540 lines
8.8 KiB
Coq
540 lines
8.8 KiB
Coq
(* week-02_proving-logical-properties.v *)
|
|
(* LPP 2024 - CS3234 2023-2024, Sem2 *)
|
|
(* Olivier Danvy <danvy@yale-nus.edu.sg> *)
|
|
(* Version of 25 Jan 2024 *)
|
|
|
|
(* ********** *)
|
|
|
|
Lemma identity :
|
|
forall A : Prop,
|
|
A -> A.
|
|
Proof.
|
|
intro A.
|
|
intro H_A.
|
|
exact H_A.
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
Lemma proving_a_conjunction :
|
|
forall A B : Prop,
|
|
A -> B -> A /\ B.
|
|
Proof.
|
|
intros A B H_A H_B.
|
|
split.
|
|
|
|
exact H_A.
|
|
|
|
exact H_B.
|
|
|
|
Restart.
|
|
|
|
intros A B H_A H_B.
|
|
split.
|
|
{ exact H_A. }
|
|
{ exact H_B. }
|
|
|
|
Restart.
|
|
|
|
intros A B H_A H_B.
|
|
split.
|
|
- exact H_A.
|
|
|
|
- exact H_B.
|
|
|
|
Restart.
|
|
|
|
intros A B H_A H_B.
|
|
Check (conj H_A H_B).
|
|
exact (conj H_A H_B).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
Lemma proving_a_ternary_conjunction :
|
|
forall A B C : Prop,
|
|
A -> B -> C -> A /\ B /\ C.
|
|
Proof.
|
|
intros A B C.
|
|
intros H_A H_B H_C.
|
|
split.
|
|
- exact H_A.
|
|
- split.
|
|
+ exact H_B.
|
|
+ exact H_C.
|
|
|
|
Restart.
|
|
|
|
intros A B C.
|
|
intros H_A H_B H_C.
|
|
exact (conj H_A (conj H_B H_C)).
|
|
|
|
Restart.
|
|
intros A B C.
|
|
intros H_A H_B H_C.
|
|
split.
|
|
{ exact H_A. }
|
|
split.
|
|
{ exact H_B. }
|
|
exact H_C.
|
|
|
|
Qed.
|
|
(* ********** *)
|
|
|
|
Lemma example_for_Anton :
|
|
forall A B C D : Prop,
|
|
A /\ B /\ C /\ D.
|
|
Proof.
|
|
intros A B C D.
|
|
split.
|
|
- admit.
|
|
- split.
|
|
+ admit.
|
|
+ split.
|
|
* admit.
|
|
* admit.
|
|
|
|
Restart.
|
|
|
|
intros A B C D.
|
|
split.
|
|
{ admit. }
|
|
{ split.
|
|
{ admit. }
|
|
{ split.
|
|
{ admit. }
|
|
{ admit. } } }
|
|
|
|
Restart.
|
|
|
|
intros A B C D.
|
|
split.
|
|
{ admit. }
|
|
split.
|
|
{ admit. }
|
|
split.
|
|
{ admit. }
|
|
admit.
|
|
Abort.
|
|
|
|
(* ********** *)
|
|
|
|
Lemma proving_a_disjunction :
|
|
forall A B : Prop,
|
|
A -> B -> A \/ B.
|
|
Proof.
|
|
intros A B H_A H_B.
|
|
left.
|
|
exact H_A.
|
|
|
|
Restart.
|
|
|
|
intros A B H_A H_B.
|
|
right.
|
|
exact H_B.
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 06 *)
|
|
|
|
Lemma conjunction_is_commutative:
|
|
forall A B : Prop,
|
|
A /\ B <-> B /\ A.
|
|
Proof.
|
|
intros A B.
|
|
split.
|
|
- intros [H_A H_B].
|
|
exact (conj H_B H_A).
|
|
- intros [H_B H_A].
|
|
exact (conj H_A H_B).
|
|
Qed.
|
|
|
|
Lemma conjunction_is_commutative_aux :
|
|
forall A B : Prop,
|
|
A /\ B -> B /\ A.
|
|
Proof.
|
|
intros A B [H_A H_B].
|
|
exact (conj H_B H_A).
|
|
Qed.
|
|
|
|
Lemma conjunction_is_commutative_revisited :
|
|
forall A B : Prop,
|
|
A /\ B <-> B /\ A.
|
|
Proof.
|
|
intros A B.
|
|
split.
|
|
|
|
- exact (conjunction_is_commutative_aux A B).
|
|
|
|
- exact (conjunction_is_commutative_aux B A).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 07 *)
|
|
|
|
Lemma conjunction_is_associative_aux:
|
|
forall A B C : Prop,
|
|
A /\ (B /\ C) -> (A /\ B) /\ C.
|
|
Proof.
|
|
intros A B C.
|
|
intros [H_A [H_B H_C]].
|
|
exact (conj (conj H_A H_B) H_C).
|
|
Qed.
|
|
|
|
Lemma conjunction_is_associative :
|
|
forall A B C : Prop,
|
|
A /\ (B /\ C) <-> (A /\ B) /\ C.
|
|
Proof.
|
|
intros A B C.
|
|
split.
|
|
- intros [H_A [H_B H_C]].
|
|
Check (conj (conj H_A H_B) H_C).
|
|
exact (conj (conj H_A H_B) H_C).
|
|
- intros [[H_A H_B] H_C].
|
|
exact (conj H_A (conj H_B H_C)).
|
|
|
|
Restart.
|
|
intros A B C.
|
|
split.
|
|
- intros [H_A [H_B H_C]].
|
|
split.
|
|
* split.
|
|
exact H_A.
|
|
exact H_B.
|
|
* exact H_C.
|
|
- intros [[H_A H_B] H_C].
|
|
split.
|
|
exact H_A.
|
|
* split.
|
|
exact H_B.
|
|
exact H_C.
|
|
Qed.
|
|
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 08 *)
|
|
Lemma disjunction_is_commutative_aux :
|
|
forall A B : Prop,
|
|
A \/ B -> B \/ A.
|
|
Proof.
|
|
intros A B.
|
|
intros [H_A | H_B].
|
|
right.
|
|
exact H_A.
|
|
left.
|
|
exact H_B.
|
|
Qed.
|
|
|
|
|
|
Lemma disjunction_is_commutative :
|
|
forall A B : Prop,
|
|
A \/ B <-> B \/ A.
|
|
Proof.
|
|
intros A B.
|
|
split.
|
|
- intros [H_A | H_B].
|
|
right.
|
|
exact H_A.
|
|
left.
|
|
exact H_B.
|
|
- intros [H_B | H_A].
|
|
right.
|
|
exact H_B.
|
|
left.
|
|
exact H_A.
|
|
Restart.
|
|
intros A B.
|
|
split.
|
|
- exact (disjunction_is_commutative_aux A B).
|
|
- exact (disjunction_is_commutative_aux B A).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 09 *)
|
|
|
|
Lemma disjunction_is_associative :
|
|
forall A B C : Prop,
|
|
A \/ (B \/ C) <-> (A \/ B) \/ C.
|
|
Proof.
|
|
intros A B C.
|
|
split.
|
|
- intros [H_A | [H_B | H_C]].
|
|
left.
|
|
left.
|
|
exact H_A.
|
|
left.
|
|
right.
|
|
exact H_B.
|
|
right.
|
|
exact H_C.
|
|
- intros [[H_A | H_B] | H_C].
|
|
left.
|
|
exact H_A.
|
|
right.
|
|
left.
|
|
exact H_B.
|
|
right.
|
|
right.
|
|
exact H_C.
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 10 *)
|
|
|
|
(* Prove whether disjunction distribute over conjunction on the left and on the right. *)
|
|
|
|
Proposition disjunction_distributes_over_conjunction_on_the_left :
|
|
forall A B C : Prop,
|
|
A \/ (B /\ C) <-> (A \/ B) /\ (A \/ C).
|
|
Proof.
|
|
intros A B C.
|
|
split.
|
|
- intros [H_A | [H_B H_C]].
|
|
|
|
+ split.
|
|
* left.
|
|
exact H_A.
|
|
* left.
|
|
exact H_A.
|
|
+ split.
|
|
* right.
|
|
exact H_B.
|
|
* right.
|
|
exact H_C.
|
|
|
|
- intros [[H_A | H_B] [H_A' | H_C]].
|
|
+ left.
|
|
exact H_A.
|
|
+ left.
|
|
exact H_A.
|
|
+ left.
|
|
exact H_A'.
|
|
+ right.
|
|
exact (conj H_B H_C).
|
|
Qed.
|
|
|
|
Proposition disjunction_distributes_over_conjunction_on_the_right :
|
|
forall A B C : Prop,
|
|
(B /\ C) \/ A <-> (B \/ A) /\ (C \/ A).
|
|
Proof.
|
|
intros A B C.
|
|
split.
|
|
- intros [[H_B H_C] | H_A].
|
|
+ split.
|
|
* left.
|
|
exact H_B.
|
|
* left.
|
|
exact H_C.
|
|
+ split.
|
|
* right.
|
|
exact H_A.
|
|
* right.
|
|
exact H_A.
|
|
- intros [[H_B | H_A] [H_C | H_A']].
|
|
+ left.
|
|
exact (conj H_B H_C).
|
|
+ right.
|
|
exact H_A'.
|
|
+ right.
|
|
exact H_A.
|
|
+ right.
|
|
exact H_A.
|
|
Qed.
|
|
|
|
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 11 *)
|
|
|
|
(*
|
|
Does conjunction distribute over disjunction on the left?
|
|
And what about on the right?
|
|
*)
|
|
|
|
(* ********** *)
|
|
|
|
Proposition modus_ponens :
|
|
forall A B : Prop,
|
|
A -> (A -> B) -> B.
|
|
Proof.
|
|
intros A B.
|
|
intros H_A H_A_implies_B.
|
|
Check (H_A_implies_B H_A).
|
|
exact (H_A_implies_B H_A).
|
|
|
|
Restart.
|
|
|
|
intros A B.
|
|
intros H_A H_A_implies_B.
|
|
apply H_A_implies_B.
|
|
exact H_A.
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 12 *)
|
|
|
|
Proposition following :
|
|
forall A B : Prop,
|
|
(A -> B) -> A -> B.
|
|
Proof.
|
|
intros A B.
|
|
intros H_A_implies_B.
|
|
intros H_A.
|
|
exact (H_A_implies_B H_A).
|
|
Restart.
|
|
intros A B.
|
|
intros H_A_implies_B.
|
|
apply H_A_implies_B.
|
|
Qed.
|
|
|
|
|
|
(* ********** *)
|
|
|
|
Proposition modus_tollens :
|
|
forall A B : Prop,
|
|
~B -> (A -> B) -> ~A.
|
|
Proof.
|
|
intros A B.
|
|
unfold not.
|
|
intros H_B_implies_False H_A_implies_B H_A.
|
|
apply H_B_implies_False.
|
|
apply H_A_implies_B.
|
|
exact H_A.
|
|
|
|
Restart.
|
|
|
|
intros A B.
|
|
unfold not.
|
|
intros H_B_implies_False H_A_implies_B H_A.
|
|
Check (H_A_implies_B H_A).
|
|
Check (H_B_implies_False (H_A_implies_B H_A)).
|
|
exact (H_B_implies_False (H_A_implies_B H_A)).
|
|
|
|
Restart.
|
|
|
|
intros A B.
|
|
unfold not.
|
|
intros H_B_implies_False H_A_implies_B H_A.
|
|
Check (modus_ponens A B).
|
|
Check (modus_ponens A B H_A).
|
|
Check (modus_ponens A B H_A H_A_implies_B).
|
|
Check (H_B_implies_False (modus_ponens A B H_A H_A_implies_B)).
|
|
exact (H_B_implies_False (modus_ponens A B H_A H_A_implies_B)).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 13 *)
|
|
|
|
Proposition implication_distributes_over_conjunction_on_the_left :
|
|
forall A B C : Prop,
|
|
(A -> B /\ C) <-> ((A -> B) /\ (A -> C)).
|
|
Proof.
|
|
intros A B C.
|
|
split.
|
|
|
|
- intros H_A_implies_B_and_C.
|
|
split.
|
|
|
|
* intro H_A.
|
|
Check (H_A_implies_B_and_C H_A).
|
|
destruct (H_A_implies_B_and_C H_A) as [H_B _].
|
|
exact H_B.
|
|
|
|
* intro H_A.
|
|
destruct (H_A_implies_B_and_C H_A) as [_ H_C].
|
|
exact H_C.
|
|
|
|
- intros [H_A_implies_B H_A_implies_C] H_A.
|
|
Check (H_A_implies_B H_A).
|
|
Check (H_A_implies_C H_A).
|
|
Check (conj (H_A_implies_B H_A) (H_A_implies_C H_A)).
|
|
exact (conj (H_A_implies_B H_A) (H_A_implies_C H_A)).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 14 *)
|
|
|
|
Proposition implication_distributes_over_disjunction_on_the_right_and_with_a_twist :
|
|
forall A B C : Prop,
|
|
((A \/ B) -> C) <-> ((A -> C) /\ (B -> C)).
|
|
Proof.
|
|
intros A B C.
|
|
split.
|
|
|
|
- intros H_A_or_B_implies_C.
|
|
split.
|
|
|
|
+ intro H_A.
|
|
apply H_A_or_B_implies_C.
|
|
left.
|
|
exact H_A.
|
|
|
|
+ intro H_B.
|
|
apply H_A_or_B_implies_C.
|
|
right.
|
|
exact H_B.
|
|
|
|
- intros [H_A_implies_C H_B_implies_C] [H_A | H_B].
|
|
|
|
+ Check (H_A_implies_C H_A).
|
|
exact (H_A_implies_C H_A).
|
|
|
|
+ exact (H_B_implies_C H_B).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 15 *)
|
|
|
|
Proposition contrapositive_of_implication :
|
|
forall A B : Prop,
|
|
(A -> B) -> ~B -> ~A.
|
|
Proof.
|
|
intros A B.
|
|
intros H_A_implies_B H_not_B.
|
|
Check (modus_tollens A B H_not_B H_A_implies_B).
|
|
exact (modus_tollens A B H_not_B H_A_implies_B).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 16 *)
|
|
|
|
Proposition contrapositive_of_contrapositive_of_implication :
|
|
forall A B : Prop,
|
|
(~B -> ~A) -> ~~A -> ~~B.
|
|
Proof.
|
|
intros A B.
|
|
Check (contrapositive_of_implication (not B) (not A)).
|
|
exact (contrapositive_of_implication (not B) (not A)).
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* Exercise 17 *)
|
|
|
|
Proposition double_negation :
|
|
forall A : Prop,
|
|
A -> ~~A.
|
|
Proof.
|
|
intros A.
|
|
intros H_A.
|
|
unfold not.
|
|
intros H_A_implies_false.
|
|
apply H_A_implies_false.
|
|
exact H_A.
|
|
Qed.
|
|
|
|
(* ********** *)
|
|
|
|
(* end of week-02_proving-logical-properties.v *)
|