nus/ma1522/lec_06.tex

73 lines
2.3 KiB
TeX

\begin{theorem}[Properties of Inversion]\ \\
Let $A$ be a square matrix.
\begin{itemize}
\item Let $A$ be an invertible matrix, then its inverse is unique.
\item Cancellation Law: Let $A$ be an invertible matrix
\subitem $AB_1 = AB_2 \implies B_1 = B_2$
\subitem $C_1A = C_2A \implies C_1 = C_2$
\subitem $AB = 0 \implies B = 0, CA = 0 \implies C = 0$ ($A$ is invertible, A cannot be 0)
\subitem This fails if $A$ is singular
\item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
\subitem $A$ is invertible $\iff ad - bc \neq 0$
\subitem $A$ is invertible $A^{-1} = \dfrac{1}{ad - bc} \begin{pmatrix}d & -b \\ -c & a \end{pmatrix}$
\end{itemize}
Let $A$ and $B$ be invertible matrices of same order
\begin{itemize}
\item Let $c \neq 0$. Then $cA$ is invertible, $(cA^{-1} = \frac{1}{c}A^{-1}$
\item $A^T$ is invertible, $(A^T)^{-1} = (A^{-1})^T$
\item $AB$ is invertible, $(AB)^{-1} = (B^{-1}A^{-1})$
\end{itemize}
Let $A$ be an invertible matrix.
\begin{itemize}
\item $A^{-k} = (A^{-1})^k$
\item $A^{m+n} = A^mA^n$
\item $(A^m)^n = A^{mn}$
\end{itemize}
\end{theorem}
\begin{defn}[Elementary Matrices] If it can be obtained from $I$ by performing single elementary row operation
\begin{itemize}
\item $cRi, c \neq 0: \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}(cR_3)$
\item $R_i \leftrightarrow R_j, i \neq j,: \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}(R_2 \leftrightarrow R_4)$
\item $R_i + cR_j, i \neq j,: \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & c \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}(R_2 + cR_4)$
\item Every elementary Matrix is invertible
\end{itemize}
\end{defn}
$A = \begin{pmatrix}
a_{11}&a_{12}&a_{13}\\
a_{21}&a_{22}&a_{23}\\
a_{31}&a_{32}&a_{33}\\
a_{41}&a_{42}&a_{43}
\end{pmatrix}$, $E = \begin{pmatrix}
1&0&0&0\\
0&1&0&0\\
0&0&c&0\\
0&0&0&1
\end{pmatrix}(cR_3)$, $EA = \begin{pmatrix}
a_{11}&a_{12}&a_{13}\\
a_{21}&a_{22}&a_{23}\\
ca_{31}&ca_{32}&ca_{33}\\
a_{41}&a_{42}&a_{43}
\end{pmatrix}$