feat: add 1522 assignment

This commit is contained in:
Yadunand Prem 2024-02-06 15:18:29 +08:00
parent a085e7f914
commit c46a9ee24e
No known key found for this signature in database
4 changed files with 174 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,174 @@
\documentclass[a4paper]{article}
\input{../preamble.tex}
% ------------------------------------------------------------------------------
\begin{document}
% ------------------------------------------------------------------------------
% Cover Page and ToC
% ------------------------------------------------------------------------------
\title{\normalsize \textsc{}
\\ [2.0cm]
\HRule{1.5pt} \\
\LARGE \textbf{\uppercase{MA1522}
\HRule{2.0pt} \\ [0.6cm] \LARGE{Assignment 1} \vspace*{10\baselineskip}}
}
\date{}
\author{\textbf{Yadunand Prem}\\
A0253252M}
\maketitle
\newpage
% ------------------------------------------------------------------------------
\section{Question 1}
\hr
\begin{align*}
\begin{amatrix}{3}
4 & 2 & 4 & 0 \\
5 & 4 & 0 & 1 \\
4 & 1 & 2 & 5 \\
\end{amatrix}
\xrightarrow{\frac{1}{4}R_1}
& \begin{amatrix}{3}
1 & \frac{1}{2} & 1 & 0 \\
5 & 4 & 0 & 1 \\
4 & 1 & 2 & 5 \\
\end{amatrix}
\xrightarrow[R_3 + (-4)R_1]{R_2 + (-5)R_1}
\begin{amatrix}{3}
1 & \frac{1}{2} & 1 & 0 \\
0 & \frac{3}{2} & -5 & 1 \\
0 & -1 & -2 & 5 \\
\end{amatrix} \\
\xrightarrow{\frac{2}{3}R_2}
& \begin{amatrix}{3}
1 & \frac{1}{2} & 1 & 0 \\
0 & 1 & \frac{-10}{3} & \frac{2}{3} \\
0 & -1 & -2 & 5 \\
\end{amatrix}
\xrightarrow{R_3 + R_2}
\begin{amatrix}{3}
1 & \frac{1}{2} & 1 & 0 \\
0 & 1 & \frac{-10}{3} & \frac{2}{3} \\
0 & 0 & \frac{-16}{3} & \frac{17}{3} \\
\end{amatrix} \\
\xrightarrow{\frac{-3}{16}R_3}
& \begin{amatrix}{3}
1 & \frac{1}{2} & 1 & 0 \\
0 & 1 & \frac{-10}{3} & \frac{2}{3} \\
0 & 0 & 1 & \frac{-17}{16} \\
\end{amatrix}
\xrightarrow[R_1 + (-1)R_3]{R_2 + \frac{10}{3}R_3}
\begin{amatrix}{3}
1 & \frac{1}{2} & 0 & \frac{17}{16} \\
0 & 1 & 0 & \frac{-23}{8} \\
0 & 0 & 1 & \frac{-17}{16} \\
\end{amatrix} \\
\xrightarrow{R_1 + \frac{-1}{2}R_2}
& \begin{amatrix}{3}
1 & 0 & 0 & \frac{5}{2} \\
0 & 1 & 0 & \frac{-23}{8} \\
0 & 0 & 1 & \frac{-17}{16} \\
\end{amatrix}
\end{align*}
\subsection{1i No of pivot columns}
There are 3 pivot columns
\subsection{1ii Arbitrary Params needed}
0 arbitrary params needed
\subsection{1iii How many solutions are there?}
1 solution for the system
\subsection{1iv Solution for system}
$x_1 = \frac{5}{2}, x_2 = -\frac{23}{8}, x_3 = -\frac{17}{16}$
\newpage
\section{Question 2}
\begin{align*}
\begin{amatrix}{3}
a & 1 & 1 & a^3 \\
1 & a & 1 & 1 \\
1 & 1 & a & a
\end{amatrix}
\xrightarrow{R_1 \leftrightarrow R_3}
& \begin{amatrix}{3}
1 & 1 & a & a \\
1 & a & 1 & 1 \\
a & 1 & 1 & a^3 \\
\end{amatrix} \\
\xrightarrow[R_3 + (-a)R_1]{R_2 + (-1)R_1}
& \begin{amatrix}{3}
1 & 1 & a & a \\
0 & a-1 & 1-a & 1-a \\
0 & 1-a & 1-a^2 & a^3-a^2 \\
\end{amatrix} \\
\xrightarrow{R_3 + (1)R_2}
& \begin{amatrix}{3}
1 & 1 & a & a \\
0 & a-1 & 1-a & 1-a \\
0 & 0 & 2-a^2-a & a^3-a^2-a+1 \\
\end{amatrix} \\
=
& \begin{amatrix}{3}
1 & 1 & a & a \\
0 & a-1 & 1-a & 1-a \\
0 & 0 & (a+2)(1-a) & (a+1)(a-1)(a-1) \\
\end{amatrix} \\
\end{align*}
\subsection{2i, system has no solution}
The system will have no solution when the last column is the pivot column. This can happen in $R_2$ if $a-1 = 1-a = 0$ and $1-a \neq 0$
$a = 1$ will satisfy the left equation, but it contradicts with the right equation. Thus, $R_2$ is not a possible candidate for no solution
For $R_3$, $(a+2)(1-a) = 0$ and $(a+1)(a-1)(a-1) \neq 0$
Left equation:
\begin{align*}
(a+2)(1-a) = 0 \\
a = 1 \text{ or } a = -2
\end{align*}
Right Equation:
\begin{align*}
(a+1)(a-1)(a-1) \neq 0 \\
a \neq 1 \text{ or }a \neq -1
\end{align*}
Therefore, there is no solution to the equation if $a = -2$
\subsection{2ii, system has unique solution}
The system has a unique solution when the last column is non pivot and all other columns are pivot columns.
$C_1$ is pivot column, $C_2$ is pivot if $a-1 \neq 0$, $C_3$ is pivot if $(a+2)(1-a) \neq 0$
\begin{align*}
a - 1 \neq 0\\
a \neq 1 \\
(a+2)(1-a) \neq 0 \\
a \neq -2 \text{ and } a \neq 1
\end{align*}
Therefore, the system has a unique solutions when $a \neq 1$ and $a \neq -2$
\subsection{2iii System has infinitely many solutions}
The system will have infinitely many solutions when the last column is non-pivot and some other columns are non-pivot columns.
if $C_2$ is non pivot, then $C_2R_2$ must be 0. $a-1 = 0, a = 1$
If $C_3$ is non-pivot, then $C_3R_3$ must be zero, but that will cause the last row to be a pivot.
Therefore, the system has infinitely many solutions when $a = 1$
% ------------------------------------------------------------------------------
\end{document}