122 lines
4.3 KiB
TeX
122 lines
4.3 KiB
TeX
\begin{theorem}[Matrix Properties]\ \\
|
|
Let $A, B, C$ be $m \times p, p \times q, q \times n$ matrices
|
|
\begin{itemize}
|
|
\item Associative Law: $A(BC) = (AB)C$
|
|
\item Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$
|
|
\item Distributive Law: $(B_1 + B_2)A = B_1A + B_2A$
|
|
\item $c(AB) = (cA)B = A(cB)$
|
|
\item $A\textbf{0}_{p \times n} = \textbf{0}_{m \times n}$
|
|
\item $A\textbf{I}_{n} = \textbf{I}_{n}A = A$
|
|
\end{itemize}
|
|
\end{theorem}
|
|
|
|
|
|
\begin{defn}[Powers of Square Matricss]\ \\
|
|
Let $A$ be a $m \times n$.
|
|
|
|
$AA$ is well defined $\iff m = n \iff A$ is square.
|
|
|
|
\textbf{Definition.} Let $A$ be square matrix of order $n$. Then Powers of a are
|
|
$$
|
|
A^k = \begin{cases}
|
|
I_n & \text{if } k = 0 \\
|
|
AA...A & \text{if } k \geq 1.
|
|
\end{cases}
|
|
$$
|
|
|
|
\textbf{Properties.}
|
|
\begin{itemize}
|
|
\item $A^mA^n = A^{m+n}, (A^m)^n = A^{mn}$
|
|
\item $(AB)^2 = (AB)(AB) \neq A^2B^2 = (AA)(BB)$
|
|
\end{itemize}
|
|
\end{defn}
|
|
|
|
Matrix Multiplication Example:
|
|
|
|
\begin{itemize}
|
|
\item Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}$
|
|
\item Let $a_1 = \begin{pmatrix}1 & 2 & 3 \end{pmatrix}, a_2 = \begin{pmatrix}4 & 5 & 6 \end{pmatrix}$
|
|
\item $AB = \begin{pmatrix} a_1 & a_2 \end{pmatrix}B = \begin{pmatrix} a_1B \\ a_2B \end{pmatrix}$.
|
|
\item $\begin{pmatrix}
|
|
\begin{pmatrix}1 & 2 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix} \\
|
|
\begin{pmatrix}4 & 5 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ -1 & -2 \end{pmatrix}
|
|
\end{pmatrix} = \begin{pmatrix}
|
|
\begin{pmatrix}2 & 1\end{pmatrix} \\
|
|
\begin{pmatrix}8 & 7\end{pmatrix} \\
|
|
\end{pmatrix}
|
|
$
|
|
\end{itemize}
|
|
|
|
\begin{note}[Representation of Linear System] \ \\
|
|
\begin{itemize}
|
|
\item $\begin{cases}
|
|
a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n & = b_1 \\
|
|
a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n & = b_2 \\
|
|
\vdots & \vdots \\
|
|
a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n & = b_m \\
|
|
\end{cases}$
|
|
|
|
\item A = $\begin{pmatrix}
|
|
a_{11} & a_{12} & ... & a_{1n} \\
|
|
a_{21} & a_{22} & ... & a_{2n} \\
|
|
\vdots & \vdots & & \vdots \\
|
|
a_{m1} & a_{m2} & ... & a_{mn} \\
|
|
\end{pmatrix}$, Coefficient Matrix, $A_{m\times n}$
|
|
\item $x = \begin{pmatrix}
|
|
x_{1} \\
|
|
\vdots \\
|
|
x_{n} \\
|
|
\end{pmatrix}$, Variable Matrix, $x_{n \times 1}$
|
|
\item $b = \begin{pmatrix}
|
|
b_{1} \\
|
|
\vdots \\
|
|
b_{m} \\
|
|
\end{pmatrix}$, Constant Matrix, $b_{m \times 1}$. Then $Ax = b$
|
|
\item $A = (a_{ij})_{m\times n} $
|
|
\item $m$ linear equations in $n$ variables, $x_1, ..., x_n$
|
|
\item $a_{ij}$ are coefficients, $b_i$ are the constants
|
|
\item Let $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$.
|
|
\subitem $x_1 = u_1, \hdots, x_n = u_n$ is a solution to the system
|
|
\subitem $\iff Au = b \iff u$ is a solution to $Ax = b$
|
|
\item Let $a_j$ denote the $j$th column of $A$. Then
|
|
\subitem $b = Ax = x_1a_1 + ... + x_na_n = \sum^n_{j=1}x_ja_j$
|
|
\end{itemize}
|
|
\end{note}
|
|
|
|
\begin{defn}[Transpose]\ \\
|
|
\begin{itemize}
|
|
\item Let $A = (a_{ij})_{m\times n}$
|
|
\item The transpose of $A$ is $A^T = (a_{ji})_{n \times m}$
|
|
\item $(A^T)^T = A$
|
|
\item A is symmetric $\iff A = A^T$
|
|
\item Let $B$ be $m \times n$, $(A+B)^T = A^T + B^T$
|
|
\item Let $B$ be $n \times p$, $(AB)^T = B^TA^T$
|
|
\end{itemize}
|
|
\end{defn}
|
|
|
|
\begin{defn}[Inverse]\ \\
|
|
\begin{itemize}
|
|
\item Let $A, B$ be matrices of same size
|
|
\subitem $A + X = B \implies X = B - A = B + (-A)$
|
|
\subitem $-A$ is the \textit{additive inverse} of $A$
|
|
\item Let $A_{m\times n}, B_{m\times p}$ matrix.
|
|
\subitem $AX = B \implies X = A^{-1}B$.
|
|
\end{itemize}
|
|
|
|
|
|
Let A be a \textbf{square matrix} of order $n$.
|
|
\begin{itemize}
|
|
\item If there exists a square matrix $B$ of order $N$ s.t. $AB = I_{n}$ and $BA = I_{n}$, then $A$ is \textbf{invertible} matrix and $B$ is inverse of $A$.
|
|
\item If $A$ is not invertible, A is called singular.
|
|
\item suppose $A$ is invertible with inverse $B$
|
|
\item Let $C$ be any matrix having the same number of rows as $A$.
|
|
$$\begin{aligned}
|
|
AX = C &\implies B(AX) = BC \\
|
|
&\implies (BA)X = BC \\
|
|
&\implies X = BC.
|
|
\end{aligned}$$
|
|
\end{itemize}
|
|
|
|
|
|
\end{defn}
|