Storage
« Parts of disk
» Platter has 2 surfaces
» Surface has many tracks
» Each track is broken up into sectors
» Cylinder is the same tracks across all surfaces
» Block comprises of multiple sectors

+ Disk Access Time: Seek time +
Rotational Delay + Transfer Time
» Seek Time: Move arms to position disk head
i . 160
» Rotational Delay: 55

» Transfer time(for n sectors): n X

time for 1 revolution
sectors per track

- nis requested sectors on track
« Access Order
1. Contiguous Blocks within same track (same
surface)
2. Cylinder track within same cylinder
3. next cylinder

Buffer Manager

Yes .
s p in some frame 2 Increment the pin count of f.
Return address of frame f
No

Move some frame f' from free list to
buffer pool. Set pin count of f' to 1
Read pinto f'.

Return address of frame

Choose a frame f* (with pin count of

0) for replacement. Wite page in f'to disk

Set the pin count of f to 1

‘. Read pinto .

Is dirty flag of f' = true?

v e Return address of frame f
No T

23: Som 1, 2026126 Buffor Manager 12

« Data stored in block sized pages called frames

« Each frame maintains pin count(PC) and dirty flag
Replacement Policies

Decide which unpinned page to replace

LRU: queue of pointers to frames with PC = 0
clock: LRU variant

» Reference bit: turns on when PC = 0

» Replace a page when ref bit off and PC = 0

Let f be the frame pointed by current

f.referencedBit = off

f.pinCount = 1
return address of f

current = current + 1 (mod N)

Files
« Heap File Implementation
» Linked List
- 2 linked lists, 1 of free pages, 1 of data pages
» Page Directory Implementation
- Directory structure, 1 entry per page.
- to insert, scan directory to find page with space
to store record

Page Formats
« RID = (page id, slot number)
« Fixed Length records
» Packed Organization: Store records in contiguous
slots (requires swapping last item to deleted
location during deletion)
» Unpacked organization: Use bit array to maintain
free slots
« Variable Length Records: Slotted page
organization

Record Formats

« Fixed Length Records: Stored consecutively

« Variable length Records
» Delimit fields with special symbols (F1, $, F2 $, F3)
» Array of field offsets (0;, 04, 05, F'1, F'2, F'3)

Data Entry Formats

1. k * is an actual data record (with search key value
k)

2. k * is of the form (k, rid)

3. k x is of the form (k, rid-list) list of rids of data
with key k

B+ Tree index

Search key is sequence of k data attributes k > 1

Composite search key if & > 1

unique key if search key contains candidate key of

table

index is stored as file

Clustered index: Ordering of data is same as data

entries

» key is known as clustering key

» Format 1 index is clustered index (Assume format
2 and 3 to be unclustered)

Tree based Index

root node at level 0

Height of tree = no of levels of internal node
Leaf nodes

» level h, where h is height of tree

internal nodes store entries in form

(p01 k17p17k27p27 "'ﬂpn)
»ky<ky<..<k,

» p, = disk page address

Order of index tree

» Each non-root node has m € [d, 2d] entries
» Root node has m € [1, 2d] entries

Equality search: At each internalnode N, find

largest key k; in N, such that k; < k

» if k; exists, go subtree p;, else p,

Range search: First matching record, and traverse

doubly linked list

Min nodes at level iis 2 x (d +1)""1,i > 1

Max nodes at level i is (2d + 1)*

Operations (Right sibling first, then left)

Insertion

1. Leaf node Overflow

« Redistribute and then split

« Split: Create a new leaf NV with d + 1 entries.
Create a new index entry (k, ®) where k is
smallest key in IV

« Redistribute: If sibling is not full, take from it. If
given right, update right’s parent pointer, else

current node’s parent pointer
2. Internal node Overflow
« Node has 2d + 1 keys.
+ Push middle (d + 1)-th key up to parent.
Deletion
1. Leaf node
« Redistribute then merge
+ Redistribution
» Sibling must have > d recordsto borrow
» Update parent pointers to right sibling’s
smallest key)
« Merge
» If sibling has d entries, then merge
» Combine with sibling, and then remove parent
node
2. Internal Node Underflow
+ Let N’ be adjacent sibling node of N with [, > d
entries
« Insert (K, N'.p;) into N, where i is the
leftmost(0) or rightmost entry(l)
« Replace K in parent node with N’ .k;
+ Remove (p;, k;) entry from N’
Bulk Loading
1. Sort entries by search keys.
2. Load leaf pages with 2d entries
3. For each leaf page, insert index entry to rightmost
parent page

Hash based Index

Static Hashing

« Data stored in N buckets, where hash function h(-)
is used to id bucket
» record with key k is inserted into B;, where i =

h(k) mod N

« Bucket is primary data page with 0+ overflow data
pages

Linear Hashing

« Grows linearly by splitting buckets

» Systematic splitting: Bucket B; is split before
B)
« Let N; = 2" be file size at beginning of round ¢
« How to split bucket B;
» Add bucket B; (split image of B;)
» Redistribute entries in B; between B; and B;
» next++; if next == NLevel: (level++; next
= 0)
Performance
« Average: 1.2 IO for uniform data

« Worst Case: Linear in number of entries
Extensible Hashing

Overflowed bucket is resolved by splitting
overflowed bucket

No overflow pages, and order in which buckets are
split is random

Directory of pointers to buckets, directory has 2¢
entries

» d is global depth of hashed file

» Each bucket maintains a local depth [€ [0, d]

» Entries in a bucket of local depth I: same last [bits
Bucket Overflow

Number of directory entries could be more than
number of buckets

Number of dir entries pointing to bucket = 24~

When bucket B with depth [overflows,

» Increment local depth of Bto [+ 1

» Allocate split image B’

» Redistribute entries between B and B’ using (I +
1)th bit

if I 4+ 1 > global depth d

» Directory is doubled in size, , global depth to d +
1

» New entries point to same bucket as

corresponding entry
if { +1 < global depth d
» Update dir entry corresponding to split bucket’s
directory entry to point to split image
Bucket Deletion
+ B, & Bj(with same local depth [and differ only in
th bit) can be merged if entries fit bin bucket
» B; is deallocated, B;’s local depth decremented by
1. Directory entries that point to B; points to B;
Performance

« At most 2 disk IOs for equality selection
« Collisions: If they have same hashed value.
» Need overflow pages if collisions exceed page
capacity

Sorting

Notation
7| pages for R
7] tuples in r

7w, (R) | project column by list L from R

71, (R) | project with duplicates

by Data records that can fit on page
b; Data entries that can fit on page
b, RIDs that can fit on page

External Merge Sort
« File size: N pages
« Memory pages available: B
« Pass 0: Create sorted runs
» Read and sort B pages at a time
« Pass i: Use B — 1 pages for input, 1 for output,
performing B — 1-way merge sort
« Analysis
» Sorted runs: N = [%-‘
» Total passes: [logg_;(Ny)] + 1
» Total I/O: 2N ([logg_; (Ny)] + 1)
Optimized Merge Sort
+ Read and write in blocks of b pages
» Allocate 1 Block for output
» Remaining memory for input: | £ | — 1 blocks
« Analysis
» sorted runs: N = [%]
» Runs Merged at each pass F' = LfJ -1
» No of merge passes: [logy(N,)](+1 for total)
» Total I0: 2N ([log(Ny)] + 1)
« Sorting with B+ Trees: IO Cost: h + Scan of leaf
pages + Heap access (If not covering index)
Projection
Sort based approach
« Extract attributes, Sort attributes, remove duplicates
« Analysis
1. Extract Attributes: |R|(scan) +
i3 (R)| (output)
2. Sort Attributes:
> Ny = [@1
» Merging Passes: logg_; (V)
» Total 10: 2 |7}, (R)| (logpg_;(Np) + 1)
3. Remove Duplicates: |7}, (R)|
Optimized approach
» Merge Split step 2 into Creating and Merging sorted
runs, and merge into step 1 and 3 respectively
« Analysis
» Step 1
— B — 1 pages for initial sorted run
- Sorted Runs: N, = (%“

~ Create sorted run = |R| + |7}, (R)|
» Step 2
- Merging passes: [logg_; (INy)]
- Cost of merging: 2 |7}, (R)| [logg_1(Ny)]
- Cost of merging excluding IO output:
(2Mlog s (No)] — 1) |3 (R)|
Hash based approach
« Partitioning
» Allocate 1 page for input, B — 1 page for output.
» Read 1 page at a time, for each tuple, create
projection, hash(h) to distribute to B — 1 buffers
» Flush to disk when full.

« Duplicate Elimination
» For each partition R;, create hash table, hash each
tuple with hash function 2" # h to bucket B; if
t¢ B;

« Partition Overflow: hash table for 7} (R;) is larger
than memory pages allocated for 7 (R)

« Analysis
» 10 Cost (no partition overflow) : | R| + 2|77}, (R)|
- Partitioning Phase: |R| + |7}, (R)|
- Duplicate Elimination: |7} (R)|
» To Avoid partition overflows:
IRy = T
- B > size of hash table, |R;| x f
- B> T
Selection

Conjunct: 1 > terms connected by V
CNF predicate: 1 > conjuncts connected by A

Covered Conjunct - predicate p; is covered

conjunct if each attribute in p; is in key K or

include column of Index I

» p = (age > 5) A (height = 180) A (level = 3)

» I, key = (level, weight, height)

» p, wrt I} = (height = 180) A (level = 3)

Primary Conjunct

» I matches p if attributes in p form prefix of K and
all comparison operators are equality except last

> p, is largest subset of conjuncts in p such that I
matches p,,

o, (R): Select rows from R that satisfy predicate p

Access Path: way of accessing data records / entries

» Table Scan: Scan all data pages (Cost: |R|)

» Index Scan: Scan index pages

» Index Combination: Combine from multiple

index scans
» Scan/Combination can be followed by RID lookup
to retrieve data

Index only plan: Query where it does not need to
access any data tuples in R

+ Covering Index: I is covering index if all of Rs
attribute in query is part of the key / include
columns of T

B+ Trees

« For Index Scan + RID Lookup, many matching RIDs
could refer to same page
» Sort matching RIDs before performing lookup:

Avoid retrieving same page

Analysis

Cost of index scan = Nyorma + Niear + Nookup

* Nipternal: No of internal nodes accessed
» Height of B+ tree index

[log ([HRH-‘ ﬂ if index is clustered

{log ([HRH-‘)i‘ otherwise

* Nigokup: Data pages accessed for RID lookups

>

height(est) =

» If I is covering index for o,,(R), Njpoiyp = 0
> else]vlookup = ”Upﬁ (R)”
» If matching RIDs are sorted before RID lookup
-]vlookup Nsort + min{”o L(R)”7 ‘R‘}
+ N,

sort: sorting matching RIDs
» Ny =0 if { v (R)ﬁ < B (if RIDs can fit into
B)

’ Loy (B
Ny, = 2[' ”;)()ll Mogp_; (Ny)1, Ny = w

T

B Sorting with External Merge Sort
N, does’nt include read IO for pass 0 as its
included in Ny na and Nygae
N, does’nt incldue write IO for final merging
pass as RID is used for lookup
* Njear: Leaf pages scanned for evaluating o, (R)

lop, (R
]vleaf -
"]Vleaf =
« Index Combination
_ NP P
+ Cost= JVinternal +]vleaf + Jvmternal + Jvleaf +
Ncombine +]vlookup
combine® 1O cost to compute join of), m,
> Ifmln{|7rxp p)\7 ‘7TX<1 . |} <B
— One of the join operands can fit in mem, then

if clustered

if unclustered

lo,, (R
b

>

]vcombine =0
Hash based Index Scan

+ Cost: Ndir =+ Nbucket + Jvlookup
» Ny;,: no of directory pages accessed (1 if
extensible hash, 0 otherwise)
> Npyeket: Max no of index’s primary/overflow pages
accessed
s]vlookup Nuort + min{”o-pc (R)
covering index for o, (R)

I, |R|} if Lis not

	Storage
	Buffer Manager
	Replacement Policies

	Files

	B+ Tree index
	Tree based Index
	Operations (Right sibling first, then left)
	Insertion
	Deletion
	Bulk Loading

	Hash based Index
	Static Hashing
	Linear Hashing
	Performance

	Extensible Hashing
	Bucket Overflow
	Bucket Deletion
	Performance

	Sorting
	Notation
	External Merge Sort
	Optimized Merge Sort

	Projection
	Sort based approach
	Optimized approach
	Hash based approach

	Selection
	B+ Trees
	Analysis

	Hash based Index Scan

