feat: 0.43 on coursemo
This commit is contained in:
parent
d2e87aec97
commit
2149406885
122
cs2109s/labs/final/final.py
Normal file
122
cs2109s/labs/final/final.py
Normal file
@ -0,0 +1,122 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import os
|
||||
|
||||
from torch import nn
|
||||
|
||||
with open('data.npy', 'rb') as f:
|
||||
data = np.load(f, allow_pickle=True).item()
|
||||
X = data['data']
|
||||
y = data['label']
|
||||
|
||||
from torch import nn
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
import torch
|
||||
import os
|
||||
|
||||
|
||||
class CNN3D(nn.Module):
|
||||
def __init__(self):
|
||||
super(CNN3D, self).__init__()
|
||||
self.conv1 = nn.Conv3d(1, 12, 2, 1, 2)
|
||||
self.mp = nn.AvgPool3d(2)
|
||||
self.relu = nn.LeakyReLU()
|
||||
self.fc1 = nn.Linear(3888, 6)
|
||||
self.fc2 = nn.Linear(128, 6)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.mp(x)
|
||||
x = self.relu(x)
|
||||
|
||||
# print(x.shape)
|
||||
|
||||
x = x.view(-1, 3888)
|
||||
x = self.fc1(x)
|
||||
# x = self.fc2(x)
|
||||
return x
|
||||
|
||||
|
||||
def train(model, criterion, optimizer, loader, epochs=10):
|
||||
for epoch in range(epochs):
|
||||
for idx, (inputs, labels) in enumerate(loader):
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print(f'Epoch {epoch}, Loss: {loss.item()}')
|
||||
return model
|
||||
|
||||
|
||||
def process_data(X, y):
|
||||
y = np.array(y)
|
||||
X = np.array([video[:6] for video in X])
|
||||
tensor_videos = torch.tensor(X, dtype=torch.float32)
|
||||
# Clip values to 0 and 255
|
||||
tensor_videos = np.clip(tensor_videos, 0, 255)
|
||||
# Replace NaNs in each frame, with the average of the frame. This was generated with GPT
|
||||
for i in range(tensor_videos.shape[0]):
|
||||
for j in range(tensor_videos.shape[1]):
|
||||
tensor_videos[i][j][torch.isnan(tensor_videos[i][j])] = torch.mean(
|
||||
tensor_videos[i][j][~torch.isnan(tensor_videos[i][j])])
|
||||
# Undersample the data for each of the 6 classes. Select max of 300 samples for each class
|
||||
# Very much generated with the assitance of chatGPT with some modifications
|
||||
# Get the indices of each class
|
||||
indices = [np.argwhere(y == i).squeeze(1) for i in range(6)]
|
||||
# Get the number of samples to take for each class
|
||||
num_samples_to_take = 300
|
||||
# Get the indices of the samples to take
|
||||
indices_to_take = [np.random.choice(indices[i], num_samples_to_take, replace=True) for i in range(6)]
|
||||
# Concatenate the indices
|
||||
indices_to_take = np.concatenate(indices_to_take)
|
||||
# Select the samples
|
||||
tensor_videos = tensor_videos[indices_to_take].unsqueeze(1)
|
||||
y = y[indices_to_take]
|
||||
return torch.Tensor(tensor_videos), torch.Tensor(y).long()
|
||||
|
||||
|
||||
class Model():
|
||||
def __init__(self):
|
||||
self.model = CNN3D()
|
||||
self.criterion = nn.CrossEntropyLoss()
|
||||
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
|
||||
|
||||
def fit(self, X, y):
|
||||
X, y = process_data(X, y)
|
||||
train_dataset = torch.utils.data.TensorDataset(X, y)
|
||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
|
||||
train(self.model, self.criterion, self.optimizer, train_loader)
|
||||
|
||||
def predict(self, X):
|
||||
self.model.eval()
|
||||
|
||||
X = np.array([video[:6] for video in X])
|
||||
tensor_videos = torch.tensor(X, dtype=torch.float32)
|
||||
# Clip values to 0 and 255
|
||||
tensor_videos = np.clip(tensor_videos, 0, 255)
|
||||
# Replace NaNs in each frame, with the average of the frame. This was generated with GPT
|
||||
for i in range(tensor_videos.shape[0]):
|
||||
for j in range(tensor_videos.shape[1]):
|
||||
tensor_videos[i][j][torch.isnan(tensor_videos[i][j])] = torch.mean(
|
||||
tensor_videos[i][j][~torch.isnan(tensor_videos[i][j])])
|
||||
X = torch.Tensor(tensor_videos.unsqueeze(1))
|
||||
return np.argmax(self.model(X).detach().numpy(), axis=1)
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
|
||||
|
||||
not_nan_indices = np.argwhere(~np.isnan(np.array(y_test))).squeeze()
|
||||
y_test = [y_test[i] for i in not_nan_indices]
|
||||
X_test = [X_test[i] for i in not_nan_indices]
|
||||
|
||||
model = Model()
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
from sklearn.metrics import f1_score
|
||||
|
||||
y_pred = model.predict(X_test)
|
||||
print("F1 Score (macro): {0:.2f}".format(f1_score(y_test, y_pred, average='macro'))) # You may encounter errors, you are expected to figure out what's the issue.
|
Loading…
Reference in New Issue
Block a user