224 lines
7.0 KiB
Java
224 lines
7.0 KiB
Java
import java.util.function.Supplier;
|
|
import java.lang.StringBuilder;
|
|
import java.util.concurrent.ForkJoinPool;
|
|
import java.util.concurrent.RecursiveTask;
|
|
import java.util.concurrent.ForkJoinTask;
|
|
import java.lang.Runtime;
|
|
|
|
/**
|
|
* Encapsulate a square matrix of double values.
|
|
*/
|
|
class Matrix {
|
|
/**
|
|
* 2D square array of double values, storing the matrix.
|
|
*/
|
|
double[][] m;
|
|
/**
|
|
* The number of columns and rows in the matrix.
|
|
*/
|
|
int dimension;
|
|
|
|
private static final int THRESHOLD = 2;
|
|
|
|
/**
|
|
* Checks if two matrices are equals.
|
|
* @param m1 First matrices to check
|
|
* @param m2 Second matrices to check against
|
|
* @return true if every elements in m1 and m2 are the same; false otherwise.
|
|
*/
|
|
public static boolean equals(Matrix m1, Matrix m2) {
|
|
if (m1.dimension != m2.dimension) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < m1.dimension; i++) {
|
|
for (int j = 0; j < m1.dimension; j++) {
|
|
if (Math.abs(m1.m[i][j] - m2.m[i][j]) > 0.000001) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* A constructor for the matrix.
|
|
* @param dimension The number of rows.
|
|
*/
|
|
Matrix(int dimension) {
|
|
this.dimension = dimension;
|
|
this.m = new double[dimension][dimension];
|
|
}
|
|
|
|
/**
|
|
* Generate a matrix of d x d according to the given supplier.
|
|
* @param dimension The dimension of the matrix
|
|
* @param supplier The lambda to generate the matrix with.
|
|
* @return The new matrix.
|
|
*/
|
|
static Matrix generate(int dimension, Supplier<Double> supplier) {
|
|
Matrix matrix = new Matrix(dimension);
|
|
for (int row = 0; row < dimension; row++) {
|
|
for (int col = 0; col < dimension; col++) {
|
|
matrix.m[row][col] = supplier.get();
|
|
}
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of the matrix, pretty-printed
|
|
* with each row on a single line.
|
|
* @return The string representation of this matrix.
|
|
*/
|
|
public String toString() {
|
|
StringBuilder s = new StringBuilder();
|
|
for (int row = 0; row < dimension; row++) {
|
|
for (int col = 0; col < dimension; col++) {
|
|
s.append(String.format("%.3f", m[row][col]) + " ");
|
|
}
|
|
s.append("\n");
|
|
}
|
|
return s.toString();
|
|
}
|
|
|
|
/**
|
|
* Multiply matrix m with this matrix, return a new result matrix.
|
|
* @param m1 The matrix to multiply with.
|
|
* @param m2 The matrix to multiply with.
|
|
* @param m1Row The starting row of m1.
|
|
* @param m1Col The starting col of m1.
|
|
* @param m2Row The starting row of m2.
|
|
* @param m2Col The starting col of m2.
|
|
* @param dimension The dimension of the input (sub)-matrices and the size
|
|
* of the output matrix.
|
|
* @return The new matrix.
|
|
*/
|
|
public static Matrix nonRecursiveMultiply(Matrix m1, Matrix m2,
|
|
int m1Row, int m1Col, int m2Row, int m2Col, int dimension) {
|
|
Matrix result = new Matrix(dimension);
|
|
for (int row = 0; row < dimension; row++) {
|
|
for (int col = 0; col < dimension; col++) {
|
|
double sum = 0;
|
|
// multiply row to col
|
|
for (int i = 0; i < dimension; i++) {
|
|
sum += m1.m[row + m1Row][i + m1Col] * m2.m[i + m2Row][col + m2Col];
|
|
}
|
|
result.m[row][col] = sum;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Multiple two matrices non-recursively.
|
|
* @param m1 The matrix to multiply with.
|
|
* @param m2 The matrix to multiply with.
|
|
* @return The resulting matrix m1 * m2
|
|
*/
|
|
public static Matrix nonRecursiveMultiply(Matrix m1, Matrix m2) {
|
|
return Matrix.nonRecursiveMultiply(m1, m2, 0, 0, 0, 0, m1.dimension);
|
|
}
|
|
|
|
/**
|
|
* Multiply matrix m with this matrix, return a new result matrix.
|
|
* @param m1 The matrix to multiply with.
|
|
* @param m2 The matrix to multiply with.
|
|
* @param m1Row The starting row of m1.
|
|
* @param m1Col The starting col of m1.
|
|
* @param m2Row The starting row of m2.
|
|
* @param m2Col The starting col of m2.
|
|
* @param dimension The dimension of the input (sub)-matrices and the size
|
|
* of the output matrix.
|
|
* @return The resulting matrix m1 * m2
|
|
*/
|
|
public static Matrix recursiveMultiply(Matrix m1, Matrix m2,
|
|
int m1Row, int m1Col, int m2Row, int m2Col, int dimension) {
|
|
|
|
// If the matrix is small enough, just multiple non-recursively.
|
|
if (dimension <= THRESHOLD) {
|
|
return Matrix.nonRecursiveMultiply(m1, m2, m1Row, m1Col, m2Row, m2Col, dimension);
|
|
}
|
|
|
|
// Else, cut the matrix into four blocks of equal size, recursively
|
|
// multiply then sum the multiplication result.
|
|
int size = dimension / 2;
|
|
Matrix result = new Matrix(dimension);
|
|
Matrix a11b11 = recursiveMultiply(m1, m2, m1Row, m1Col, m2Row,
|
|
m2Col, size);
|
|
Matrix a12b21 = recursiveMultiply(m1, m2, m1Row, m1Col + size,
|
|
m2Row + size, m2Col, size);
|
|
for (int i = 0; i < size; i++) {
|
|
double[] m1m = a11b11.m[i];
|
|
double[] m2m = a12b21.m[i];
|
|
double[] r1m = result.m[i];
|
|
for (int j = 0; j < size; j++) {
|
|
r1m[j] = m1m[j] + m2m[j];
|
|
}
|
|
}
|
|
|
|
Matrix a11b12 = recursiveMultiply(m1, m2, m1Row, m1Col, m2Row,
|
|
m2Col + size, size);
|
|
Matrix a12b22 = recursiveMultiply(m1, m2, m1Row, m1Col + size,
|
|
m2Row + size, m2Col + size, size);
|
|
for (int i = 0; i < size; i++) {
|
|
double[] m1m = a11b12.m[i];
|
|
double[] m2m = a12b22.m[i];
|
|
double[] r1m = result.m[i];
|
|
for (int j = 0; j < size; j++) {
|
|
r1m[j + size] = m1m[j] + m2m[j];
|
|
}
|
|
}
|
|
|
|
Matrix a21b11 = recursiveMultiply(m1, m2, m1Row + size, m1Col,
|
|
m2Row, m2Col, size);
|
|
Matrix a22b21 = recursiveMultiply(m1, m2, m1Row + size, m1Col + size,
|
|
m2Row + size, m2Col, size);
|
|
for (int i = 0; i < size; i++) {
|
|
double[] m1m = a21b11.m[i];
|
|
double[] m2m = a22b21.m[i];
|
|
double[] r1m = result.m[i + size];
|
|
for (int j = 0; j < size; j++) {
|
|
r1m[j] = m1m[j] + m2m[j];
|
|
}
|
|
}
|
|
|
|
Matrix a21b12 = recursiveMultiply(m1, m2, m1Row + size, m1Col,
|
|
m2Row, m2Col + size, size);
|
|
Matrix a22b22 = recursiveMultiply(m1, m2, m1Row + size, m1Col + size,
|
|
m2Row + size, m2Col + size, size);
|
|
for (int i = 0; i < size; i++) {
|
|
double[] m1m = a21b12.m[i];
|
|
double[] m2m = a22b22.m[i];
|
|
double[] r1m = result.m[i + size];
|
|
for (int j = 0; j < size; j++) {
|
|
r1m[j + size] = m1m[j] + m2m[j];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Multiple two matrices recursively but sequentially with
|
|
* divide-and-conquer algorithm.
|
|
* @param m1 The matrix to multiply with.
|
|
* @param m2 The matrix to multiply with.
|
|
* @return The resulting matrix m1 * m2
|
|
*/
|
|
public static Matrix recursiveMultiply(Matrix m1, Matrix m2) {
|
|
return Matrix.recursiveMultiply(m1, m2, 0, 0, 0, 0, m1.dimension);
|
|
}
|
|
|
|
|
|
/**
|
|
* Multiple two matrices recursively and parallely with
|
|
* divide-and-conquer algorithm.
|
|
* @param m1 The matrix to multiply with.
|
|
* @param m2 The matrix to multiply with.
|
|
* @return The resulting matrix m1 * m2
|
|
*/
|
|
public static Matrix parallelMultiply(Matrix m1, Matrix m2) {
|
|
return new MatrixMultiplication(m1, m2, 0, 0, 0, 0, m1.dimension)
|
|
.compute();
|
|
}
|
|
}
|