feat: add 1522 assignment
This commit is contained in:
parent
a085e7f914
commit
c46a9ee24e
Binary file not shown.
BIN
ma1522/assignment/assignment1.pdf
Normal file
BIN
ma1522/assignment/assignment1.pdf
Normal file
Binary file not shown.
174
ma1522/assignment/assignment1.tex
Normal file
174
ma1522/assignment/assignment1.tex
Normal file
@ -0,0 +1,174 @@
|
||||
\documentclass[a4paper]{article}
|
||||
|
||||
\input{../preamble.tex}
|
||||
|
||||
|
||||
|
||||
% ------------------------------------------------------------------------------
|
||||
|
||||
\begin{document}
|
||||
|
||||
% ------------------------------------------------------------------------------
|
||||
% Cover Page and ToC
|
||||
% ------------------------------------------------------------------------------
|
||||
|
||||
\title{\normalsize \textsc{}
|
||||
\\ [2.0cm]
|
||||
\HRule{1.5pt} \\
|
||||
\LARGE \textbf{\uppercase{MA1522}
|
||||
\HRule{2.0pt} \\ [0.6cm] \LARGE{Assignment 1} \vspace*{10\baselineskip}}
|
||||
}
|
||||
\date{}
|
||||
\author{\textbf{Yadunand Prem}\\
|
||||
A0253252M}
|
||||
|
||||
\maketitle
|
||||
\newpage
|
||||
|
||||
% ------------------------------------------------------------------------------
|
||||
|
||||
\section{Question 1}
|
||||
\hr
|
||||
\begin{align*}
|
||||
\begin{amatrix}{3}
|
||||
4 & 2 & 4 & 0 \\
|
||||
5 & 4 & 0 & 1 \\
|
||||
4 & 1 & 2 & 5 \\
|
||||
\end{amatrix}
|
||||
\xrightarrow{\frac{1}{4}R_1}
|
||||
& \begin{amatrix}{3}
|
||||
1 & \frac{1}{2} & 1 & 0 \\
|
||||
5 & 4 & 0 & 1 \\
|
||||
4 & 1 & 2 & 5 \\
|
||||
\end{amatrix}
|
||||
\xrightarrow[R_3 + (-4)R_1]{R_2 + (-5)R_1}
|
||||
\begin{amatrix}{3}
|
||||
1 & \frac{1}{2} & 1 & 0 \\
|
||||
0 & \frac{3}{2} & -5 & 1 \\
|
||||
0 & -1 & -2 & 5 \\
|
||||
\end{amatrix} \\
|
||||
\xrightarrow{\frac{2}{3}R_2}
|
||||
& \begin{amatrix}{3}
|
||||
1 & \frac{1}{2} & 1 & 0 \\
|
||||
0 & 1 & \frac{-10}{3} & \frac{2}{3} \\
|
||||
0 & -1 & -2 & 5 \\
|
||||
\end{amatrix}
|
||||
\xrightarrow{R_3 + R_2}
|
||||
\begin{amatrix}{3}
|
||||
1 & \frac{1}{2} & 1 & 0 \\
|
||||
0 & 1 & \frac{-10}{3} & \frac{2}{3} \\
|
||||
0 & 0 & \frac{-16}{3} & \frac{17}{3} \\
|
||||
\end{amatrix} \\
|
||||
\xrightarrow{\frac{-3}{16}R_3}
|
||||
& \begin{amatrix}{3}
|
||||
1 & \frac{1}{2} & 1 & 0 \\
|
||||
0 & 1 & \frac{-10}{3} & \frac{2}{3} \\
|
||||
0 & 0 & 1 & \frac{-17}{16} \\
|
||||
\end{amatrix}
|
||||
\xrightarrow[R_1 + (-1)R_3]{R_2 + \frac{10}{3}R_3}
|
||||
\begin{amatrix}{3}
|
||||
1 & \frac{1}{2} & 0 & \frac{17}{16} \\
|
||||
0 & 1 & 0 & \frac{-23}{8} \\
|
||||
0 & 0 & 1 & \frac{-17}{16} \\
|
||||
\end{amatrix} \\
|
||||
\xrightarrow{R_1 + \frac{-1}{2}R_2}
|
||||
& \begin{amatrix}{3}
|
||||
1 & 0 & 0 & \frac{5}{2} \\
|
||||
0 & 1 & 0 & \frac{-23}{8} \\
|
||||
0 & 0 & 1 & \frac{-17}{16} \\
|
||||
\end{amatrix}
|
||||
\end{align*}
|
||||
|
||||
\subsection{1i No of pivot columns}
|
||||
There are 3 pivot columns
|
||||
|
||||
\subsection{1ii Arbitrary Params needed}
|
||||
0 arbitrary params needed
|
||||
|
||||
\subsection{1iii How many solutions are there?}
|
||||
1 solution for the system
|
||||
|
||||
\subsection{1iv Solution for system}
|
||||
$x_1 = \frac{5}{2}, x_2 = -\frac{23}{8}, x_3 = -\frac{17}{16}$
|
||||
\newpage
|
||||
|
||||
\section{Question 2}
|
||||
\begin{align*}
|
||||
\begin{amatrix}{3}
|
||||
a & 1 & 1 & a^3 \\
|
||||
1 & a & 1 & 1 \\
|
||||
1 & 1 & a & a
|
||||
\end{amatrix}
|
||||
\xrightarrow{R_1 \leftrightarrow R_3}
|
||||
& \begin{amatrix}{3}
|
||||
1 & 1 & a & a \\
|
||||
1 & a & 1 & 1 \\
|
||||
a & 1 & 1 & a^3 \\
|
||||
\end{amatrix} \\
|
||||
\xrightarrow[R_3 + (-a)R_1]{R_2 + (-1)R_1}
|
||||
& \begin{amatrix}{3}
|
||||
1 & 1 & a & a \\
|
||||
0 & a-1 & 1-a & 1-a \\
|
||||
0 & 1-a & 1-a^2 & a^3-a^2 \\
|
||||
\end{amatrix} \\
|
||||
\xrightarrow{R_3 + (1)R_2}
|
||||
& \begin{amatrix}{3}
|
||||
1 & 1 & a & a \\
|
||||
0 & a-1 & 1-a & 1-a \\
|
||||
0 & 0 & 2-a^2-a & a^3-a^2-a+1 \\
|
||||
\end{amatrix} \\
|
||||
=
|
||||
& \begin{amatrix}{3}
|
||||
1 & 1 & a & a \\
|
||||
0 & a-1 & 1-a & 1-a \\
|
||||
0 & 0 & (a+2)(1-a) & (a+1)(a-1)(a-1) \\
|
||||
\end{amatrix} \\
|
||||
\end{align*}
|
||||
|
||||
\subsection{2i, system has no solution}
|
||||
The system will have no solution when the last column is the pivot column. This can happen in $R_2$ if $a-1 = 1-a = 0$ and $1-a \neq 0$
|
||||
|
||||
$a = 1$ will satisfy the left equation, but it contradicts with the right equation. Thus, $R_2$ is not a possible candidate for no solution
|
||||
|
||||
For $R_3$, $(a+2)(1-a) = 0$ and $(a+1)(a-1)(a-1) \neq 0$
|
||||
|
||||
Left equation:
|
||||
\begin{align*}
|
||||
(a+2)(1-a) = 0 \\
|
||||
a = 1 \text{ or } a = -2
|
||||
\end{align*}
|
||||
|
||||
Right Equation:
|
||||
\begin{align*}
|
||||
(a+1)(a-1)(a-1) \neq 0 \\
|
||||
a \neq 1 \text{ or }a \neq -1
|
||||
\end{align*}
|
||||
|
||||
Therefore, there is no solution to the equation if $a = -2$
|
||||
|
||||
\subsection{2ii, system has unique solution}
|
||||
The system has a unique solution when the last column is non pivot and all other columns are pivot columns.
|
||||
|
||||
$C_1$ is pivot column, $C_2$ is pivot if $a-1 \neq 0$, $C_3$ is pivot if $(a+2)(1-a) \neq 0$
|
||||
|
||||
\begin{align*}
|
||||
a - 1 \neq 0\\
|
||||
a \neq 1 \\
|
||||
(a+2)(1-a) \neq 0 \\
|
||||
a \neq -2 \text{ and } a \neq 1
|
||||
\end{align*}
|
||||
|
||||
Therefore, the system has a unique solutions when $a \neq 1$ and $a \neq -2$
|
||||
|
||||
\subsection{2iii System has infinitely many solutions}
|
||||
The system will have infinitely many solutions when the last column is non-pivot and some other columns are non-pivot columns.
|
||||
|
||||
if $C_2$ is non pivot, then $C_2R_2$ must be 0. $a-1 = 0, a = 1$
|
||||
|
||||
If $C_3$ is non-pivot, then $C_3R_3$ must be zero, but that will cause the last row to be a pivot.
|
||||
|
||||
Therefore, the system has infinitely many solutions when $a = 1$
|
||||
|
||||
% ------------------------------------------------------------------------------
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user