(DOES NOT IMPLY NOT SYMMETRIC)}
\end{defn}
\begin{defn}[Partial Order Relation]
$R$ is Partial Order iff R is \textit{reflexive}, \textit{antisymmetric} and \textit{transitive}.
\end{defn}
\begin{defn}{Partially Ordered Set}
Set A is called poset with respect to partial order relation $R$ on $A$, denoted by $(A, R)$ (Proof 7)
\end{defn}
\begin{defn}{$x \preccurlyeq y$}
is used as a general partial order relation notation
\end{defn}
\begin{defn}[Hasse Diagram]
Let $\preccurlyeq$ be a partial order on set $A$. Hasse diagram satisfies the following condition for all distinct $x, y, m \in A$ \\
If $x \preccurlyeq y$ and no $m \in A$ is s.t. $x \preccurlyeq m \preccurlyeq y$, then x is placed below y with a line joining them, else no line joins $x$ and $y$.
\end{defn}
\begin{defn}[Comparability]
$a, b \in A$ are comparable iff $a \preccurlyeq b$ or $b \preccurlyeq a$. Otherwise, they are \textbf{noncomparable}
\end{defn}
\begin{defn}[Maximal, Minimal, Largest Smallest]
Set $A$ be partially ordered w.r.t. a relation $\preccurlyeq$ and $c \in A$
\begin{numpf}
\pfln c is maximal element of $A$ iff $\forall x \in A$, either $x \preccurlyeq c$ or $x$ and $c$ are non-comparable. OR $\forall x in A(c \preccurlyeq x \Rightarrow c = x)$
\pfln c is minimal element of $A$ iff $\forall x \in A$, either $c \preccurlyeq x$ or $x$ and $c$ are non-comparable. OR $\forall x in A(x \preccurlyeq c \Rightarrow c = x)$
\pfln c is largest element of $A$ iff $\forall x \in A (x \preccurlyeq c)$
\pfln c is smallest element of $A$ iff $\forall x \in A (c \preccurlyeq x)$
\end{numpf}
\end{defn}
\begin{propos} A smallest element is minimal\\
Consider a partial order $\preccurlyeq$ on set $A$. Any smallest element is minimal.
\begin{numpf}
\pfln Let $c$ be smallest elemnt
\pfln Take any $x \in A$ s.t. $x \preccurlyeq c$
\pfln By smallestness, we know $c \preccurlyeq x$ too.
\pfln So $c = x$ by antisymmetry
\end{numpf}
\end{propos}
\begin{defn}[Total Order Relations] All elements of the set are comparable\\
R is total order iff $R$ is a partial order and $\forall x, y \in A (xRy \lor yRx)$
\end{defn}
\begin{defn}[Linearization of a partial order]
Let $\preccurlyeq$ be a partial order on set $A$. A linearization of $\preccurlyeq$ is a total order $\preccurlyeq *$ on $A$ s.t. $\forall x, y \in A (x \preccurlyeq y \Rightarrow x \preccurlyeq *\ y)$
\end{defn}
\begin{defn}[Kahn's Algorithm]
Input: A finite set $A$ and partial order $\preccurlyeq$ on $A$
\begin{numpf}
\pfln Set $A_0 := A$ and $i := 0$
\pfln Repeat until $A_i = \emptyset$
\begin{subpf}
\pfln Find minimal element $c_i$ of $A_i$ wrt $\preccurlyeq$
\pfln Set $A_{i+1} = A_i \setminus {c_i}$
\pfln Set $i = i+1$
\end{subpf}
\end{numpf}
Output: A linearization $\preccurlyeq *$ of $\preccurlyeq$ defined by setting, for all indicies $i, j$\\ $c_i \preccurlyeq*\ c_j \Leftrightarrow i \leq j$
\end{defn}
\begin{defn}[Well ordered set] Let $\preccurlyeq$ be a total order on set $A$. $A$ is well ordered iff every nonempty subset of A contains a smallest element. OR\\
$\forall S \in P(A), S \not = \emptyset \Rightarrow (\exists x \in S \forall y \in S (x \preccurlyeq y))$ E.g. $(\mathbb{N}, \leq)$ is well ordered but $(\mathbb{Z}, \leq)$ is not as there is no smallest integer (Theorem 4.6.1)
\end{defn}
\section{Proofs}
\begin{proof} [\proofname\ L1S28]
Prove that the product of two consecutive odd numbers is always odd.
\begin{numpf*}
\pfln Let $a$ and $b$ be two consecutive odd numbers
\begin{subpf*}
\pfln Without loss of generality, assume that $a < b$, hence $b = a + 2$
\pfln Now, $a = 2k+1$ (by defn of odd numbers)
\pfln Similarly, $b = a + 2 = 2k + 3$
\pfln Therefore, $ab = (2k+1)(2k+3) = (4k^2 + 6k) + (2k + 3) = 4k^2 + 8k + 3 = 2(2k^2 + 4k + 1) + 1$ (by Basic Algebra)
\pfln Let $m = (2k^2 + 4k + 1)$ which is an integer (by closure of integers under $\times$ and $+$)
\pfln Then $ab = 2m + 1$ which is odd (by defn of odd numbers)
\end{subpf*}
\pfln Therefore, the product of two consecutive odd numbers is always odd.
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ L4S16] Sum of 2 even $\mathbb{Z}$ is even
\begin{numpf*}
\pfln Let m and n be two particular but arbitrarily chosen even intergers
\begin{subpf*}
\pfln Then $m = 2r$ and $n = 2s$ for some $\mathbb{Z}$ $r$ and $s$ (by defn of even number)
\pfln $m + n = 2r + 2s = 2(r+s)$ (by basic algebra)
\pfln 2(r+s) is an integer(closure of int under $\times$ and $+$) and an even number (by defn of even number)
\pfln Hence $m+n$ is an even number
\end{subpf*}
\pfln Therefore sum of any two even integers is even
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T 4.6.1] There is no greatest integer (Contradiction)
\begin{numpf*}
\pfln Suppose not, i.e. there is a greatest intger
\begin{subpf*}
\pfln Lets call this greatest integer g, and $g \geq n$ for all integers n
\pfln Let $G = g + 1$
\pfln Now, $G$ is an integer (closure of integers under $+$) and $G > g$
\pfln Hence, g is not the greatest integer, contradicting 1.1
\end{subpf*}
\pfln Hence, the supposition that there is a greatest integer is false.
\pfln Therefore there is no greatest integer
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ L5S19] L5S19 Two sets are equal
\begin{numpf*}
\pfln Let sets $X$ and $Y$ be given. To prove $X$ = $Y$
\pfln ($\subseteq$) Prove $X \subseteq Y$
\pfln ($\supseteq$) Prove $X \supseteq Y$
\pfln From (2) and (3), we can conclude that $X = Y$
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ L5S22] L5S22 $\{x \in Z: x^2 = 1\} = \{1, -1\}$
\begin{numpf*}
\pfln $\rightarrow$
\begin{subpf*}
\pfln Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$
\pfln Then $z \in \mathbb{Z}$ and $z^2 = 1$
\pfln So, $z^2 -1 = (z-1)(z+1) = 0$ (by basic algebra)
\pfln $\therefore$ $z-1 = 0$ or $z +1 = 0$
\pfln $\therefore$ $z = 1$ or $z = -1$
\pfln So, $z \in \{1, -1\}$
\end{subpf*}
\pfln $\leftarrow$
\begin{subpf*}
\pfln Take any $z \in \{1, -1\}$
\pfln Then $z = 1$ or $z=-1$
\pfln In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$
\pfln So, $z \in \{x \in \mathbb{Z} : x^2 = 1\}$
\end{subpf*}
\pfln Therefore, $\{x \in Z: x^2 = 1\} = \{1, -1\}$ (from (1) and (2))
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ L6S27] $\forall x,y \in \mathbb{Z} (xRy \Leftrightarrow 3 | (x-y))$ is reflexive, symmetric, transitive
\begin{numpf*}
\pfln Proof of Reflexivity
\begin{subpf*}
\pfln Let $a$ be an arbitrarily chosen integer.
\pfln Now $a - a = 0$
\pfln $3 | 0 $(since $ 0 = 3 \cdot 0)$, hence $3 |(a - a)$
\pfln Therefore $aRa$ (by defn of R)
\end{subpf*}
\pfln Proof of Symmetry
\begin{subpf*}
\pfln Let a, b be arbitrarily chosen integers
\pfln Then $3|(a-b)$ (by defn of R), hence $a-b = 3k$ for some integer k (by defn of divisibility)
\pfln Multiplying both sides by $-1$ gives $b-a = 3(-k)$
\pfln Since $-k$ is an integer, $3 | (b-a)$ (by defn of divisibility)
\pfln Therefore, $aRb \Rightarrow bRa$ (by defn of R)
\end{subpf*}
\pfln Proof of Transitivity
\begin{subpf*}
\pfln Let a, b, c be arbitrarily chosen integers
\pfln Then, $3 | (a - b)$ and $3 | (b - c)$ (by defn of R), hence $a-b = 3r$ and $b-c = 3s$ (by defn of divisiblity)
\pfln Adding both equations gives $a - c = 3r + 3s$
\pfln Since $r+s$ is an integer, $3 | (a - c)$ (by defn of divisiblity)
\pfln Therefore $aRb \land bRc \Rightarrow aRc$ (by defn of R)
\end{subpf*}
\end{numpf*}
\end{proof}
\begin{proof}[Lemma Equivalence Class L6S47] Let $\sim$ be an equivalence relation on $A$. The following are equivalent for all $x, y \in A$ (i) $x\sim y$, (ii) $[x] = [y]$, (iii) $[x] \cap [y] \not = \emptyset$
\begin{numpf*}
\pfln $x \sim y \Rightarrow [x] = [y]$
\begin{subpf*}
\pfln Suppose $x \sim y$
\pfln Then $y \sim x$ (by symmetry)
\pfln For every $z \in [x]$
\begin{subpf*}
\pfln $x \sim z$ (by defn of x)
\pfln $\therefore y \sim z$ (by transitivity of $y\sim x$)
\pfln $\therefore z \in [y]$ (by defn of $[y]$)
\end{subpf*}
\pfln This shows $[x] \subseteq [y]$
\pfln Switching roles of $x$ and $y$, we can also see that $[y] \subseteq [x]$
\pfln Therefore, $[x] = [y]$
\end{subpf*}
\pfln $[x] = [y] \Rightarrow [x] \cap [y] \not = \emptyset$
\begin{subpf*}
\pfln Suppose $[x] = [y]$
\pfln Then $[x] \cap [y] = [x]$ (by idempotent law for $\cap$)
\pfln However, we know $x\sim x$ (by reflexivity of $\sim$)
\pfln This shows $x \in [x] = [x] \cap [y]$ (by defn of [x] and (2.2))
\pfln Therefore $[x] \cap [y] \not = \emptyset$
\end{subpf*}
\pfln $[x] \cap [y] \not = \emptyset \Rightarrow x \sim y$
\begin{subpf*}
\pfln Suppose $[x] \cap [y] \not = \emptyset$
\pfln Take $z \in [x] \cap [y]$
\pfln Then $z \in [x]$ and $z \in [y]$ (by defn of $\cap$)
\pfln Then $x \sim z$ and $y \sim z$ (by defn of $[x]$ and $[y]$)
\pfln $y \sim z$ implies $z \sim y$ (by defn of symmetry)
\pfln Therefore, $x \sim y$ (by transitivity)
\end{subpf*}
\end{numpf*}
\end{proof}
\begin{proof}[Proposition L6S54] Congruence-mod $n$ is an equivalence relation on $\mathbb{Z}$ for every $n \in \mathbb{Z}^+$
\begin{numpf*}
\pfln (Reflexivity) For all $a \in \mathbb{Z}$
\begin{subpf*}
\pfln $a - a = 0 = n \times 0$
\pfln So $a \equiv a (\text{mod}\ n)$ (by defn of congruence)
\end{subpf*}
\pfln (Symmetry)
\begin{subpf*}
\pfln Let $a, b \in \mathbb{Z}$ s.t. $a \equiv a (\text{mod}\ n)$
\pfln Then there is a $k \in \mathbb{Z}$ s.t. $a - b = nk$
\pfln Then $b - a = -(a - b) = -nk = n(-k)$
\pfln $-k \in \mathbb{Z}$ (by closure of integers under $\times$), so $b \equiv a (\text{mod}\ n)$ (by defn of congruence)
\end{subpf*}
\pfln (Transitivity)
\begin{subpf*}
\pfln Let $a, b,c \in \mathbb{Z}$ s.t. $a \equiv a (\text{mod}\ n)$ and $b \equiv c (\text{mod}\ n)$
\pfln Then there is a $k,l \in \mathbb{Z}$ s.t. $a - b = nk$ and $b - c = nl$
\pfln Then $a - c = (a - b) + (b - c) = nk + nl = n(k + 1)$
\pfln $k + l \in \mathbb{Z}$ (by closure of integers under $+$), so $a \equiv c (\text{mod}\ n)$ (by defn of congruence)
\end{subpf*}
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ L6S69] $\forall a, b \in \mathbb{Z}^+, \forall a | b \Leftrightarrow b = ka$ for some integer $k$. Prove $|$ is a partial order relation on $A$
\begin{numpf*}
\pfln $|$ is reflexive: Suppose $a \in A$. Then $a = 1 \dot a$, so $a|a$ (by defn of divisiblity)
\pfln $|$ is antisymmetric
\begin{subpf*}
\pfln Suppose $a, b \in \mathbb{Z}^+$ such that $aRb$ and $bRa$
\pfln Then $b = ra$ and $a = sb$ for some integers $r$ and $s$ (by defn of divides). It follows that $b = ra = r(sb)$
\pfln Dividing both sides by $b$ gives $1 = rs$
\pfln Only product of two positive integers that equals 1 is $1 \dot 1$.
\pfln Thus $r = s = 1$, and so $a = sb = 1 \dot b = b$
\pfln Therefore, $|$ is antisymmetric
\end{subpf*}
OR
\begin{subpf*}
\pfln Suppose $a, b \in \mathbb{Z}^+$ such that $a|b$ and $b|a$
\pfln then $a \leq b$ and $b \leq a$ (by theorem 4.3.1)
\pfln So $a = b$
\end{subpf*}
\pfln $|$ is transitive: Show that $\forall a, b, c \in A, a|b \land b|c \Rightarrow a |c)$ (theorem 4.3.3)
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T01Q9] The product of any two odd integers is an odd integer
\begin{numpf*}
\pfln Take any 2 odd numbers $a$ and $b$
\pfln Then $a = 2k+1$ and $b = 2p + 1$ for $k,p \in Z$ (by defn of odd number)
\pfln Then $a\cdot b = (2k+1)(2p+1) = (4kp + 2k) + (2p + 1) = 2(2kp + p + k) +1$ (by defn of odd number)
\pfln Let $q = 2kp + p +k$ which is an integer (by closure of int under $+$ and $\times$
\pfln Then nm = 2q + 1 which is odd (by defn of odd numbers)
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T01Q10] Let $n$ be an integer. Then $n^2$ is odd iff $n$ is odd
\begin{numpf*}
\pfln Proof By Contraposition, that is "if n is even, $n^2$ is even $(\Rightarrow)$
\begin{subpf*}
\pfln Suppose $n$ is even.
\pfln Then $\exists k \in \mathbb{Z}$ s.t. $n = 2k$ (by defn of even integers)
\pfln $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
\pfln Hence, $n^2$ = 2p, where $p = 2k^2 \in \mathbb{Z}$ (by closure of integers under $\times$)
\pfln Therefore, $n^2$ is even and this proves that if $n^2$ is odd, $n$ is odd.
\end{subpf*}
\pfln If $n$ is odd, then $n \times n = n^2$ is odd (T01Q9)
\pfln Therefore $n^2$ is odd if and only if $n$ is odd.
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T02Q3] Rational numbers are closed under addition
\begin{numpf*}
\pfln Let r and s be rational numbers
\pfln $\exists a,b,c,d \in \mathbb{Z}$ s.t. $r =\frac{a}{b}, s = \frac{c}{d}$ and $b \not = 0, d \not = 0$ (by defn of rational numbers)
\pfln Hence $r + s = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ (by basic algebra)
\pfln $ad + bd \in Z$ and $bd \in Z$ (closure of integers under $+$ and $\times$)
\pfln $bd \not = 0$ since $b \not = 0, d \not = 0$
\pfln Hence $r+s$ is rational, therefore rational numbers are closed under addition
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T02Q10] if $n$ is a product of 2 positive integers $a$ and $b$, then $a \leq n^{1/2}$ or $b \leq n^{1/2}$
\begin{numpf*}
\pfln Proof by contraposition, that is if $a > n^{1/2}$ and $b > n^{1/2}$, then $n$ is not a product of $a$ and $b$
\pfln Suppose $a > n^{1/2}$ and $b > n^{1/2}$, then $ab > n^{1/2} \cdot n^{1/2} = n$ (by Appendix A T27)
\pfln Since $ab \not = n$, the contrapositive statement is true
\end{numpf*}
or by contradiction
\begin{numpf*}
\pfln Proof by contradiction, that is $n = ab$ and $a > n^{1/2}$ and $b > n^{1/2}$
\pfln Since $a > n^{1/2}$ and $b > n^{1/2}$, then $ab > n^{1/2} \cdot n^{1/2} = n$ (by Appendix A T27)
\pfln This contradicts $n = ab$. Therefore original statement is true
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T03Q04] Let $A = \{2n+1: n \in \mathbb{Z}\}$ and $B = \{2n-5: n \in \mathbb{Z}\}$. Is $A$ = $B$?
\begin{numpf*}
\pfln $\subseteq$
\begin{subpf}
\pfln Let $a \in A$, and $a = 2n + 1, n \in \mathbb{Z}$
\pfln Then $a = 2n + 1 = 2 (n+3) - 5$
\pfln $n + 3 \in Z$ (by closure of int under $+$)
\pfln Therefore, $a \in B$ (by defn of B)
\end{subpf}
\pfln $\supseteq$
\begin{subpf}
\pfln Let $b \in A$, and $b = 2n - 5, n \in \mathbb{Z}$
\pfln Then $b = 2n - 5 = 2 (n-3) + 1$
\pfln $n - 3 \in Z$ (by closure of int under $-$)
\pfln Therefore, $b \in A$ (by defn of B)
\end{subpf}
\pfln Therefore, A = B
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T03Q05] Prove $\forall A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus C$
\begin{numpf*}
\pfln $A \cap (B \setminus C) = \{x: x \in A \land x \in (B \setminus C) \}$ (by defn of $\cap$)
\pfln $ = \{x: x \in A \land (x \in B \land x \not \in C) \}$ (by defn of $\setminus$)
\pfln $ = \{x: x \in (A \land x \in B) \land x \not \in C \}$ (by associativity of $\land$)
\pfln $ = \{x: x \in (A \cap B) \land x \not \in C \}$ (by defn of $\cap$)
\pfln $ = \{x: x \in (A \cap B) \setminus C$ (by defn of $\setminus$)
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T03Q05] Prove $\forall A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus C$
\begin{numpf*}
\pfln $A \cap (B \setminus C) = \{x: x \in A \land x \in (B \setminus C) \}$ (by defn of $\cap$)
\pfln $ = \{x: x \in A \land (x \in B \land x \not \in C) \}$ (by defn of $\setminus$)
\pfln $ = \{x: x \in (A \land x \in B) \land x \not \in C \}$ (by associativity of $\land$)
\pfln $ = \{x: x \in (A \cap B) \land x \not \in C \}$ (by defn of $\cap$)
\pfln $ = \{x: x \in (A \cap B) \setminus C$ (by defn of $\setminus$)
\end{numpf*}
\end{proof}
\begin{proof}[\proofname T03Q8] Let $A$ and $B$ be set. Show that $A \subseteq B$ if and only if $A \cup B = B$\\
To show $A \cup B = B$, we need to show $A \cup B \subseteq B$ and $B \subseteq A \cup B$
\begin{numpf*}
\pfln $\implies$
\begin{subpf}
\pfln Suppose $A \subseteq B$
\pfln (Show $A \cup B \subseteq B$)
\begin{subpf}
\pfln Let $z \in A \cup B$
\pfln Then $z \in A$ or $z \in B$ (by defn of $\cup$)
\pfln Case 1: Suppose $z \in A$, then $Z \in B$ as $A \subseteq B$ line (1.1)
\pfln Case 2: Suppose $z \in B$, then $z \in B$. We have $z\in B$ in either case
\end{subpf}
\pfln (Show $A \cup B \supseteq B$)
\begin{subpf}
\pfln Let $z \in B$
\pfln Then $z \in A$ or $z \in B$ (by generalization)
\pfln So $z \in A \cup B$ (by defn of $\cup$)
\end{subpf}
\pfln Therefore $A \cup B = B$
\end{subpf}
\pfln $\impliedby$
\begin{subpf}
\pfln Suppose $A \cup B = B$
\pfln Let $z \in A$
\begin{subpf}
\pfln Then $z \in A$ or $z \in B$ (by generalization)
\pfln So $z \in A \cup B$ (by defn of $\cup$)
\pfln So $z \in B$ since $A \cup B = B$ (2.1)
\end{subpf}
\pfln Therefore $A \subseteq B$
\end{subpf}
\pfln Therefore, $A \subseteq B$ if and only iff $A \cup B = B$
\end{numpf*}
\end{proof}
\begin{proof}[\proofname\ T04Q05] Relation $S = \{(m,n) \in \mathbb{Z}^2: m^3 + n^3 \text{is even} \}$, Proof $S \circ S = S$
\begin{numpf*}
\pfln ($\subseteq$) Suppose $(x, z) \in S \circ S$
\begin{subpf}
\pfln Then $(x, y) \in S$ and $(y, z) \in S$ for some $y \in Z$ (defn of composition of relations)
\pfln So $x^3 + y^3$ is even and $y^3 + z^3$ is even
\pfln This implies that $x^3 + 2y^3 + z^3$ is even
\pfln This implies that $x^3 + z^3$ is even as $2y^3$ is even
\pfln Therefore, $(x, z) \in S$ (by defn of $S$)
\end{subpf}
\pfln ($\supseteq$) Suppose $(x,z) \in S$
\begin{subpf}
\pfln Then $x^3 + z^3$ is even (by defn of S)
\pfln Case 1: $x^3$ is odd.
\begin{subpf}
\pfln Then $z^3$ is also odd.
\pfln This implies that $x^3 + 1^3$ is even and $1^3 + z^3$ is even
\pfln Thus, $(x,1) \in S$ and $(1,z) \in S$ (by defn of S)
\pfln So, $(x,z) \in S \circ S$
\end{subpf}
\pfln Case 2: $x^3$ is even.
\begin{subpf}
\pfln Then $z^3$ is also even.
\pfln This implies that $x^3 + 0^3$ is even and $0^3 + z^3$ is even
\pfln Thus, $(x,0) \in S$ and $(0,z) \in S$ (by defn of S)
\pfln So, $(x,z) \in S \circ S$
\end{subpf}
\pfln In all cases, $(x,z) \in S \circ S$
\end{subpf}
OR
\pfln ($\supseteq$) Suppose $(x,z) \in S$
\begin{subpf}
\pfln Note that $(x, x) \in S$ as $x^3 + x^3$ is even
\pfln Since $(x, x) \in S$ and $(x,z) \in S$, we have $(x, z) \in S \circ S$ (by defn of composition of relations)
\end{subpf}
\end{numpf*}
\end{proof}
\begin{proof} $R$ is asymmetric if and only if $R$ is antisymmetric and irreflexive.
\begin{numpf}
\pfln $\implies$
\begin{subpf}
\pfln R is irreflexive (R is irreflexive $\implies$ R is antisymmetric and irreflexive)
\begin{subpf}
\pfln Let $x \in A$ s.t. $xRx \implies x \not R x$ (R is Asymmetric)
\pfln Since $x\not R x$, R is irreflexive (by defn of irreflexive)
\end{subpf}
\end{subpf}
\begin{subpf}
\pfln R is antisymmetric (Tutorial Qn 6c)
\end{subpf}
\pfln $\impliedby$ (R is antisymmetric and irreflexive $\implies$ asymmetry)
\begin{subpf}
\pfln Let $x, y \in A$, s.t. xRy is antisymmetric and irreflexive
\pfln There is 2 cases to consider, $x = y$ and $x \not = y$
\pfln $x = y$
\begin{subpf}
\pfln $xRx$ is not valid as it contradicts irreflexive, $\forall x \in A(x\not R x)$
\pfln Therefore, $xRx \implies x\not R x$
\end{subpf}
\pfln $x \not = y$
\begin{subpf}
\pfln $xRy \land yRx \implies x = y$
\end{subpf}
\end{subpf}
\end{numpf}
\end{proof}
\pagebreak
\section{Tables}
\begin{tabular} {|l|c|c|}
Commutative & $p \land q \equiv q \land p$ & $p \lor q \equiv q \lor p$\\
Associative & $p \land q \land r \equiv (p \land q) \land r$&\\
Distributive & $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$&$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$\\
Identity & $p \land \text{true} \equiv p$ & $p \lor \text{false} \equiv p$\\
Negation & $p \lor \sim p \equiv \text{true}$ & $p \land \sim p \equiv \text{false}$\\
Double Negative & $\sim(\sim p) \equiv p$ & \\
Idempotent & $p \lor p \equiv p$ & $p \land p \equiv p$\\
Universal bound & $p \lor \text{true} \equiv \text{true}$ & $p \land \text{false} \equiv \text{false}$\\
de Morgan's & $\sim(p \land q) \equiv \sim p \lor \sim q$ & $\sim(p \lor q) \equiv \sim p \land \sim q$\\
Absorption & $p \lor (p \land q) \equiv p$ & $p \land (p \lor q) \equiv p$\\
Implication & $p \Rightarrow q \equiv \sim p \lor q$ & $$\\
$\sim$(Implication) & $\sim (p \Rightarrow q) \equiv p \land \sim q$ & \\
\hline & & \\
Modus Ponens &$p \implies q, p$& $q$ \\
Modus Tollens &$p \implies q, \sim q$& $\sim p$ \\
Generalization &$p$& $p \lor q$ \\
Specialization &$p \land q$& $p$ \\
Conjunction &$p, q$& $p \land q$ \\
Elimination &$p \lor q, \sim q$& $p$ \\
Transitivity &$p \implies q, q \implies r$& $p \implies r$ \\
Division into cases &$p \land q, p \implies r, q \implies r$& $r$ \\
Contradiction &$\sim p \implies \text{false}$& $p$ \\
\hline & & \\
Commutative & $A \cup B = B \cup A$ & \\
Associative & $(A \cup B) \cup C = A \cup (B \cup C)$ & \\
Distributive & $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ & $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$\\
Identity & $A \cup \emptyset = A$ & $A \cap U = A$\\
Complement & $A \cup \bar A = U$ & $A \cap \bar A = \emptyset$\\
Double Complement & $\bar{\bar A} = A$ & \\
Idempotent & $A \cup A = A$ & $A \cap A = A$\\
Universal Bound & $A \cup U = U$ & $A \cap \emptyset = \emptyset$ \\
De Morgan's & $\overline{A \cup B} = \bar{A} \cap \bar{B}$ & $\overline{A \cap B} = \bar{A} \cup \bar{B}$\\
Absorption & $A \cup (A \cap B) = A$ & $A \cap (A \cup B) = A$\\
Complements of U and $\emptyset$ & $\bar U =\emptyset$ & $\bar \emptyset = U$\\
Set Difference & $A \setminus B = A \cap \bar B$ &\\
\hline & & \\
F1 Commutative & $a + b = b + a$ & $ab = ba$ \\
F2 Associative & $(a + b)+c = a + (b + c)$ & $(ab)c = a(bc)$ \\
F3 Distributive & $a(b+c) = ab + ac$ & $(b+c)a = ba + ca$ \\
F4 Identity & $0 +a = a + 0 = a$ & $1 \cdot a = a \cdot 1 = a $ \\
F5 Additive inverses & $a + (-a) = (-a) + a = 0$ & \\
F6 Reciprocals & $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ & $a \not = 0$ \\
\hline & & \\
T1 Cancellation Add & $a + b = a + c$ & $b = c$ \\
T2 Possibility of Sub & There is one $x, a + x = b$ & $x = b - a$ \\
T3 & $b - a = b + (-a)$ & \\
T4 & $-(-a) = a$ & \\
T5 & $a(b-c)=ab-ac$ & \\
T6 & $0 \cdot a = a \cdot 0 = 0$ & \\
T7 Cancellation Mul & $ab = ac$ & $b = c, a \not = 0$ \\
T8 Possibility of Div & $a \not = 0, ax = b$ & $x = \frac{b}{a}$ \\
T9 & $a \not = 0, \frac{b}{a} = b \cdot a^{-1}$ & \\
T10 & $a \not = 0, (a^{-1})^{-1} = a$ & \\
T11 Zero Product& $ab = 0 \Rightarrow a = 0 \lor b = 0$ & \\
T12 Mul with -ve & $(-a)b = a(-b) - -(ab)$ & $-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$\\
T13 Equiv Frac & $\frac{a}{b} = \frac{ac}{bc}$ & $b \not = 0, c \not = 0$\\
T14 Add Frac & $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ & $b \not = 0, d \not = 0$\\
T15 Mul Frac & $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ & $b \not = 0, d \not = 0$\\
T16 Div Frac & $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ac}{bd}$ & $b \not = 0, d \not = 0$\\
\end{tabular}
\begin{tabular} {|l|c|c|}
\hline & & \\
Ord1 & $\forall a,b \in \mathbb{R}^+$ & $a + b > 0, ab > 0$\\
Ord2 & $\forall a,b \in \mathbb{R}_{\not = 0}$ & $a$ is positive or negative and not both\\
Ord3 & 0 is not positive & \\
$a < b$ & means $b + (-a)$ is positive & \\
$a \leq b$ & means $a < b$ or $a = b$ & \\
$a < 0$ & means a is negative& \\
T17 Trichotomy Law & $a < b \lor b > a \lor a = b$ & \\
T18 Transitive Law & $a < b$ and $b < c$ & $a < c$\\
T19 & $a < b$ & $a + c < b + c$ \\
T20 & $a < b$ and $c > 0$ & $ac < bc$ \\
T21 & $a \not = 0$ & $a^2 > 0$ \\
T22 & $1 > 0$ & \\
T23 & $a < b$ and $c < 0$ & $ac > bc$ \\
T24 & $a < b$ & $-a > -b$ \\
T25 & $ab > 0$ & a and b are both positive or negative \\
T26 & $a < c$ and $b < d$ & $a+b < c+d$ \\
T30 & $0 < a < c$ and $<0 < b < d$ & $0 < ab < cd$ \\
\end{tabular}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,280 @@
\documentclass[a4paper,twoside,notitlepage,10pt]{article}
\usepackage[T1]{fontenc}
\usepackage{lipsum}
\usepackage{multicol}
\usepackage[margin=0.5in]{geometry}
\usepackage{lscape}
\usepackage{pdflscape}
\usepackage{mathtools}
\usepackage{parskip}
\usepackage{blindtext}
\usepackage{fontspec}
\usepackage{pgfplots}
\usepackage{array}
\usepackage{amsmath}
\newcolumntype{L}{>{$}l<{$}} % mathmode version of l
\pgfplotsset{compat = newest}
\setmainfont{texgyrepagella}[
Extension = .otf,
UprightFont = *-regular,
BoldFont = *-bold,
ItalicFont = *-italic,
BoldItalicFont = *-bolditalic,
]
\begin{document}
\title{MA1301 Midterm Reference}
\author{Yadunand Prem}
\setlength{\parindent}{0pt}
\begin{landscape}
\begin{multicols}{3}
\section{AP \& GP}
\subsection{Series}
Let $u_1, u_2,... u_n$ be a sequence
then $S_n = u_1 + u_2 + u_3 + ... + u_n$
Result $u_1 = S_1$, $u_n = S_n - S_{n-1}$
In summation form: $S_n = \sum_{i=1}^{n} u_i$
\subsection{Arithmetic Series}
Arithmetic Progression: $a, a+d, a+2d,...$
Common Difference: $d = u_{n} - u_{n-1}$
Nth Term: $u_n=a+(n-1)d$
Sum of Sequence: $\frac{n}{2}(u_1 + u_n) = \frac{n}{2}[2a+(n-1)d]$
\subsection{Geometric Series}
Geometric Progression: $a, ar, ar^2, ar^3,...$
Common Ratio: $r = \frac{u_2}{u_1} = \frac{u_3}{u_2} = ... = \frac{u_n}{u_n-1}$
Nth Term: $u_n = ar^{n-1}$
Sum: $S_n = \frac{a}{1-r}(1-r^n),\, r \neq 1$ when $r = 1, S_n = na$
Sum to infinite: $\text{for}-1 < r < 1, \, S_{\infty} = \frac{a}{1-r}$
\subsection{Binomial Theorem}
Coeff: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
Theorem: $(a+b)^n = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + ...+ \binom{n}{n}a^{0}b^{n}$
Generalized Coeff: $\binom{n}{r} = \frac{n(n-1)(n-2)...(n-r+1)}{r!}$
E.g. $\binom{\frac{1}{2}}{3} = \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2}))}{3!}$
Generalized Theorem: $(1+a)^n = 1+na+\frac{n(n-1)}{2!}a^2 + ...\,\\
\text{when}\, n < 0 \text\,{and} -1 < a < 1$
Telescoping Series: $\sum^n_{r=m}(a_r - a_{r\pm1})$
\section{Differentiation}
\renewcommand{\arraystretch}{1.2}
\begin{tabular}{l| l}
Function & Differential\\
$(f(x))^n$ & $nf'(x)(f(x))^{n-1}$\\
$\cos(x)$ & $-\sin(x)$\\
$\sin(x)$ & $\cos(x)$\\
$\tan(x)$ & $\sec^2(x)$\\
$\sec(x)$ & $\sec(x)\tan(x)$\\
$\csc(x)$ & $-\csc(x)\cot(x)$\\
$\cot(x)$ & $-\csc^2(x)$\\
$e^{f(x)}$ & $f'(x)e^{f(x)}$\\
$\ln(f(x))$ & $\frac{f'(x)}{f(x)}$\\
$\sin^{-1}(f(x))$ & $\frac{f'(x)}{\sqrt{1-f(x)^2}}$\\
$\cos^{-1}(f(x))$ & $-\frac{f'(x)}{\sqrt{1-f(x)^2}}$\\
$\tan^{-1}(f(x))$ & $\frac{f'(x)}{1+f(x)^2}$\\
\end{tabular}
Product Rule: $\frac{d}{dx}(ab) = \frac{da}{dx}(b) + \frac{db}{dx}(a)$\\
Quotient Rule: $\frac{d}{dx}(\frac{a}{b}) = \frac{\frac{da}{dx}(b) - \frac{db}{dx}(a)}{b^2}$\\
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
Implicit: $\frac{d}{dx}(y^n) = ny^{n-1}\frac{dy}{dx}$\\
$y=f(x)^{g(x)}\\
\ln(y) = g(x)\ln(f(x))$
$\frac{d}{dx}(a^x) = a^{x}ln(a) \times \frac{d}{dx}(x)$
$\frac{d^2y}{dx^2} = \frac{d}{du}(\frac{dy}{dx}) \times \frac{du}{dx}$
Equation of tangent: $y-y_0 = m(x-x_0)$\\
Equation of normal: $y-y_0 = -\frac{1}{m}(x-x_0)$
\begin{tikzpicture}
\draw[->] (-2, 0) -- (2, 0) node[right] {$x$};
\draw[->] (0, 0) -- (0, 3) node[above] {$y$};
\draw[scale=0.5, domain=-2:2,smooth,variable=\x] plot({\x}, {\x*\x+1}) node[right] {$y=x^2+1$};
\draw[scale=0.5, domain=-2.5:2.5,smooth,variable=\x] plot({\x}, {1}) node[right] {$y=1$};
\end{tikzpicture}
Tangent $//$ $x$-axis, $\frac{dy}{dx} = 0$
\begin{tikzpicture}
\draw[->] (0, 0) -- (2, 0) node[right] {$x$};
\draw[->] (0, -2) -- (0, 2) node[above] {$y$};
\draw[scale=0.5, domain=-2:2,smooth,variable=\y] plot({\y*\y+1}, {\y}) node[right] {$x=y^2+1$};
\draw[scale=0.5, domain=-2.5:2.5,smooth,variable=\y] plot({1}, {\y}) node[right] {$x=1$};
\end{tikzpicture}
Tangent $//$ $y$-axis, $\frac{dy}{dx} = \pm\infty$
If $f \approx a, f(x) \approx f'(a)[x-a] + f(a)$\\
If $f'(x) > 0$ it is increasing, else decreasing\\
If $f''(x) > 0$ it is concave up, else concave down\\\\
If $f'(x) = 0 \ \& f''(x) < 0$ it is local maximum\\
If $f'(x) = 0 \ \& f''(x) > 0$ it is local minimum\\
If $f'(x) = 0 \ \& f''(x) = 0$ test fails\\
\subsection{Trigonometric Identities}
\begin{tabular}{|L|}
\sin^2{\theta} + \cos^2{\theta} = 1 \\
\tan^2{\theta} + 1 = \sec^2{\theta} \\
1 + \cot^2{\theta} = \csc^2{\theta} \\
\hline
\sin{2\theta} = 2\sin{\theta}\cos{\theta} \\
\cos{2\theta} = \cos^2{\theta}-\sin^2{\theta} \\
\cos{2\theta} = 2\cos^2{\theta}-1 \\
\cos{2\theta} = 1-2\sin^2{\theta} \\
\tan{2\theta} = \frac{2\tan{\theta}}{1-\tan^2{\theta}} \\
\hline
\sin({\alpha + \beta}) = \sin{\alpha}\cos{\beta} \pm \cos{\alpha}\sin{\beta} \\
\cos({\alpha + \beta}) = \cos{\alpha}\cos{\beta} \mp \sin{\alpha}\sin{\beta}
\end{tabular}
\end{multicols}
\begin{multicols}{2}
\section{Integration}
\subsection{Standard Integrals}
\begin{tabular}{|L|L|L}
1 & \int(ax+b)^n\ dx & \frac{(ax+b)^{n+1}}{(n+1)a} + C \\
2 & \int \frac{1}{ax+b}\ dx & \frac{1}{a}\ln|ax+b| + C \\
3 & \int e^{ax+b}\ dx & \frac{1}{a}e^{ax+b} + C \\
4 & \int \sin(ax+b)\ dx & -\frac{1}{a}\cos(ax+b) + C \\
5 & \int \cos(ax+b)\ dx & \frac{1}{a}\sin(ax+b) + C \\
6 & \int \tan(ax+b)\ dx & \frac{1}{a}\ln|\sec(ax+b)| + C \\
7 & \int \sec(ax+b)\ dx & \frac{1}{a}\ln|\sec(ax+b) + \tan(ax+b)| + C \\
8 & \int \csc(ax+b)\ dx & -\frac{1}{a}\ln|\csc(ax+b) + \cot(ax+b)| + C \\
9 & \int \cot(ax+b)\ dx & -\frac{1}{a}\ln|\csc(ax+b)| + C \\
10 & \int \sec^2(ax+b)\ dx & \frac{1}{a}\tan(ax+b) + C \\
11 & \int \csc^2(ax+b)\ dx & -\frac{1}{a}\cot(ax+b) + C \\
12 & \int \sec(ax+b) \cdot \tan(ax+b)\ dx & \frac{1}{a}\sec(ax+b) + C \\
13 & \int \csc(ax+b) \cdot \cot(ax+b)\ dx & -\frac{1}{a}\csc(ax+b) + C \\
14 & \int \frac{1}{a^2+(x+b)^2}\ dx & \frac{1}{a}\tan^{-1}(\frac{x+b}{a})+ C \\
15 & \int \frac{1}{\sqrt{a^2-(x+b)^2}}\ dx & \sin^{-1}(\frac{x+b}{a})+ C \\
16 & \int \frac{-1}{\sqrt{a^2-(x+b)^2}}\ dx & \cos^{-1}(\frac{x+b}{a})+ C \\
17 & \int \frac{1}{a^2-(x+b)^2}\ dx & \frac{1}{2a}\ln|\frac{x+b+a}{x+b-a}|+ C \\
18 & \int \frac{1}{(x+b)^2-a^2}\ dx & \frac{1}{2a}\ln|\frac{x+b-a}{x+b+a}|+ C \\
19 & \int \frac{1}{\sqrt{(x+b)^2+a^2}}\ dx & \ln|(x+b) + \sqrt{(x+b)^2+a^2}| + C \\
20 & \int \frac{1}{\sqrt{(x+b)^2-a^2}}\ dx & \ln|(x+b) + \sqrt{(x+b)^2-a^2}| + C \\
21 & \int \frac{1}{\sqrt{(x+b)^2-a^2}}\ dx & \ln|(x+b) + \sqrt{(x+b)^2-a^2}| + C \\
21 & \int a^x\ dx & \frac{a^x}{\ln a} + C \\
\end{tabular}
\subsection{Integration by Parts}
$\int u\ dv = uv - \int v\ du$
Rule for choosing $u$
\begin{tabular}{|l|L|}
Logarithm & \ln(ax+b) \\
Inverse Trigo & \sin^{-1}(ax+b) \\
Algebraic & x, x^{10} \\
Trigo & \sin (ax+b) \\
Expo & e^x, 19^x \\
\end{tabular}
\subsection{Area between 2 curves}
$A = \int^b_a g(x) - f(x)dx,\ \text{when}\ g(x)\ \text{is above}\ f(x)$
\subsection{Volume of Revolution}
$V = \pi\int^b_a(f(x)-a)^2\ dx$ when $a$ is a line parallel to $x$ or axis
$V = \pi\int^b_a(f(x))^2\ dx - \pi\int^b_a(g(x))^2\ dx$ when $f(x)$ is higher than $g(x)$
\section{Vectors}
$\overrightarrow{OA} = a = \big(\begin{smallmatrix}
x_1 \\
y_1 \\
z_1 \\
\end{smallmatrix}\big)= x_1\text{i} + y_1\text{j}+ z_1\text{k}$
$\overrightarrow{OB} = b = \big(\begin{smallmatrix}
x_2 \\
y_2 \\
z_2 \\
\end{smallmatrix}\big) = x_2\text{i} + y_2\text{j}+ z_2\text{k}$
Magnitude = $|\overrightarrow{AB}| = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
$\overrightarrow{AB} =\overrightarrow{OB} - \overrightarrow{OA}$ = $\big(\begin{smallmatrix}
x_2 - x_1 \\
y_2 - y_1 \\
\end{smallmatrix}\big)$
Unit Vector : $\hat{v} = \frac{1}{|v|}v$
Dot Product: $a \cdot b = x_1x_2+y_1y_2+z_1z_2 = |a||b|\cos\theta $
If $a\perp b$, $a \cdot b = 0$
$\theta = \cos^{-1}\big(\frac{a \cdot b}{|a||b|}\big)$
Cross Product: $a \times b = \begin{pmatrix}
y_1z_2 - y_2z_1 \\
-(x_1z_2 - x_2z_2)\\
x_1y_2 - x_2y_1)
\end{pmatrix}$
Area of $\triangle ABC = \frac{1}{2}|\overrightarrow{CA} \times \overrightarrow{CB}|$
$|a \times b| = |a||b|\sin\theta$
Line: $r = a + \lambda u \Leftrightarrow r = (x_1\text{i} + y_1\text{j} + z_1\text{k}) + t(a\text{i} + b\text{j} + c\text{k})$ where $a$ is a point and $u$ is a direction vector
If Point $P\perp$ to line $r = a + s \overrightarrow{u}$, $Q = (a + \lambda \overrightarrow{u})$, $\overrightarrow{PQ} \cdot \overrightarrow{u} = 0$
Shortest distance = $|PQ|$
Plane: $(\overrightarrow{r} - \overrightarrow{a}) \cdot n = 0 \Leftrightarrow \overrightarrow{r} \cdot \overrightarrow{n} = \overrightarrow{a} \cdot \overrightarrow{n}$, where $a$ and $r$ are 2 vectors on the plane and $n$ is normal to the plane
Cartesian Eqn of plane: $r \cdot n = d \Leftrightarrow ax + by + cz = d$, where $n = ai + bj + ck$ and $r = xi + yj + zk$
Angle between planes: $\cos\theta =|\frac{n_1 \cdot n_2}{|n_1||n_2|}|$
Angle between line and plane: $\sin\theta = |\frac{u \cdot n}{|u||n|}|$
Intersection of 2 planes: $r = a + \lambda(n_1 \times n_2)$
\end{multicols}
\end{landscape}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,362 @@
\documentclass[10pt,landscape]{article}
\usepackage[scaled=0.8]{helvet}
\usepackage{calc}
\usepackage{multicol}
\usepackage{ifthen}
\usepackage[a4paper,margin=3mm,landscape]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb}
\usepackage{hyperref}
\usepackage{newtxtext}
\usepackage{enumitem}
\usepackage{amssymb}
\usepackage[table]{xcolor}
\usepackage{vwcol}
\usepackage{tikz}
\usepackage{wrapfig}
\usepackage{makecell}
% Testing %
\usepackage{blindtext}
\usetikzlibrary{calc}
\setlist{nosep}
\graphicspath{ {./images/} }
\pagestyle{empty}
\newenvironment{tightcenter}{%
\setlength\topsep{0pt}
\setlength\parskip{0pt}
\begin{center}
}{%
\end{center}
}
% redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}%
\renewcommand{\familydefault}{\sfdefault}
\renewcommand\rmdefault{\sfdefault}
% makes nested numbering (e.g. 1.1.1, 1.1.2, etc)
\renewcommand{\labelenumii}{\theenumii}
\renewcommand{\theenumii}{\theenumi.\arabic{enumii}.}
\renewcommand\labelitemii{}
% for logical not operator
\renewcommand{\lnot}{\mathord{\sim}}
\renewcommand{\bf}[1]{\textbf{#1}}
\newcommand{\abs}[1]{\vert #1 \vert}
\newcommand{\Mod}[1]{\ \mathrm{mod}\ #1}
\newcommand{\vv}[1]{\boldsymbol{#1}}
\newcommand{\VV}[1]{\overrightarrow{#1}}
\newcommand{\cvv}[1]{\left(\begin{smallmatrix}#1\end{smallmatrix}\right)}
\makeatother
\definecolor{myblue}{cmyk}{1,.72,0,.38}
% Define BibTeX command
\everymath\expandafter{\the\everymath \color{myblue}}
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
\let\iff\leftrightarrow
\let\Iff\Leftrightarrow
\let\then\rightarrow
\let\Then\Rightarrow
% Don't print section numbers
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
%% this changes all items (enumerate and itemize)
\setlength{\leftmargini}{0.5cm}
\setlength{\leftmarginii}{0.5cm}
\setlist[itemize,1]{leftmargin=2mm,labelindent=1mm,labelsep=1mm}
\setlist[itemize,2]{leftmargin=4mm,labelindent=1mm,labelsep=1mm}
%My Environments
\newtheorem{example}[section]{Example}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{multicols*}{4}
\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\section{Function and Limits}
\begin{itemize}
\item $\lim\limits_{x\to \pm \infty}\frac{Ax^\alpha}{Bx^\beta}
\begin{cases}
0 & \text{if} \alpha < \beta\\
\frac{A}{B} & \text{if} \alpha = \beta\\
\pm \infty & \text{if} \alpha > \beta\\
\end{cases}$
\item $\lim\limits_{x\to c}\frac{sin(g(x))}{g(x)} = 1(\lim\limits_{x \to c}g(x) = 0)$
\item $\lim\limits_{x\to c}\frac{tan(g(x))}{g(x)} = 1$
\item $\lim\limits_{x\to 0}\frac{sin(x)}{x} = 1$
\item $\lim\limits_{x\to 0}\frac{tan(x)}{x} = 1$
\end{itemize}
\section{Differentiation}
parametric differentiaton: $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$
\begin{tabular}{|>{\color{black}}c | >{\color{black}}c|}
\hline
$f(x)$ & $f'(x)$
\\ \hline
\rule{0pt}{2.3ex} % top spacing
$\tan x$ & $\sec ^2 x$ \\
$\csc x$ & $-\csc x \cot x$ \\
$\sec x$ & $\sec x \tan x$ \\
$\cot x$ & $- \csc ^2 x$
\\ \hline
\rule{0pt}{2.3ex} % top spacing
$a^{f(x)}$ & $\ln a \cdot f'(x)a^{f(x)}$ \\
$\log_af(x)$ & $\log_a e \cdot \frac{f'(x)}{f(x)}$
\\[1ex] \hline
\rule{0pt}{3ex} % top spacing
$\sin^{-1} f(x)$ & $\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, \ \ _{\vert f(x) \vert < 1}$ \\[1.5ex]
$\cos^{-1} f(x)$ & $-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, \ \ _{\vert f(x) \vert < 1}$ \\[1.5ex]
$\tan^{-1} f(x)$ & $\frac{f'(x)}{1 + [f(x)]^2}$ \\[1.5ex]
$\cot^{-1} f(x)$ & $-\frac{f'(x)}{1 + [f(x)]^2}$ \\[1.5ex]
$\sec^{-1} f(x)$ & $\frac{f'(x)}{\vert f(x) \vert \sqrt{[f(x)]^2-1}}$ \\[1.5ex]
$\csc^{-1} f(x)$ & $-\frac{f'(x)}{\vert f(x) \vert \sqrt{[f(x)]^2-1}}$ \\[2ex]
\hline
\end{tabular}
\textbf{Second Derivative} Test: $f'(c) = 0, f''(c) < 0$ then local max, $f''(c) > 0$ local min.
\textbf{L'Hopital's Rule}: Given $\lim\limits_{x\to c}f(x) $ and $ g(x) = 0 / \pm \infty$ $ \lim\limits_{x \to c}\frac{f(x)}{g(x)} = \lim\limits_{x \to c}\frac{f'(x)}{g'(x)}$
\begin{itemize}
\item Use for $\frac{0}{0}$ or $\frac{\infty}{\infty}$
\end{itemize}
\subsection*{Trigo Identities}
\begin{enumerate}
\item $\sec^2x - 1 = \tan^2x$
\item $\csc^2x - 1 = \cot^2x$
\item $\sin A\cos A = \frac{1}{2}\sin2A$
\item $\cos^2A = \frac{1}{2}(1+\cos2A)$
\item $\sin^2A = \frac{1}{2}(1-\cos2A)$
\item $\sin A\cos B = \frac{1}{2}(\sin(A + B) + \sin(A - B)$
\item $\cos A\sin B = \frac{1}{2}(\sin(A + B) - \sin(A - B)$
\item $\cos A\cos B = \frac{1}{2}(\cos(A + B) + \cos(A - B)$
\item $\sin A\sin B = \frac{1}{2}(\cos(A + B) - \cos(A - B)$
\end{enumerate}
\section{Integration}
\begin{tabular}{|>{\color{black}}c | >{\color{black}}c|}
\hline
$f(x)$ & $\int f(x)$\\
$\tan ax$ & $\frac{1}{a}\ln|\sec(ax)|$\\
$\cot ax$ & $\frac{1}{a}\ln|\cot(ax)|$\\
$\sec ax$ & $\frac{1}{a}\ln|\sec(ax) + tan(ax)|$\\
$\csc ax$ & $\frac{1}{a}\ln|\csc(ax) + cot(ax)|$\\
\hline
$\frac{1}{a^2+(x+b)^2}$ & $\frac{1}{a}\tan^{-1}(\frac{x+b}{a})$\\
$\frac{1}{\sqrt{a^2-(x+b)^2}}$ & $\sin^{-1}(\frac{x+b}{a})$\\
$\frac{1}{a^2-(x+b)^2}$ & $\frac{1}{2a}\ln|\frac{x+b+a}{x+b-a}|$\\
$\frac{1}{(x+b)^2-a^2}$ & $\frac{1}{2a}\ln|\frac{x+b-a}{x+b+a}|$\\
\hline
\end{tabular}
\textbf{Substitution} $\int f(g(x)) \cdot g'(x) dx = \int f(u) du, u = g(x)$
\textbf{By Parts} $\int u v' dx = uv - \int u'v dx$, order: LIATE: Differentiate to integrate
\subsection{Application of Integration}
about x axis
\begin{itemize}
\item Vol Disk: $V = \pi \int^b_a f(x)^2 - g(x)^2 dx$
\item Vol Shell: $V = 2\pi\int^b_a x|f(x)-g(x)|dx$ (absolute!!)
\item Length of curve: $\int^b_a \sqrt{1+f'(x)^2}dx$
\end{itemize}
\section{Series}
TODO!!
\section{Vectors}
unit vector: $\hat{p} = \frac{p}{|p|}$, $\VV{AB} = \VV{OB} - \VV{OA}$
\begin{center}
\begin{multicols}{2}
\begin{tikzpicture}[scale=0.8, every node/.style={transform shape}]
\coordinate[label=below left:O] (O) at (0,0);
\coordinate[label=A] (A) at (0.3,1.6);
\coordinate[label=B] (B) at (1.5, 1.4);
\coordinate[label=P] (P) at (1, 1.5);
\draw (O)
-- node[left] {$\vv{a}$} (A)
-- node[above] {$\lambda$} (P)
-- node[above] {$\mu$} (B)
-- node[right] {$\vv{b}$} (O)
-- node[left] {$\vv{p}$} (P);
\end{tikzpicture}
\\ \textbf{ratio theorem}
\\* $\vv{p} = \frac{\mu\vv{a} + \lambda\vv{b}}{\lambda + \mu}$
\newline
\\ \textbf{midpoint theorem}
\\* $\vv{p} = \frac{\vv{a} + \vv{b}}{2}$
\end{multicols}
\end{center}
\subsection{Dot Product}
\begin{itemize}
\item $\VV{a} \cdot \VV{b} = a_1b_1 + a_2b_2 + a_3b_3 = |a||b|\cos\theta$
\item $a \perp b \Then a \cdot b = 0$
\item $a \parallel b \Then a \cdot b = |a||b|$
\end{itemize}
\subsection{Cross Product}
$\vv{a} \times \vv{b} = \begin{vmatrix}
\vv{i} & \vv{j} & \vv{k} \\
a_i & a_2 & a_3 \\
b_i & b_2 & b_3
\end{vmatrix} = \begin{pmatrix} (a_2b_3 - a_3b_2) \\ -(a_1b_3 - a_3b_1) \\ (a_1b_2 - a_2b_1) \end{pmatrix}$
\begin{center}
\begin{multicols}{2}
$|\vv{a} \times \vv{b}| = |\vv{a}||\vv{b}|\sin\theta$
$a \perp b \Then a \times b = |a||b|$
$a \parallel b \Then a \times b = 0$
Parallelogram = $|\vv{a} \times \vv{b}|$
\end{multicols}
\end{center}
\subsection{Projection}
\begin{multicols}{2}
\begin{tikzpicture}[scale=0.7, every node/.style={transform shape}]
\coordinate[label=below left:O] (O) at (0,0);
\coordinate[label=right:A] (A) at (2, 1);
\coordinate[label=below:B] (B) at (3, 0);
\coordinate[label=below:N] (N) at (2, 0);
\draw (A)
-- node[above] {$\vv{a}$} (O)
-- node[below] {$\vv{b}$} (B);
\draw[shorten >=0pt, dashed] (A) -- (N);
\end{tikzpicture}
$\triangle ANO = \frac{1}{2} \abs{\VV{OA} \times \VV{ON}}$
\columnbreak
$\text{comp}_{\vv{b}}\vv{a} = |\vv{b}|\cos\theta = \frac{\vv{a}\cdot \vv{b}}{|\vv{a}|}$
$\text{proj}_{\vv{b}}\vv{a} = \text{comp}_{\vv{b}}\vv{a} \cdot \frac{a}{|a|} = \VV{ON} = \frac{\vv{a}\cdot \vv{b}}{\vv{a}\cdot \vv{a}}\vv{a} = \frac{\vv{a} \cdot \vv{b}}{|\vv{a}|^2}\vv{b}$
\end{multicols}
\subsection{Lines}
\begin{multicols}{2}
$\vv{r} = \vv{r}_0 + t\vv{v} = \langle x,y,z\rangle$
$\langle x_0,y_0,z_0\rangle + t\langle a,b,c\rangle$
$\begin{pmatrix}
x_0 + at \\
y_0 + bt \\
z_0 + ct \\
\end{pmatrix}$
\end{multicols}
\subsection{Planes}
$\vv{n} = \langle a, b, c \rangle, \vv{r} = \langle x, y, z \rangle,\vv{r}_0\langle x_0, y_0, c_0 \rangle$\\
Scalar: $\vv{n} \cdot \vv{r} = \vv{n} \cdot \vv{r}_0$\\
Cartesian: $ax + by + cz = d$
\subsection{Distance from Point to Plane}
$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$
\section{Partial Derivatives}
\subsection{Chain Rule}
For $z(t) = f(x(t), y(t))$,
\\* $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$
For $z(s, t) = f(x(s,t), y(s,t))$,
\\* $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$
\\* $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$
Arc Length of $r(t)$: $\int^b_a |\vv{r}'(t)|dt$
\subsection{Implicit Differentiation}
$\frac{\partial z}{\partial x} =- \frac{F_x}{F_z}$
$\frac{\partial z}{\partial y} =- \frac{F_y}{F_z}$
\subsection{Directional Derivative}
Gradient vector at $f(x,y): \triangle f = f_x\vv{i} + f_y\vv{j}$
$D_uf(x, y) = \langle f_x, f_y \rangle \cdot \langle a, b \rangle = \langle f_x, f_y\rangle \cdot \hat{\vv{u}} = \triangle f \cdot \hat{\vv{u}}$ (Unit Vector)
Tangent Plane: $\triangle f \cdot \langle x-x_0, y-y_0,z-z_0\rangle = 0$
\subsection{Critical Points}
$D = f_{xx}(a,b)f_{yy}(a,b) - (f_{x,y}(a,b))^2$
\def\arraystretch{1.2}
\begin{tabular}{| c | c | c |}
\hline $D$ & $f_{xx}(a,b)$ & \textbf{local}
\\\hline + & + & \text{min}
\\\hline + & - & \text{max}
\\\hline - & \text{any} & \text{saddle point}
\\\hline 0 & \text{any} & \text{no conclusion}
\\\hline
\end{tabular}
\section{Double Integrals}
\subsection{Type I}
\begin{multicols}{2}
\includegraphics[width=\linewidth]{Type I}
\columnbreak
$\int^b_a\int^{g_2(x)}_{g_1(x)}f(x,y)dydx$
\newline
\newline
$D = \{(x,y): a \leq x \leq b,$ $g_1(x) \leq y \leq g_2(x)\}$
\end{multicols}
\subsection{Type II}
\begin{multicols}{2}
\includegraphics[width=\linewidth]{Type II}
\columnbreak
$\int^d_c\int^{h_2(y)}_{h_1(y)}f(x,y)dxdy$
\newline
\newline
$D = \{(x,y): c \leq y \leq d,$ $ h_1(y) \leq x \leq h_2(y)\}$
\end{multicols}
\subsection{Polar Coordinates}
\begin{multicols}{2}
\includegraphics[width=\linewidth]{polar}
\columnbreak
$x = r\cos\theta$\\
$y = r\sin\theta$\\
$R = \{(r, \theta): 0 \leq a \leq r \leq b,$ $\alpha \leq \theta \leq \beta\}$
\newline
\newline
$\int^\beta_\alpha\int^b_af(r\cos\theta, r\sin\theta)rdrd\theta$
\end{multicols}
\subsection{Surface Area}
$S = \iint_R\sqrt{f_x^2 + f_y^2 + 1} dA$
\section{ODE}
\begin{tabular}{|>{\color{black}}c | >{\color{black}}c|}
\hline
form & change of variable \\
\hline
$\frac{dy}{dx} = f(x)g(y)$ & $\int \frac{1}{g(y)}dy = \int f(x)dx + C$\\
\hline
$y'=g(\frac{y}{x})$ & \makecell{Set $v = \frac{y}{x}$ \\ $\Then y' = v + xv' $}\\
\hline
\makecell{ $y'=f(ax + by + c)$\\ $\Then y' = \frac{ax+by+c}{\alpha x + \beta y + \gamma}$} & Set $v = ax+by$ \\
\hline
$y' + P(x)y = Q(x)$ & \makecell{$R = e^{\int P(x)dx}$ \\ $\Then y \cdot R = \int Q \cdot R dx $}\\
$y' + P(x)y = Q(x)y^n$ & \makecell{$z = y^{1-n}$ \\ $\Then$ sub in Z \\ solve linear}\\
\end{tabular}
\end{multicols*}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 149 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 203 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 213 KiB

View File

@ -1,60 +0,0 @@
import java.util.concurrent.RecursiveTask;
class MatrixMultiplication extends RecursiveTask<Matrix> {
/** The fork threshold. */
private static final int FORK_THRESHOLD = 1024; // Find a good threshold
/** The first matrix to multiply with. */
private final Matrix m1;
/** The second matrix to multiply with. */
private final Matrix m2;
/** The starting row of m1. */
private final int m1Row;
/** The starting col of m1. */
private final int m1Col;
/** The starting row of m2. */
private final int m2Row;
/** The starting col of m2. */
private final int m2Col;
/**
* The dimension of the input (sub)-matrices and the size of the output
* matrix.
*/
private int dimension;
/**
* A constructor for the Matrix Multiplication class.
* @param m1 The matrix to multiply with.
* @param m2 The matrix to multiply with.
* @param m1Row The starting row of m1.
* @param m1Col The starting col of m1.
* @param m2Row The starting row of m2.
* @param m2Col The starting col of m2.
* @param dimension The dimension of the input (sub)-matrices and the size
* of the output matrix.
*/
MatrixMultiplication(Matrix m1, Matrix m2, int m1Row, int m1Col, int m2Row,
int m2Col, int dimension) {
this.m1 = m1;
this.m2 = m2;
this.m1Row = m1Row;
this.m1Col = m1Col;
this.m2Row = m2Row;
this.m2Col = m2Col;
this.dimension = dimension;
}
@Override
public Matrix compute() {
// Modify this
return Matrix.recursiveMultiply(m1, m2, m1Row, m1Col, m2Row, m2Col, dimension);
}
}

Some files were not shown because too many files have changed in this diff Show More