\begin{theorem}[Properties of Inversion]\ \\ Let $A$ be a square matrix. \begin{itemize} \item Let $A$ be an invertible matrix, then its inverse is unique. \item Cancellation Law: Let $A$ be an invertible matrix \subitem $AB_1 = AB_2 \implies B_1 = B_2$ \subitem $C_1A = C_2A \implies C_1 = C_2$ \subitem $AB = 0 \implies B = 0, CA = 0 \implies C = 0$ ($A$ is invertible, A cannot be 0) \subitem This fails if $A$ is singular \item Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ \subitem $A$ is invertible $\iff ad - bc \neq 0$ \subitem $A$ is invertible $A^{-1} = \dfrac{1}{ad - bc} \begin{pmatrix}d & -b \\ -c & a \end{pmatrix}$ \end{itemize} Let $A$ and $B$ be invertible matrices of same order \begin{itemize} \item Let $c \neq 0$. Then $cA$ is invertible, $(cA^{-1} = \frac{1}{c}A^{-1}$ \item $A^T$ is invertible, $(A^T)^{-1} = (A^{-1})^T$ \item $AB$ is invertible, $(AB)^{-1} = (B^{-1}A^{-1})$ \end{itemize} Let $A$ be an invertible matrix. \begin{itemize} \item $A^{-k} = (A^{-1})^k$ \item $A^{m+n} = A^mA^n$ \item $(A^m)^n = A^{mn}$ \end{itemize} \end{theorem} \begin{defn}[Elementary Matrices] If it can be obtained from $I$ by performing single elementary row operation \begin{itemize} \item $cRi, c \neq 0: \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}(cR_3)$ \item $R_i \leftrightarrow R_j, i \neq j,: \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}(R_2 \leftrightarrow R_4)$ \item $R_i + cR_j, i \neq j,: \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & c \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}(R_2 + cR_4)$ \item Every elementary Matrix is invertible \end{itemize} \end{defn} $A = \begin{pmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\\ a_{41}&a_{42}&a_{43} \end{pmatrix}$, $E = \begin{pmatrix} 1&0&0&0\\ 0&1&0&0\\ 0&0&c&0\\ 0&0&0&1 \end{pmatrix}(cR_3)$, $EA = \begin{pmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ ca_{31}&ca_{32}&ca_{33}\\ a_{41}&a_{42}&a_{43} \end{pmatrix}$