282 lines
5.6 KiB
Coq
282 lines
5.6 KiB
Coq
(* week-07_soundness-and-completeness-of-equality-predicates-revisited.v *)
|
|
(* LPP 2024 - S3C234 2023-2024, Sem2 *)
|
|
(* Olivier Danvy <danvy@yale-nus.edu.sg> *)
|
|
(* Version of 08 Mar 2024 *)
|
|
|
|
(* ********** *)
|
|
|
|
Ltac fold_unfold_tactic name := intros; unfold name; fold name; reflexivity.
|
|
|
|
Require Import Arith Bool List.
|
|
|
|
(* ********** *)
|
|
|
|
Definition is_a_sound_and_complete_equality_predicate (V : Type) (eqb_V : V -> V -> bool) :=
|
|
forall v1 v2 : V,
|
|
eqb_V v1 v2 = true <-> v1 = v2.
|
|
|
|
(* ********** *)
|
|
|
|
Check Bool.eqb.
|
|
(* eqb : bool -> bool -> bool *)
|
|
|
|
Definition eqb_bool (b1 b2 : bool) : bool :=
|
|
match b1 with
|
|
true =>
|
|
match b2 with
|
|
true =>
|
|
true
|
|
| false =>
|
|
false
|
|
end
|
|
| false =>
|
|
match b2 with
|
|
true =>
|
|
false
|
|
| false =>
|
|
true
|
|
end
|
|
end.
|
|
|
|
Lemma eqb_bool_is_reflexive :
|
|
forall b : bool,
|
|
eqb_bool b b = true.
|
|
Proof.
|
|
Abort.
|
|
|
|
Search (eqb _ _ = _ -> _ = _).
|
|
(* eqb_prop: forall a b : bool, eqb a b = true -> a = b *)
|
|
|
|
Proposition soundness_and_completeness_of_eqb_bool :
|
|
is_a_sound_and_complete_equality_predicate bool eqb_bool.
|
|
Proof.
|
|
unfold is_a_sound_and_complete_equality_predicate.
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ***** *)
|
|
|
|
Proposition soundness_and_completeness_of_eqb_bool :
|
|
is_a_sound_and_complete_equality_predicate bool eqb.
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ********** *)
|
|
|
|
Check Nat.eqb.
|
|
(* Nat.eqb : nat -> nat -> bool *)
|
|
|
|
Fixpoint eqb_nat (n1 n2 : nat) : bool :=
|
|
match n1 with
|
|
O =>
|
|
match n2 with
|
|
O =>
|
|
true
|
|
| S n2' =>
|
|
false
|
|
end
|
|
| S n1' =>
|
|
match n2 with
|
|
O =>
|
|
false
|
|
| S n2' =>
|
|
eqb_nat n1' n2'
|
|
end
|
|
end.
|
|
|
|
Lemma fold_unfold_eqb_nat_O :
|
|
forall n2 : nat,
|
|
eqb_nat 0 n2 =
|
|
match n2 with
|
|
O =>
|
|
true
|
|
| S _ =>
|
|
false
|
|
end.
|
|
Proof.
|
|
fold_unfold_tactic eqb_nat.
|
|
Qed.
|
|
|
|
Lemma fold_unfold_eqb_nat_S :
|
|
forall n1' n2 : nat,
|
|
eqb_nat (S n1') n2 =
|
|
match n2 with
|
|
O =>
|
|
false
|
|
| S n2' =>
|
|
eqb_nat n1' n2'
|
|
end.
|
|
Proof.
|
|
fold_unfold_tactic eqb_nat.
|
|
Qed.
|
|
|
|
Search (Nat.eqb _ _ = true -> _ = _).
|
|
(* beq_nat_true: forall n m : nat, (n =? m) = true -> n = m *)
|
|
|
|
Proposition soundness_and_completeness_of_eqb_nat :
|
|
is_a_sound_and_complete_equality_predicate nat eqb_nat.
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ***** *)
|
|
|
|
Lemma fold_unfold_eqb_Nat_O :
|
|
forall n2 : nat,
|
|
0 =? n2 =
|
|
match n2 with
|
|
O =>
|
|
true
|
|
| S _ =>
|
|
false
|
|
end.
|
|
Proof.
|
|
fold_unfold_tactic Nat.eqb.
|
|
Qed.
|
|
|
|
Lemma fold_unfold_eqb_Nat_S :
|
|
forall n1' n2 : nat,
|
|
S n1' =? n2 =
|
|
match n2 with
|
|
O =>
|
|
false
|
|
| S n2' =>
|
|
n1' =? n2'
|
|
end.
|
|
Proof.
|
|
fold_unfold_tactic Nat.eqb.
|
|
Qed.
|
|
|
|
Proposition soundness_and_completeness_of_eqb_nat :
|
|
is_a_sound_and_complete_equality_predicate nat Nat.eqb.
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ********** *)
|
|
|
|
Definition eqb_option (V : Type) (eqb_V : V -> V -> bool) (ov1 ov2 : option V) : bool :=
|
|
match ov1 with
|
|
Some v1 =>
|
|
match ov2 with
|
|
Some v2 =>
|
|
eqb_V v1 v2
|
|
| None =>
|
|
false
|
|
end
|
|
| None =>
|
|
match ov2 with
|
|
Some v2 =>
|
|
false
|
|
| None =>
|
|
true
|
|
end
|
|
end.
|
|
|
|
Proposition soundness_and_completeness_of_eqb_option :
|
|
forall (V : Type)
|
|
(eqb_V : V -> V -> bool),
|
|
is_a_sound_and_complete_equality_predicate V eqb_V ->
|
|
is_a_sound_and_complete_equality_predicate (option V) (eqb_option V eqb_V).
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ***** *)
|
|
|
|
(*
|
|
Definition eqb_option_option (V : Type) (eqb_V : V -> V -> bool) (oov1 oov2 : option (option V)) : bool :=
|
|
*)
|
|
|
|
(*
|
|
Proposition soundness_and_completeness_of_eqb_option_option :
|
|
forall (V : Type)
|
|
(eqb_V : V -> V -> bool),
|
|
is_a_sound_and_complete_equality_predicate V eqb_V ->
|
|
is_a_sound_and_complete_equality_predicate (option (option V)) (eqb_option_option V eqb_V).
|
|
Proof.
|
|
Abort.
|
|
*)
|
|
|
|
(* ********** *)
|
|
|
|
Definition eqb_pair (V : Type) (eqb_V : V -> V -> bool) (W : Type) (eqb_W : W -> W -> bool) (p1 p2 : V * W) : bool :=
|
|
match p1 with
|
|
(v1, w1) =>
|
|
match p2 with
|
|
(v2, w2) =>
|
|
eqb_V v1 v2 && eqb_W w1 w2
|
|
end
|
|
end.
|
|
|
|
Proposition soundness_and_completeness_of_eqb_pair :
|
|
forall (V : Type)
|
|
(eqb_V : V -> V -> bool)
|
|
(W : Type)
|
|
(eqb_W : W -> W -> bool),
|
|
is_a_sound_and_complete_equality_predicate V eqb_V ->
|
|
is_a_sound_and_complete_equality_predicate W eqb_W ->
|
|
is_a_sound_and_complete_equality_predicate (V * W) (eqb_pair V eqb_V W eqb_W).
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ********** *)
|
|
|
|
Fixpoint eqb_list (V : Type) (eqb_V : V -> V -> bool) (v1s v2s : list V) : bool :=
|
|
match v1s with
|
|
nil =>
|
|
match v2s with
|
|
nil =>
|
|
true
|
|
| v2 :: v2s' =>
|
|
false
|
|
end
|
|
| v1 :: v1s' =>
|
|
match v2s with
|
|
nil =>
|
|
false
|
|
| v2 :: v2s' =>
|
|
eqb_V v1 v2 && eqb_list V eqb_V v1s' v2s'
|
|
end
|
|
end.
|
|
|
|
Lemma fold_unfold_eqb_list_nil :
|
|
forall (V : Type)
|
|
(eqb_V : V -> V -> bool)
|
|
(v2s : list V),
|
|
eqb_list V eqb_V nil v2s =
|
|
match v2s with
|
|
nil =>
|
|
true
|
|
| v2 :: v2s' =>
|
|
false
|
|
end.
|
|
Proof.
|
|
fold_unfold_tactic eqb_list.
|
|
Qed.
|
|
|
|
Lemma fold_unfold_eqb_list_cons :
|
|
forall (V : Type)
|
|
(eqb_V : V -> V -> bool)
|
|
(v1 : V)
|
|
(v1s' v2s : list V),
|
|
eqb_list V eqb_V (v1 :: v1s') v2s =
|
|
match v2s with
|
|
nil =>
|
|
false
|
|
| v2 :: v2s' =>
|
|
eqb_V v1 v2 && eqb_list V eqb_V v1s' v2s'
|
|
end.
|
|
Proof.
|
|
fold_unfold_tactic eqb_list.
|
|
Qed.
|
|
|
|
Proposition soundness_and_completeness_of_eqb_list :
|
|
forall (V : Type)
|
|
(eqb_V : V -> V -> bool),
|
|
is_a_sound_and_complete_equality_predicate V eqb_V ->
|
|
is_a_sound_and_complete_equality_predicate (list V) (eqb_list V eqb_V).
|
|
Proof.
|
|
Abort.
|
|
|
|
(* ********** *)
|
|
|
|
(* end of week-07_soundness-and-completeness-of-equality-predicates-revisited.v *)
|