nus/cs3234/labs/week-01_functional-programming-in-Gallina.v
2024-02-04 15:40:50 +08:00

996 lines
18 KiB
Coq

(* week-01_functional-programming-in-Gallina.v *)
(* LPP 2024 - CS3234 2023-2024, Sem2 *)
(* Olivier Danvy <danvy@yale-nus.edu.sg> *)
(* Version of 18 Jan 2024, with specifications *)
(* was: *)
(* Version of 18 Jan 2024 *)
Check 0.
Check O.
(* Note: "nat" is the type of natural numbers. *)
(* ********** *)
Check 1.
Check (S 0).
Check (S O).
(* ********** *)
Check 2.
Check (S (S 0)).
Check (S (S O)).
(* ********** *)
Check 3.
Compute 3.
(* Note: natural numbers are self-evaluating. *)
(* ********** *)
Compute (4 + 6).
Check (4 + 6).
(* ********** *)
Compute (plus 4 6).
Check (plus 4 6).
(* Note: infix + is syntactic sugar for plus. *)
(* ********** *)
Check (plus 4).
(* Note: plus refers to a library function. *)
Compute (plus 4).
Compute (plus 3).
Compute (plus 2).
Compute (plus 1).
Compute (plus 0).
(* Note: functions are written as in OCaml,
with the keyword "fun" followed by the formal parameter
(and optionally its type), "=>", and the body. *)
Compute (fun m : nat => S m).
(*
For comparison,
fun m : nat => S m
would be written
fun m => succ m
or
fun m => m + 1
or
fun m => 1 + m
in OCaml and
(lambda (m) (1+ m))
in Scheme.
*)
Compute ((fun m : nat => S m) 3).
(* ********** *)
Definition three := 3.
Check three.
Compute three.
Definition ten := 4 + 6.
Check ten.
Compute ten.
(* ********** *)
(* The following definitions are all equivalent: *)
(* This adds type definitions to the definition*)
Definition succ_v0 : nat -> nat :=
fun m : nat => S m.
(* Without Type definitions *)
Definition succ_v1 :=
fun m => S m.
(* defines the variable m as part of params *)
Definition succ_v2 (m : nat) :=
S m.
(* defines the variable m as part of params and specifies return type *)
Definition succ_v3 (m : nat) : nat :=
S m.
(* infers the input tpye and return type from function S *)
Definition succ_v4 m :=
S m.
Check S.
(* Note: the definition of succ_v3 is the recommended one here. *)
(* Note: variables are defined once and for all in a file. *)
(* ********** *)
(* Ditto for the following definitions: *)
Definition zerop_v0 : nat -> bool :=
fun n =>
match n with
| O =>
true
| S n' =>
false
end.
Compute (zerop_v0 0). (* = true : bool *)
Compute (zerop_v0 7). (* = false : bool *)
Definition zerop_v1 (n : nat) : bool :=
match n with
| O =>
true
| S n' =>
false
end.
Compute (zerop_v1 0). (* = true : bool *)
Compute (zerop_v1 7). (* = false : bool *)
(* ********** *)
(* The addition function: *)
(* Unit tests: *)
Definition test_add (candidate: nat -> nat -> nat) : bool :=
(Nat.eqb (candidate 0 0) 0)
&&
(Nat.eqb (candidate 0 1) 1)
&&
(Nat.eqb (candidate 1 0) 1)
&&
(Nat.eqb (candidate 1 1) 2)
&&
(Nat.eqb (candidate 1 2) 3)
&&
(Nat.eqb (candidate 2 1) 3)
&&
(Nat.eqb (candidate 2 2) 4)
&&
(* commutativity: *)
(Nat.eqb (candidate 2 10) (candidate 10 2))
&&
(* associativity: *)
(Nat.eqb (candidate 2 (candidate 5 10))
(candidate (candidate 2 5) 10))
(* etc. *)
.
(* Testing the unit-test function: *)
Compute (test_add plus).
(* Version 1: lambda-dropped *)
Definition add_v1 (n j : nat) : nat :=
let fix visit i :=
match i with
O =>
j
| S i' =>
S (visit i')
end
in visit n.
Compute (test_add add_v1).
(* Version 2: recursive, lambda lifted *)
Fixpoint add_v2 (i j : nat) : nat :=
match i with
O =>
j
| S i' =>
S (add_v2 i' j)
end.
Compute (test_add add_v2).
(* Version 3: tail recursive *)
Fixpoint add_v3 (i j : nat) : nat :=
match i with
O =>
j
| S i' =>
add_v3 i' (S j)
end.
Compute (test_add add_v3).
(* ********** *)
(* The multiplication function: *)
(*
Given an integer j,
* base case: multiplying 0 and j yields 0;
* induction step: given a number i' such that multiplying it and j yields ih
(which is the induction hypothesis),
multiplying S i' and j should yield j + ih.
*)
(* ***** *)
(* Unit tests: *)
Definition test_mult (candidate: nat -> nat -> nat) : bool :=
(Nat.eqb (candidate 0 0) 0)
&&
(Nat.eqb (candidate 0 1) 0)
&&
(Nat.eqb (candidate 1 0) 0)
&&
(Nat.eqb (candidate 2 1) 2)
&&
(Nat.eqb (candidate 2 2) 4)
&&
(Nat.eqb (candidate 4 3) (4+4+4))
&&
(let x := 5 in
let y := 6 in
(Nat.eqb (candidate x y) (candidate y x)))
&&
(let x := 5 in
let y := 6 in
let z := 7 in
(Nat.eqb (candidate x (candidate y z))
(candidate (candidate x y) z)))
&&
(
(* Testing the inductive step *)
let j := 10 in
let i := 3 in
Nat.eqb (candidate (S i) j) (j + candidate i j))
.
(* ***** *)
(* Testing the unit-test function: *)
Compute (test_mult mult).
(* ***** *)
(* Version 1: lambda-dropped *)
Definition mult_v1 (n j : nat) : nat :=
let fix visit i :=
match i with
| 0 => 0
| S i' => j + (visit i')
end
in visit n.
Compute (test_mult mult_v1).
(* ***** *)
(* Version 2: lambda-lifted *)
Fixpoint mult_v2 (i j : nat) : nat :=
match i with
| 0 => 0
| (S i') => j + mult_v2 i' j
end.
Compute (test_mult mult_v2).
Compute (mult_v2 2 6).
(* ***** *)
(* Version 3: lambda-dropped and tail recursive with an accumulator *)
Definition mult_v3 (n j : nat) : nat :=
let fix visit i a:=
match i with
| 0 => a
| (S i') => visit i' a + j
end
in visit n 0.
Compute (mult_v3 2 6).
Compute (test_mult mult_v3).
(* ***** *)
(* Version 4: lambda-lifted and tail recursive with an accumulator *)
Fixpoint mult_v4_aux (i j a : nat) : nat :=
match i with
| 0 => a
| S i' => mult_v4_aux i' j (a+j)
end.
Definition mult_v4 (n j : nat) : nat :=
mult_v4_aux n j 0.
Compute (test_mult mult_v4).
(* ********** *)
(* The exponentiation function: *)
(*
Given an integer x,
* base case: exponentiating x with 0 yields 1;
* induction step: given a number i' such that exponentiating x with i' it and j yields ih
(which is the induction hypothesis),
exponentiating x with S i' should yield x * ih.
*)
(* Unit tests: *)
Definition test_power (candidate: nat -> nat -> nat) : bool :=
(Nat.eqb (candidate 0 0) 1)
&&
(Nat.eqb (candidate 0 1) 0)
&&
(Nat.eqb (candidate 1 0) 1)
&&
(Nat.eqb (candidate 1 1) 1)
&&
(Nat.eqb (candidate 1 2) 1)
&&
(Nat.eqb (candidate 2 1) 2)
&&
(Nat.eqb (candidate 2 3) 8)
&&
(Nat.eqb (candidate 3 4) 81)
&&
(Nat.eqb (candidate 3 4) (3*3*3*3)).
(* ***** *)
(* Version 1: lambda-dropped *)
Definition power_v1 (x n : nat) : nat :=
let fix visit i :=
match i with
| 0 => 1
| S i' => x * visit i'
end
in visit n.
Compute (test_power power_v1).
(* ***** *)
(* Version 2: lambda-lifted *)
Fixpoint power_v2 (x n : nat) : nat :=
match n with
| 0 => 1
| S n' => x * power_v2 x n'
end.
Compute (test_power power_v2).
(* ***** *)
(* Version 3: lambda-dropped and tail recursive with an accumulator *)
Definition power_v3 (x n : nat) : nat :=
let fix visit i a :=
match i with
| O => 1
| S i' => visit i' a * x
end
in visit n 1.
Compute (test_power power_v3).
(* ***** *)
(* Version 4: lambda-lifted and tail recursive with an accumulator *)
Fixpoint power_v4_aux (x i a : nat) : nat :=
match i with
| O => a
| S i' => power_v4_aux x i' x * a
end.
Definition power_v4 (x n : nat) : nat :=
power_v4_aux x n 1.
Compute power_v4 2 5.
Compute (test_power power_v4).
(* ********** *)
(* The factorial function: *)
(*
* base case: the factorial of 0 is 1;
* induction step: given a number i' such that the factorial of i' is ih
(which is the induction hypothesis),
the factorial of S i' is (S i') * ih.
*)
(* Unit tests: *)
Definition test_fac (candidate: nat -> nat) : bool :=
(Nat.eqb (candidate 0) 1)
&&
(Nat.eqb (candidate 1) 1)
&&
(Nat.eqb (candidate 2) 2)
&&
(Nat.eqb (candidate 3) 6)
&&
(Nat.eqb (candidate 4) 24)
&&
(Nat.eqb (candidate 5) 120)
&&
(Nat.eqb (candidate 6) 720)
&&
(Nat.eqb (candidate 7) 5040)
&&
(Nat.eqb (candidate 8) 40320).
(* ***** *)
(* Version 1: recursive *)
Fixpoint fac_v1 (n : nat) : nat :=
match n with
| 0 => 1
| S n' => n * fac_v1 n'
end.
Compute (test_fac fac_v1).
(* ***** *)
(* Version 2: tail recursive with an accumulator *)
Fixpoint fac_v2_aux (n a : nat) : nat :=
match n with
| 0 => a
| S n' => fac_v2_aux n' a * n
end.
Definition fac_v2 (n : nat) : nat :=
fac_v2_aux n 1.
Compute (test_fac fac_v2).
(* ********** *)
(* The fibonacci function: *)
(*
* base case #1: the fibonacci number at index 0 is 0
* base case #2: the fibonacci number at index 1 is 1
* induction step: given a number i' such that
the fibonacci number at index i' is fib_i' (which is the first induction hypothesis)
and
the fibonacci number at index S i' is fib_Si' (which is the first induction hypothesis),
the fibonacci number at index S (S i') is fib_i' + fib_Si'
*)
(* ***** *)
(* Unit tests: *)
Definition test_fib (candidate: nat -> nat) : bool :=
(Nat.eqb (candidate 0) 0)
&&
(Nat.eqb (candidate 1) 1)
&&
(Nat.eqb (candidate 2) 1)
&&
(Nat.eqb (candidate 3) 2)
&&
(Nat.eqb (candidate 4) 3)
&&
(Nat.eqb (candidate 5) 5)
&&
(Nat.eqb (candidate 6) 8)
&&
(Nat.eqb (candidate 7) 13)
&&
(Nat.eqb (candidate 8) 21)
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint fib_v1 (n : nat) : nat :=
match n with
| 0 => 0
| S n' => match n' with
| 0 => 1
| S n'' => fib_v1 n' + fib_v1 n''
end
end.
(* hint: make sure to read the interludes in the exercise chapter *)
Compute (test_fib fib_v1).
(* ********** *)
(* The even predicate: *)
Definition bool_eqb (b1 b2 : bool) : bool :=
match b1 with
| true =>
match b2 with
| true =>
true
| false =>
false
end
| false =>
match b2 with
| true =>
false
| false =>
true
end
end.
(* Unit tests: *)
Definition test_evenp (candidate: nat -> bool) : bool :=
(bool_eqb true (candidate 0))
&&
(bool_eqb false (candidate 1))
&&
(bool_eqb true (candidate 2))
&&
(bool_eqb false (candidate 3))
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint evenp_v1 (n : nat) : bool :=
match n with
| 0 => true
| S n' => match n' with
| 0 => false
| S n'' => evenp_v1 n''
end
end.
Compute (test_evenp evenp_v1).
(* ***** *)
(* Version 2: tail recursive with an accumulator *)
Fixpoint evenp_v2_aux (n : nat) (a : bool) : bool :=
match n with
| 0 => a
| S n' => if a then evenp_v2_aux n' false else evenp_v2_aux n' true
end.
Definition evenp_v2 (n : nat) : bool :=
evenp_v2_aux n true.
Compute (test_evenp evenp_v2).
(*
...
*)
(* ********** *)
(* The odd predicate: *)
Definition oddp_v1 (n : nat) : bool :=
if evenp_v2 n
then false
else true.
(*
...
*)
(* ********** *)
Inductive binary_tree_nat : Type :=
Leaf_nat : nat -> binary_tree_nat
| Node_nat : binary_tree_nat -> binary_tree_nat -> binary_tree_nat.
Fixpoint beq_binary_tree_nat (t1 t2 : binary_tree_nat) : bool :=
match t1 with
Leaf_nat n1 =>
match t2 with
Leaf_nat n2 =>
Nat.eqb n1 n2
| Node_nat t21 t22 =>
false
end
| Node_nat t11 t12 =>
match t2 with
Leaf_nat n2 =>
false
| Node_nat t21 t22 =>
(beq_binary_tree_nat t11 t21) && (beq_binary_tree_nat t12 t22)
end
end.
(* ********** *)
(* How many leaves in a given binary tree? *)
(* Unit tests: *)
Definition test_number_of_leaves (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
2)
(* etc. *)
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint number_of_leaves_v1 (t : binary_tree_nat) : nat :=
match t with
Leaf_nat n =>
1
| Node_nat t1 t2 =>
(number_of_leaves_v1 t1) + (number_of_leaves_v1 t2)
end.
(* ***** *)
Compute (test_number_of_leaves number_of_leaves_v1).
(* Version 2: recursive with an accumulator *)
Definition number_of_leaves_v2 (t: binary_tree_nat) : nat :=
let fix visit (n : binary_tree_nat) (a : nat) : nat :=
match n with
| Leaf_nat _ => S a
| Node_nat t1 t2 => visit t1 (visit t2 a)
end
in visit t 0.
Compute (test_number_of_leaves number_of_leaves_v2).
(* ********** *)
(* How many nodes in a given binary tree? *)
(* Unit tests: *)
Definition test_number_of_nodes (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
3)
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint number_of_nodes_v1 (t : binary_tree_nat) : nat :=
match t with
| Leaf_nat _ => 1
| Node_nat l r => 1 + (number_of_nodes_v1 l) + (number_of_nodes_v1 r)
end.
Compute (test_number_of_nodes number_of_nodes_v1).
(* ********** *)
(* What is the smallest leaf in a given binary tree? *)
Compute (Nat.ltb 1 2).
Compute (Nat.leb 1 2).
Check Nat.ltb.
Definition test_smallest_leaf (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Node_nat (Leaf_nat 3)
(Leaf_nat 2))))
2)
.
(*
Given an Binary Tree t,
* base case: If leaf node then the smallest value is value of leaf node;
* induction step: given a number i' such that exponentiating x with i' it and j yields ih
(which is the induction hypothesis),
exponentiating x with S i' should yield x * ih.
*)
Fixpoint smallest_leaf_v1 (t : binary_tree_nat) : nat :=
match t with
| Leaf_nat n => n
| Node_nat l r =>
let l_v := (smallest_leaf_v1 l) in
let r_v := (smallest_leaf_v1 r) in
if Nat.ltb l_v r_v
then l_v
else r_v
end.
Compute (test_smallest_leaf smallest_leaf_v1).
(* ********** *)
(* What is the sum of the payloads in the leaves of a given binary tree? *)
(* Unit tests: *)
Definition test_weight (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
1)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
3)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Node_nat (Leaf_nat 3)
(Leaf_nat 2))))
14)
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint weight_v1 (t : binary_tree_nat) : nat :=
match t with
| Leaf_nat n =>
n
| Node_nat l r =>
weight_v1 l + weight_v1 r
end.
Compute (test_weight weight_v1).
(* ***** *)
(* Version 2: recursive with an accumulator *)
Definition weight_v2 (t : binary_tree_nat) : nat :=
let fix visit n a :=
match n with
| Leaf_nat v => a + v
| Node_nat l r => visit l a + (visit r a)
end
in visit t 0.
Compute (test_weight weight_v2).
(* ********** *)
(* What is the length of the longest path from the root of a given binary tree to its leaves? *)
(* ***** *)
Definition test_length_of_longest_path (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
0)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Leaf_nat 2)))
2)
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint length_of_longest_path_v1 (t : binary_tree_nat) : nat :=
match t with
| Leaf_nat v => 0
| Node_nat l r =>
let l_v := length_of_longest_path_v1 l in
let r_v := length_of_longest_path_v1 r in
if Nat.ltb l_v r_v
then 1 + r_v
else 1 + l_v
end.
Compute (test_length_of_longest_path length_of_longest_path_v1).
(* ********** *)
(* What is the length of the shortest path from the root of a given binary tree to its leaves? *)
(* ***** *)
Definition test_length_of_shortest_path (candidate: binary_tree_nat -> nat) : bool :=
(Nat.eqb (candidate (Leaf_nat 1))
0)
&&
(Nat.eqb (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Leaf_nat 4))
(Leaf_nat 2)))
1)
&&
(Nat.eqb (candidate (Node_nat (Node_nat (Leaf_nat 5)
(Node_nat (Leaf_nat 1) (Leaf_nat 2)))
(Node_nat (Leaf_nat 5)
(Leaf_nat 4)))
) 2)
.
(* ***** *)
(* Version 1: recursive *)
(* Right now I'm DFS-ing through the tree, is it possible to BFS? *)
Fixpoint length_of_shortest_path_v1 (t : binary_tree_nat) : nat :=
match t with
| Leaf_nat v => 0
| Node_nat l r =>
let l_v := length_of_shortest_path_v1 l in
let r_v := length_of_shortest_path_v1 r in
if Nat.ltb l_v r_v
then 1 + l_v
else 1 + r_v
end.
Compute (test_length_of_shortest_path length_of_shortest_path_v1).
(* ********** *)
(* The mirror function: *)
(* Unit tests: *)
Definition test_mirror (candidate: binary_tree_nat -> binary_tree_nat) : bool :=
(beq_binary_tree_nat (candidate (Leaf_nat 1))
(Leaf_nat 1))
&&
(beq_binary_tree_nat (candidate (Node_nat (Leaf_nat 1)
(Leaf_nat 2)))
(Node_nat (Leaf_nat 2)
(Leaf_nat 1)))
(* etc. *)
.
(* ***** *)
(* Version 1: recursive *)
Fixpoint mirror_v1 (t : binary_tree_nat) : binary_tree_nat :=
match t with
| Leaf_nat v => Leaf_nat v
| Node_nat l r => Node_nat (mirror_v1 r) (mirror_v1 l)
end.
Compute (test_mirror mirror_v1).
(* ********** *)
(* Calder mobiles: *)
(*
base case:
a leaf is well balanced
induction step:
given a first tree t1 that is well balanced
and a second tree t2 that is well balanced,
the tree
Node t1 t2
is well balanced if t1 and t2 have the same weight
*)
(* ***** *)
(* Unit tests: *)
(*
...
*)
(* ***** *)
(* Version 1: recursive *)
Fixpoint calder (t1 t2 : binary_tree_nat) : bool :=
match t1 with
| Leaf_nat t1v =>
match t2 with
| Leaf_nat t2v => t1v = t2v
| Node_nat t2l t2r =>
| Node_nat t1l t1r =>
match t2 with
| Leaf_nat t2v =>
| Node_nat t2l t2r =>
(*
...
*)
(* challenge: traverse the given tree only once, at most *)
(* ********** *)
(* end of week-01_functional-programming-in-Gallina.v *)