\documentclass[10pt,landscape]{article} \usepackage[scaled=0.8]{helvet} \usepackage{calc} \usepackage{multicol} \usepackage{ifthen} \usepackage[a4paper,margin=3mm,landscape]{geometry} \usepackage{amsmath,amsthm,amsfonts,amssymb} \usepackage{hyperref} \usepackage{newtxtext} \usepackage{enumitem} \usepackage{amssymb} \usepackage[table]{xcolor} \usepackage{vwcol} \usepackage{tikz} \usepackage{wrapfig} \usepackage{pgfplots} \usepackage{makecell} % Testing % \usepackage{blindtext} \usetikzlibrary{calc} \setlist{nosep} \graphicspath{ {./images/} } \pagestyle{empty} \newenvironment{tightcenter}{% \setlength\topsep{0pt} \setlength\parskip{0pt} \begin{center} }{% \end{center} } % redefine section commands to use less space \makeatletter \renewcommand{\section}{\@startsection{section}{1}{0mm}% {-1ex plus -.5ex minus -.2ex}% {0.5ex plus .2ex}%x {\normalfont\large\bfseries}} \renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}% {-1explus -.5ex minus -.2ex}% {0.5ex plus .2ex}% {\normalfont\normalsize\bfseries}} \renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}% {-1ex plus -.5ex minus -.2ex}% {1ex plus .2ex}% {\normalfont\small\bfseries}}% \renewcommand{\familydefault}{\sfdefault} \renewcommand\rmdefault{\sfdefault} % makes nested numbering (e.g. 1.1.1, 1.1.2, etc) \renewcommand{\labelenumii}{\theenumii} \renewcommand{\theenumii}{\theenumi.\arabic{enumii}.} \renewcommand\labelitemii{•} % for logical not operator \renewcommand{\lnot}{\mathord{\sim}} \renewcommand{\bf}[1]{\textbf{#1}} \newcommand{\abs}[1]{\vert #1 \vert} \newcommand{\Mod}[1]{\ \mathrm{mod}\ #1} \newcommand{\vv}[1]{\boldsymbol{#1}} \newcommand{\VV}[1]{\overrightarrow{#1}} \newcommand{\cvv}[1]{\left(\begin{smallmatrix}#1\end{smallmatrix}\right)} \makeatother \definecolor{myblue}{cmyk}{1,.72,0,.38} % Define BibTeX command \everymath\expandafter{\the\everymath \color{myblue}} \def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} \let\iff\leftrightarrow \let\Iff\Leftrightarrow \let\then\rightarrow \let\Then\Rightarrow % Don't print section numbers \setcounter{secnumdepth}{0} \setlength{\parindent}{0pt} \setlength{\parskip}{0pt plus 0.5ex} %% this changes all items (enumerate and itemize) \setlength{\leftmargini}{0.5cm} \setlength{\leftmarginii}{0.5cm} \setlist[itemize,1]{leftmargin=2mm,labelindent=1mm,labelsep=1mm} \setlist[itemize,2]{leftmargin=4mm,labelindent=1mm,labelsep=1mm} % My Environments \newtheorem{example}[section]{Example} % ----------------------------------------------------------------------- \begin{document} \raggedright \footnotesize \begin{multicols*}{4} \setlength{\columnseprule}{0.25pt} \setlength{\premulticols}{1pt} \setlength{\postmulticols}{1pt} \setlength{\multicolsep}{1pt} \setlength{\columnsep}{2pt} \section{Function and Limits} \begin{itemize} \item $\lim\limits_{x\to \pm \infty}\frac{Ax^\alpha}{Bx^\beta} \begin{cases} 0 & \text{if} \alpha < \beta\\ \frac{A}{B} & \text{if} \alpha = \beta\\ \pm \infty & \text{if} \alpha > \beta\\ \end{cases}$ \item $\lim\limits_{x\to c}\frac{sin(g(x))}{g(x)} = 1(\lim\limits_{x \to c}g(x) = 0)$ \item $\lim\limits_{x\to c}\frac{tan(g(x))}{g(x)} = 1$ \item $\lim\limits_{x\to 0}\frac{sin(x)}{x} = 1$ \item $\lim\limits_{x\to 0}\frac{tan(x)}{x} = 1$ \item $\lim\limits_{n \to \infty} \frac{n!}{n^{n}} = 0$ \end{itemize} \section{Differentiation} parametric differentiaton: $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$ \begin{tabular}{|>{\color{black}}c | >{\color{black}}c|} \hline $f(x)$ & $f'(x)$ \\ \hline \rule{0pt}{2.3ex} % top spacing $\tan x$ & $\sec ^2 x$ \\ $\csc x$ & $-\csc x \cot x$ \\ $\sec x$ & $\sec x \tan x$ \\ $\cot x$ & $- \csc ^2 x$ \\ \hline \rule{0pt}{2.3ex} % top spacing $a^{f(x)}$ & $\ln a \cdot f'(x)a^{f(x)}$ \\ $\log_af(x)$ & $\log_a e \cdot \frac{f'(x)}{f(x)}$ \\[1ex] \hline \rule{0pt}{3ex} % top spacing $\sin^{-1} f(x)$ & $\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, \ \ _{\vert f(x) \vert < 1}$ \\[1.5ex] $\cos^{-1} f(x)$ & $-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, \ \ _{\vert f(x) \vert < 1}$ \\[1.5ex] $\tan^{-1} f(x)$ & $\frac{f'(x)}{1 + [f(x)]^2}$ \\[1.5ex] $\cot^{-1} f(x)$ & $-\frac{f'(x)}{1 + [f(x)]^2}$ \\[1.5ex] $\sec^{-1} f(x)$ & $\frac{f'(x)}{\vert f(x) \vert \sqrt{[f(x)]^2-1}}$ \\[1.5ex] $\csc^{-1} f(x)$ & $-\frac{f'(x)}{\vert f(x) \vert \sqrt{[f(x)]^2-1}}$ \\[2ex] \hline \end{tabular} \textbf{Second Derivative} Test: $f'(c) = 0, f''(c) < 0$ then local max, $f''(c) > 0$ local min. \textbf{L'Hopital's Rule}: Given $\lim\limits_{x\to c}f(x) $ and $ g(x) = 0 $ or $ \pm \infty$ $ \lim\limits_{x \to c}\frac{f(x)}{g(x)} = \lim\limits_{x \to c}\frac{f'(x)}{g'(x)}$ \begin{itemize} \item Use for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ \end{itemize} \subsection*{Trigo Identities} \begin{enumerate} \item $\sec^2x - 1 = \tan^2x$ \item $\csc^2x - 1 = \cot^2x$ \item $\sin A\cos A = \frac{1}{2}\sin2A$ \item $\cos^2A = \frac{1}{2}(1+\cos2A)$ \item $\sin^2A = \frac{1}{2}(1-\cos2A)$ \item $\sin A\cos B = \frac{1}{2}(\sin(A + B) + \sin(A - B)$ \item $\cos A\sin B = \frac{1}{2}(\sin(A + B) - \sin(A - B)$ \item $\cos A\cos B = \frac{1}{2}(\cos(A + B) + \cos(A - B)$ \item $\sin A\sin B = \frac{1}{2}(\cos(A + B) - \cos(A - B)$ \end{enumerate} \section{Integration} \begin{tabular}{|>{\color{black}}c | >{\color{black}}c|} \hline $f(x)$ & $\int f(x)$\\ $\tan ax$ & $\frac{1}{a}\ln|\sec(ax)|$\\ $\cot ax$ & $\frac{1}{a}\ln|\cot(ax)|$\\ $\sec ax$ & $\frac{1}{a}\ln|\sec(ax) + tan(ax)|$\\ $\csc ax$ & $\frac{1}{a}\ln|\csc(ax) + cot(ax)|$\\ \hline $\frac{1}{a^2+(x+b)^2}$ & $\frac{1}{a}\tan^{-1}(\frac{x+b}{a})$\\ $\frac{1}{\sqrt{a^2-(x+b)^2}}$ & $\sin^{-1}(\frac{x+b}{a})$\\ $\frac{1}{a^2-(x+b)^2}$ & $\frac{1}{2a}\ln|\frac{x+b+a}{x+b-a}|$\\ $\frac{1}{(x+b)^2-a^2}$ & $\frac{1}{2a}\ln|\frac{x+b-a}{x+b+a}|$\\ \hline \end{tabular} \textbf{Substitution} $\int f(g(x)) \cdot g'(x) dx = \int f(u) du, u = g(x)$ \textbf{By Parts} $\int u v' dx = uv - \int u'v dx$, order: LIATE: Differentiate to integrate \subsection{Application of Integration} about x axis \begin{itemize} \item Vol Disk: $V = \pi \int^b_a f(x)^2 - g(x)^2 dx$ \item Vol Shell: $V = 2\pi\int^b_a x|f(x)-g(x)|dx$ (absolute!!) \item Length of curve: $\int^b_a \sqrt{1+f'(x)^2}dx$ \end{itemize} \section{Vectors} unit vector: $\hat{p} = \frac{p}{|p|}$, $\VV{AB} = \VV{OB} - \VV{OA}$ \begin{center} \begin{multicols}{2} \begin{tikzpicture}[scale=0.8, every node/.style={transform shape}] \coordinate[label=below left:O] (O) at (0,0); \coordinate[label=A] (A) at (0.3,1.6); \coordinate[label=B] (B) at (1.5, 1.4); \coordinate[label=P] (P) at (1, 1.5); \draw (O) -- node[left] {$\vv{a}$} (A) -- node[above] {$\lambda$} (P) -- node[above] {$\mu$} (B) -- node[right] {$\vv{b}$} (O) -- node[left] {$\vv{p}$} (P); \end{tikzpicture} \\ \textbf{ratio theorem} \\* $\vv{p} = \frac{\mu\vv{a} + \lambda\vv{b}}{\lambda + \mu}$ \newline \\ \textbf{midpoint theorem} \\* $\vv{p} = \frac{\vv{a} + \vv{b}}{2}$ \end{multicols} \end{center} \subsection{Dot Product} \begin{itemize} \item $\VV{a} \cdot \VV{b} = a_1b_1 + a_2b_2 + a_3b_3 = |a||b|\cos\theta$ \item $a \perp b \Then a \cdot b = 0$ \item $a \parallel b \Then a \cdot b = |a||b|$ \end{itemize} \subsection{Cross Product} $ \vv{a} \times \vv{b} = \begin{vmatrix} \vv{i} & \vv{j} & \vv{k} \\ a_i & a_2 & a_3 \\ b_i & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} (a_2b_3 - a_3b_2) \\ -(a_1b_3 - a_3b_1) \\ (a_1b_2 - a_2b_1) \end{pmatrix} $ \begin{center} \begin{multicols}{2} $|\vv{a} \times \vv{b}| = |\vv{a}||\vv{b}|\sin\theta$ $a \perp b \Then a \times b = |a||b|$ $a \parallel b \Then a \times b = 0$ Area Parallelogram = $|\vv{a} \times \vv{b}|$ \end{multicols} \end{center} \subsection{Projection} \begin{multicols}{2} \begin{tikzpicture}[scale=0.7, every node/.style={transform shape}] \coordinate[label=below left:O] (O) at (0,0); \coordinate[label=right:A] (A) at (2, 1); \coordinate[label=below:B] (B) at (3, 0); \coordinate[label=below:N] (N) at (2, 0); \draw (A) -- node[above] {$\vv{a}$} (O) -- node[below] {$\vv{b}$} (B); \draw[shorten >=0pt, dashed] (A) -- (N); \end{tikzpicture} $\triangle ANO = \frac{1}{2} \abs{\VV{OA} \times \VV{ON}}$ \columnbreak $\text{comp}_{\vv{b}}\vv{a} = |\vv{b}|\cos\theta = \frac{\vv{a}\cdot \vv{b}}{|\vv{a}|}$ $\text{proj}_{\vv{b}}\vv{a} = \text{comp}_{\vv{b}}\vv{a} \cdot \frac{a}{|a|} = \VV{ON} = \frac{\vv{a}\cdot \vv{b}}{\vv{a}\cdot \vv{a}}\vv{a} = \frac{\vv{a} \cdot \vv{b}}{|\vv{a}|^2}\vv{b}$ \end{multicols} \subsection{Lines} \begin{multicols}{2} $\vv{r} = \vv{r}_0 + t\vv{v} = \langle x,y,z\rangle$ $\langle x_0,y_0,z_0\rangle + t\langle a,b,c\rangle$ $\begin{pmatrix} x_0 + at \\ y_0 + bt \\ z_0 + ct \\ \end{pmatrix}$ \end{multicols} \subsection{Planes} $\vv{n} = \langle a, b, c \rangle, \vv{r} = \langle x, y, z \rangle,\vv{r}_0\langle x_0, y_0, c_0 \rangle$\\ Scalar: $\vv{n} \cdot \vv{r} = \vv{n} \cdot \vv{r}_0$\\ Cartesian: $ax + by + cz = d$ \subsection{Distance from Point to Plane} $\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$ \section{Partial Derivatives} \subsection{Chain Rule} For $z(t) = f(x(t), y(t))$, \\* $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$ For $z(s, t) = f(x(s,t), y(s,t))$, \\* $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$ \\* $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$ Arc Length of $r(t)$: $\int^b_a |\vv{r}'(t)|dt$ \subsection{Implicit Differentiation} $\frac{\partial z}{\partial x} =- \frac{F_x}{F_z}$ $\frac{\partial z}{\partial y} =- \frac{F_y}{F_z}$ \subsection{Directional Derivative} Gradient vector at $f(x,y): \triangledown f = f_x\vv{i} + f_y\vv{j}$ $D_uf(x, y) = \langle f_x, f_y \rangle \cdot \langle a, b \rangle = \langle f_x, f_y\rangle \cdot \hat{\vv{u}} = \ \triangledown f \cdot \hat{\vv{u}}$ (Unit Vector) Tangent Plane: $\langle f_{x}, f_{y} -1 \rangle \cdot \langle x-x_0, y-y_0,z-z_0\rangle = 0$ \subsection{Critical Points} $f_x = 0$ and $f_y = 0$, OR ($f_x$ or $f_y$ does not exist) $D = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2$ \def\arraystretch{1.2} \begin{tabular}{| c | c | c |} \hline $D$ & $f_{xx}(a,b)$ & \textbf{local} \\\hline + & + & \text{min} \\\hline + & - & \text{max} \\\hline - & \text{any} & \text{saddle point} \\\hline 0 & \text{any} & \text{no conclusion} \\\hline \end{tabular} \section{Double Integrals} \subsection{Type I} \begin{multicols}{2} \includegraphics[width=\linewidth]{Type I} \columnbreak $\int^b_a\int^{g_2(x)}_{g_1(x)}f(x,y)dydx$ \newline \newline $D = \{(x,y): a \leq x \leq b,$ $g_1(x) \leq y \leq g_2(x)\}$ \end{multicols} \subsection{Type II} \begin{multicols}{2} \includegraphics[width=\linewidth]{Type II} \columnbreak $\int^d_c\int^{h_2(y)}_{h_1(y)}f(x,y)dxdy$ \newline \newline $D = \{(x,y): c \leq y \leq d,$ $ h_1(y) \leq x \leq h_2(y)\}$ \end{multicols} \subsection{Polar Coordinates} \begin{multicols}{2} \includegraphics[width=\linewidth]{polar} \columnbreak $x = r\cos\theta$\\ $y = r\sin\theta$\\ $R = \{(r, \theta): 0 \leq a \leq r \leq b,$ $\alpha \leq \theta \leq \beta\}$ \newline \newline $\int^\beta_\alpha\int^b_af(r\cos\theta, r\sin\theta)rdrd\theta$ \end{multicols} \subsection{Surface Area} $S = \iint_R\sqrt{f_x^2 + f_y^2 + 1} dA$, get in the form of $z = f(x,y)$ first \section{ODE} \begin{tabular}{|>{\color{black}}c | >{\color{black}}c|} \hline form & change of variable \\ \hline $\frac{dy}{dx} = f(x)g(y)$ & $\int \frac{1}{g(y)}dy = \int f(x)dx + C$\\ \hline $y'=g(\frac{y}{x})$ & \makecell{Set $v = \frac{y}{x}$ \\ $\Then y' = v + xv' $}\\ \hline \makecell{ $y'=f(ax + by + c)$\\ $\Then y' = \frac{ax+by+c}{\alpha x + \beta y + \gamma}$} & Set $v = ax+by$ \\ \hline $y' + P(x)y = Q(x)$ & \makecell{$R = e^{\int P(x)dx}$ \\ $\Then y \cdot R = \int Q \cdot R dx $}\\ $y' + P(x)y = Q(x)y^n$ & \makecell{$z = y^{1-n}$ \\ $\Then$ sub in Z \\ solve linear}\\ \end{tabular} \section{Population Models} \begin{center} $N_{\infty} = \frac{B}{s}$, $\hat{N} = $ Population Now \begin{multicols}{2} \textbf{Malthus}\\ $N(t) = \hat{N}e^{kt}$\\ $k = B - D$ \columnbreak \textbf{Logistic}\\ $\frac{1}{N} = \frac{1}{N_{\infty}} + (\frac{1}{\hat{N}} - \frac{1}{N_{\infty}})e^{-Bt}$\\ $N = \frac{N_{\infty}}{1+(\frac{N_{\infty}}{N} - 1)e^{-Bt}}$ \end{multicols} \end{center} \subsection{Uranium Decay into Thorium} $U(t) = U_{0}e^{-k_ut}$, $k = \frac{\ln2}{\text{halflife}}, \frac{dU}{dt} = -k_{u}U$\\ Thorium: $T(t) = \frac{K_{u}U_{0}}{K_{t}-K_{u}}(e^{-k_{u}t} - e^{-k_{t}t}), \frac{dT}{dt} = k_{u}U - k_{T}T$ \end{multicols*} \newpage \begin{multicols*}{4} \setlength{\columnseprule}{0.25pt} \setlength{\premulticols}{1pt} \setlength{\postmulticols}{1pt} \setlength{\multicolsep}{1pt} \setlength{\columnsep}{2pt} \section{Series} \subsection{Geometric Series} $\sum_{n=1}^{\infty}ar^{n-1}, a \ne 0$ converges to $\frac{a}{1-r}$ when $|r| < 1$, diverges otherwise If series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim\limits_{n \to \infty} a_{n} = 0$ \subsection{Tests} Decreasing function -> differentiate and see the range where $x < 0$ \begin{center} \begin{tabular}{|>{\color{black}}p{0.2\linewidth} | >{\color{black}}p{0.7\linewidth}|} \hline Test & Method \\\hline $n^{th}$ term & $\lim\limits_{n \to \infty} a_{n} \ne 0$ or does not exist, then divergent \\\hline Integral & $f(n)=a_{n}$ is continuous, positive, decreasing function $\forall x\geq 1$ and $\int_{1}^{\infty}f(x)dx$ converges else divergent \\\hline p-series & $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$convergent $\leftrightarrow p > 1$ \\\hline Harmonic Series & $\sum_{n=1}^{\infty} \frac{1}{n}$ divergent \\\hline Ratio \tiny{If Factorial} & $0 \geq \lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_{n}}|=L < 1$ abs. convergent, $> 1$ divergent, $= 1$ inconclusive \\\hline Root \tiny{If nth power} & $0 \geq \lim\limits_{n \to \infty} \sqrt[n]{a_{n}}=L < 1$ abs. convergent, $> 1$ divergent, $= 1$ inconclusive \\\hline Alternating series & $b_{n}$ decreasing, $\lim\limits_{n \to \infty}b_{n} = 0$, then $\sum_{n=1}^{\infty}(-1)^{n-1}b_{n} = b_{1}-b_{2}+b_{3}... $ is convergent \\\hline Power Series & $b_{n}$ decreasing, $\lim\limits_{n \to \infty}b_{n} = 0$, then $\sum_{n=1}^{\infty}(-1)^{n-1}b_{n} = b_{1}-b_{2}+b_{3}... $ is convergent \\\hline Comparison Test & $\sum a_{n} $ and $ \sum b_{n} $ s.t. $a_{n} \leq b_{n}$ Then if $\sum b_{n}$ convergent, $\sum a_{n}$ convergent. If $\sum a_{n}$ divergent, $\sum b_{n}$ divergent\\\hline \end{tabular} \end{center} \subsection{Power Series} $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges at \textbf{ONE OF} \begin{itemize} \item $x=a$ \item For all $x$ \item converges if $|x-a| < R$ and diverges if $|x-a| > R$ (R is radius of convergence) \end{itemize} If $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_{n}} = L \right|$ or $\lim_{n \to \infty} \sqrt[n]{|c_{n}|}=L$, $L \in \mathbb{R}$ or $\infty$, then $R = \frac{1}{L}$ If power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then function $f$ is differentiable on interval $|x-a| < R$ and \begin{itemize} \item $f'(x) = \sum_{n=1}^{\infty} nc_{n}(x-a)^{n-1}$, for $|x-a| < R$ \item $\int f(x) = \sum_{n=0}^{\infty} c_{n}\frac{(x-a)^{n+1}}{n+1}+C$ for $|x-a| < R$ \end{itemize} \subsection{Taylor and Maclaurin Series} If f has power series repr @ $f = a$, $f(x) = \sum_{n=0}^{\infty} c_{n}(x-a)^{n}, |x-a| < R, R > 0$, then $c_{n} = \frac{f^{(n)}(a)}{n!}$. \\ Maclaurin Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!}x^{n}$ For $-\infty < x < \infty$ \\ \; % spacing \setlength\tabcolsep{1.5pt} % default value: 6pt \begin{tabular}{rl} $\sin x$ & $= \sum\limits^\infty_{n = 0} \frac{(-1)^nx^{2n + 1}}{(2n+1)!} $ \\ $\cos x$ & $= \sum\limits^\infty_{n = 0} \frac{(-1)^nx^{2n}}{(2n)!}$ \\ $e^x$ & $= \sum\limits^\infty_{n = 0} \frac{x^n}{n!}$ \end{tabular} For $-1 < x < 1$ \\ \; % spacing \setlength\tabcolsep{1.5pt} % default value: 6pt \begin{tabular}{rl} $\frac{1}{1 - x}$ & $= \sum\limits^\infty_{n = 0} x^n $ \\ $\frac{1}{1 + x}$ & $= \sum\limits^\infty_{n = 0} (-1)^nx^n $ \\ $\frac{1}{1 + x^2}$ & $= \sum\limits^\infty_{n = 0} (-1)^nx^{2n} $ \\ $\ln(1 + x)$ & $= \sum\limits^\infty_{n = 1} \frac{(-1)^{n - 1}x^n}{n} $ \\ $\tan^{-1}x$ & $= \sum\limits^\infty_{n = 0} \frac{(-1)^n}{2n + 1} x^{2n+1}$ \\ $\frac{1}{(1+x)^2}$ & $= \sum\limits^\infty_{n = 1} (-1)^{n-1}nx^{n-1}$ \\ $\frac{1}{(1-x)^2}$ & $= \sum\limits^\infty_{n = 1} nx^{n-1}$ \\ $\frac{1}{(1-x)^3}$ & $= \frac{1}{2} \sum\limits^\infty_{n = 2} n(n - 1)x^{n-2}$ \\ $(1 + x)^k$ & $= \sum\limits^\infty_{n = 0} \binom{k}{n}x^n$ \\ & $= 1 + kx + \frac{k(k-1)}{2!}x^2 + \dots$ \end{tabular} \subsection{Useful Math} \begin{itemize} \item Line: $y-y_{1} = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}(x-x_{1})$ \item $\int \sqrt{a^{2}-x^{2}}dx = \frac{a^{2}}{2}\sin^{-1}(\frac{x}{a}) + \frac{x}{2}\sqrt{a^{2}-x^{2}}, x = a\sin\theta, dx = a\cos\theta d\theta, $A \item $\sqrt{a^{2}+x^{2}}dx = \frac{1}{2}\left(x\sqrt{a^{2}+x^{2}} + a^{2}\ln\left|\frac{x+\sqrt{a^{2}+x^{2}}}{a}\right|\right), x = a\tan\theta, \frac{-\pi}{2} < \theta < \frac{\pi}{2}$ \item $\int\cos^{2}x = \frac{1}{4} \sin2x + \frac{x}{2} = \frac{1}{2}\cos x \sin x + \frac{1}{2}x$ \item $\int\sin^{2}x = -\frac{1}{4} \sin2x + \frac{x}{2}$ \item $(x-y)^{3} = x^{3} - 3x^{2}y + 3xy^{2}-y^{3}$ \item $(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2}+y^{3}$ \end{itemize} \end{multicols*} \end{document}