
Storage
• Parts of disk

‣ Platter has 2 surfaces
‣ Surface has many tracks
‣ Each track is broken up into sectors
‣ Cylinder is the same tracks across all surfaces
‣ Block comprises of multiple sectors

• Disk Access Time: Seek time +
Rotational Delay + Transfer Time
‣ Seek Time: Move arms to position disk head
‣ Rotational Delay: 12

60
RPM

‣ Transfer time(for n sectors): 𝑛 ×
time for 1 revolution

sectors per track
– 𝑛 is requested sectors on track

• Access Order
1. Contiguous Blocks within same track (same

surface)
2. Cylinder track within same cylinder
3. next cylinder

Buffer Manager

• Data stored in block sized pages called frames
• Each frame maintains pin count(PC) and dirty flag
Replacement Policies
• Decide which unpinned page to replace
• LRU: queue of pointers to frames with PC = 0
• clock: LRU variant

‣ Reference bit: turns on when PC = 0
‣ Replace a page when ref bit off and PC = 0

Files
• Heap File Implementation

‣ Linked List
– 2 linked lists, 1 of free pages, 1 of data pages

‣ Page Directory Implementation
– Directory structure, 1 entry per page.
– to insert, scan directory to find page with space

to store record

Page Formats
• RID = (page id, slot number)
• Fixed Length records

‣ Packed Organization: Store records in contiguous
slots (requires swapping last item to deleted
location during deletion)

‣ Unpacked organization: Use bit array to maintain
free slots

• Variable Length Records: Slotted page
organization

Record Formats
• Fixed Length Records: Stored consecutively
• Variable length Records

‣ Delimit fields with special symbols (F1, $, F2 $, F3)
‣ Array of field offsets (𝑜1, 𝑜2, 𝑜3, 𝐹1, 𝐹2, 𝐹3)

Data Entry Formats
1. 𝑘 ∗ is an actual data record (with search key value

k)
2. 𝑘 ∗ is of the form (k, rid)
3. 𝑘 ∗ is of the form (k, rid-list) list of rids of data

with key 𝑘

B+ Tree index
• Search key is sequence of 𝑘 data attributes 𝑘 ≥ 1
• Composite search key if 𝑘 > 1
• unique key if search key contains candidate key of

table
• index is stored as file
• Clustered index: Ordering of data is same as data

entries
‣ key is known as clustering key
‣ Format 1 index is clustered index (Assume format

2 and 3 to be unclustered)
Tree based Index
• root node at level 0
• Height of tree = no of levels of internal node
• Leaf nodes

‣ level h, where h is height of tree
• internal nodes store entries in form

(𝑝0, 𝑘1, 𝑝1, 𝑘2, 𝑝2, …, 𝑝𝑛)
‣ 𝑘1 < 𝑘2 < … < 𝑘𝑛
‣ 𝑝𝑖 = disk page address

• Order of index tree
‣ Each non-root node has 𝑚 ∈ [𝑑, 2𝑑] entries
‣ Root node has 𝑚 ∈ [1, 2𝑑] entries

• Equality search: At each internal node 𝑁 , find
largest key 𝑘𝑖 in N, such that 𝑘𝑖 ≤ 𝑘
‣ if 𝑘𝑖 exists, go subtree 𝑝𝑖, else 𝑝0

• Range search: First matching record, and traverse
doubly linked list

• Min nodes at level i is 2 × (𝑑 + 1)𝑖−1, 𝑖 ≥ 1
• Max nodes at level i is (2𝑑 + 1)𝑖

Operations (Right sibling first, then left)
Insertion
1. Leaf node Overflow

• Redistribute and then split
• Split: Create a new leaf 𝑁 with 𝑑 + 1 entries.

Create a new index entry (𝑘, ■) where 𝑘 is
smallest key in 𝑁

• Redistribute: If sibling is not full, take from it. If
given right, update right’s parent pointer, else
current node’s parent pointer

2. Internal node Overflow
• Node has 2𝑑 + 1 keys.
• Push middle (𝑑 + 1)-th key up to parent.

Deletion
1. Leaf node

• Redistribute then merge
• Redistribution

‣ Sibling must have > 𝑑 recordsto borrow
‣ Update parent pointers to right sibling’s

smallest key)
• Merge

‣ If sibling has 𝑑 entries, then merge
‣ Combine with sibling, and then remove parent

node
2. Internal Node Underflow

• Let 𝑁 ′ be adjacent sibling node of 𝑁 with 𝑙, 𝑙 > 𝑑
entries

• Insert (𝐾, 𝑁 ′.𝑝𝑖) into 𝑁 , where 𝑖 is the
leftmost(0) or rightmost entry(l)

• Replace 𝐾 in parent node with 𝑁 ′.𝑘𝑖
• Remove (𝑝𝑖, 𝑘𝑖) entry from 𝑁 ′

Bulk Loading
1. Sort entries by search keys.
2. Load leaf pages with 2𝑑 entries
3. For each leaf page, insert index entry to rightmost

parent page

Hash based Index
Static Hashing
• Data stored in 𝑁 buckets, where hash function ℎ(⋅)

is used to id bucket
‣ record with key 𝑘 is inserted into 𝐵𝑖, where 𝑖 =

ℎ(𝑘) mod 𝑁
• Bucket is primary data page with 0+ overflow data

pages
Linear Hashing
• Grows linearly by splitting buckets

‣ Systematic splitting: Bucket 𝐵𝑖 is split before
𝐵𝑖+1

• Let 𝑁𝑖 = 2𝑖𝑁0 be file size at beginning of round 𝑖
• How to split bucket 𝐵𝑖

‣ Add bucket 𝐵𝑗 (split image of 𝐵𝑖)
‣ Redistribute entries in 𝐵𝑖 between 𝐵𝑖 and 𝐵𝑗
‣ next++; if next == NLevel: (level++; next
= 0)

Performance
• Average: 1.2 IO for uniform data
• Worst Case: Linear in number of entries
Extensible Hashing
• Overflowed bucket is resolved by splitting

overflowed bucket
• No overflow pages, and order in which buckets are

split is random
• Directory of pointers to buckets, directory has 2𝑑

entries
‣ 𝑑 is global depth of hashed file
‣ Each bucket maintains a local depth 𝑙 ∈ [0, 𝑑]
‣ Entries in a bucket of local depth 𝑙: same last 𝑙 bits

Bucket Overflow
• Number of directory entries could be more than

number of buckets
• Number of dir entries pointing to bucket = 2𝑑−𝑙

• When bucket 𝐵 with depth 𝑙 overflows,
‣ Increment local depth of 𝐵 to 𝑙 + 1
‣ Allocate split image 𝐵′

‣ Redistribute entries between 𝐵 and 𝐵′ using (𝑙 +
1)th bit

• if 𝑙 + 1 > global depth 𝑑
‣ Directory is doubled in size, , global depth to 𝑑 +

1
‣ New entries point to same bucket as

corresponding entry
• if 𝑙 + 1 ≤ global depth 𝑑

‣ Update dir entry corresponding to split bucket’s
directory entry to point to split image

Bucket Deletion
• 𝐵𝑖 & 𝐵𝑗(with same local depth 𝑙 and differ only in 𝑙

th bit) can be merged if entries fit bin bucket
‣ 𝐵𝑖 is deallocated, 𝐵𝑗’s local depth decremented by

1. Directory entries that point to 𝐵𝑖 points to 𝐵𝑗
Performance
• At most 2 disk IOs for equality selection
• Collisions: If they have same hashed value.

‣ Need overflow pages if collisions exceed page
capacity

Sorting
Notation

|𝑟| pages for R

‖𝑟‖ tuples in r

𝜋𝐿(𝑅) project column by list 𝐿 from 𝑅

𝜋∗
𝐿(𝑅) project with duplicates

𝑏𝑑 Data records that can fit on page

𝑏𝑖 Data entries that can fit on page

𝑏𝑟 RIDs that can fit on page

External Merge Sort
• File size: 𝑁 pages
• Memory pages available: 𝐵
• Pass 0: Create sorted runs

‣ Read and sort 𝐵 pages at a time
• Pass i: Use 𝐵 − 1 pages for input, 1 for output,

performing 𝐵 − 1-way merge sort
• Analysis

‣ Sorted runs: 𝑁0 = ⌈𝑁
𝐵 ⌉

‣ Total passes: ⌈log𝐵−1(𝑁0)⌉ + 1
‣ Total I/O: 2𝑁(⌈log𝐵−1(𝑁0)⌉ + 1)

Optimized Merge Sort
• Read and write in blocks of 𝑏 pages

‣ Allocate 1 Block for output
‣ Remaining memory for input: ⌊𝐵

𝑏 ⌋ − 1 blocks
• Analysis

‣ sorted runs: 𝑁0 = ⌈𝑁
𝐵 ⌉

‣ Runs Merged at each pass 𝐹 = ⌊𝐵
𝑏 ⌋ − 1

‣ No of merge passes: ⌈log𝐹 (𝑁0)⌉(+1 for total)
‣ Total IO: 2𝑁(⌈log𝐹 (𝑁0)⌉ + 1)

• Sorting with B+ Trees: IO Cost: ℎ + Scan of leaf
pages + Heap access (If not covering index)

Projection
Sort based approach
• Extract attributes, Sort attributes, remove duplicates
• Analysis

1. Extract Attributes: |𝑅|(scan) +
|𝜋∗

𝐿(𝑅)| (output)
2. Sort Attributes:

‣ 𝑁0 = ⌈ |𝜋∗
𝐿(𝑅)|
𝐵 ⌉

‣ Merging Passes: log𝐵−1(𝑁0)
‣ Total IO: 2 |𝜋∗

𝐿(𝑅)| (log𝐵−1(𝑁0) + 1)
3. Remove Duplicates: |𝜋∗

𝐿(𝑅)|
Optimized approach
• Merge Split step 2 into Creating and Merging sorted

runs, and merge into step 1 and 3 respectively
• Analysis

‣ Step 1
– 𝐵 − 1 pages for initial sorted run
– Sorted Runs: 𝑁0 = ⌈ |𝜋∗

𝐿(𝑅)|
𝐵−1 ⌉

– Create sorted run = |𝑅| + |𝜋∗
𝐿(𝑅)|

‣ Step 2
– Merging passes: ⌈log𝐵−1(𝑁0)⌉
– Cost of merging: 2 |𝜋∗

𝐿(𝑅)| ⌈log𝐵−1(𝑁0)⌉
– Cost of merging excluding IO output:

(2⌈log𝐵−1(𝑁0)⌉ − 1) |𝜋∗
𝐿(𝑅)|

Hash based approach
• Partitioning

‣ Allocate 1 page for input, 𝐵 − 1 page for output.
‣ Read 1 page at a time, for each tuple, create

projection, hash(ℎ) to distribute to 𝐵 − 1 buffers
‣ Flush to disk when full.

• Duplicate Elimination
‣ For each partition 𝑅𝑖, create hash table, hash each

tuple with hash function ℎ′ ≠ ℎ to bucket 𝐵𝑗 if
𝑡 ∉ 𝐵𝑗

• Partition Overflow: hash table for 𝜋∗
𝐿(𝑅𝑖) is larger

than memory pages allocated for 𝜋𝐿(𝑅)

• Analysis
‣ IO Cost (no partition overflow) : |𝑅| + 2|𝜋∗

𝐿(𝑅)|
– Partitioning Phase: |𝑅| + |𝜋∗

𝐿(𝑅)|
– Duplicate Elimination: |𝜋∗

𝐿(𝑅)|
‣ To Avoid partition overflows:

– |𝑅𝑖| = |𝜋∗
𝐿(𝑅)|
𝐵−1

– 𝐵 > size of hash table, |𝑅𝑖| × 𝑓
– 𝐵 > √𝑓 × |𝜋∗

𝐿(𝑅)|

Selection
• Conjunct: 1 ≥ terms connected by ∨
• CNF predicate: 1 ≥ conjuncts connected by ∧
• Covered Conjunct - predicate 𝑝𝑖 is covered

conjunct if each attribute in 𝑝𝑖 is in key 𝐾 or
include column of Index 𝐼
‣ 𝑝 = (age > 5) ∧ (height = 180) ∧ (level = 3)
‣ 𝐼1 key = (level, weight, height)
‣ 𝑝𝑐 wrt 𝐼1 = (height = 180) ∧ (level = 3)

• Primary Conjunct
‣ 𝐼 matches 𝑝 if attributes in 𝑝 form prefix of 𝐾 and

all comparison operators are equality except last
‣ 𝑝𝑝 is largest subset of conjuncts in 𝑝 such that 𝐼

matches 𝑝𝑝
• 𝜎𝑝(𝑅): Select rows from 𝑅 that satisfy predicate 𝑝
• Access Path: way of accessing data records / entries

‣ Table Scan: Scan all data pages (Cost: |𝑅|)
‣ Index Scan: Scan index pages
‣ Index Combination: Combine from multiple

index scans
‣ Scan/Combination can be followed by RID lookup

to retrieve data
• Index only plan: Query where it does not need to

access any data tuples in 𝑅

• Covering Index: 𝐼 is covering index if all of 𝑅s
attribute in query is part of the key / include
columns of 𝐼

B+ Trees
• For Index Scan + RID Lookup, many matching RIDs

could refer to same page
‣ Sort matching RIDs before performing lookup:

Avoid retrieving same page
Analysis
Cost of index scan = 𝑁internal + 𝑁leaf + 𝑁lookup
• 𝑁internal: No of internal nodes accessed

‣ Height of B+ tree index
‣

height(est) =

{{
{
{{⌈log𝐹 (⌈ ‖𝑅‖

𝑏𝑑
⌉)⌉ if index is clustered

⌈log𝐹 (⌈ ‖𝑅‖
𝑏𝑖

⌉)⌉ otherwise

• 𝑁lookup: Data pages accessed for RID lookups
‣ If 𝐼 is covering index for 𝜎𝑝(𝑅), 𝑁lookup = 0
‣ else 𝑁lookup = ‖𝜎𝑝𝑐

(𝑅)‖
‣ If matching RIDs are sorted before RID lookup

– 𝑁lookup = 𝑁sort + min{‖𝜎𝑝𝑐
(𝑅)‖, |𝑅|}

• 𝑁sort: sorting matching RIDs
‣ 𝑁sort = 0 if ⌈ ‖𝜎𝑝𝑐(𝑅)‖

𝑏𝑟
⌉ ≤ 𝐵 (if RIDs can fit into

𝐵)
‣

𝑁sort = 2⌈
‖𝜎𝑝𝑐

(𝑅)‖
𝑏𝑟

⌉⌈log𝐵−1(𝑁0)⌉, 𝑁0 =
⌈
⌈
⌈
⌈⌈ ‖𝜎𝑝𝑐(𝑅)‖

𝑏𝑟
⌉

𝐵
⌉
⌉
⌉
⌉

– Sorting with External Merge Sort
– 𝑁sort does’nt include read IO for pass 0 as its

included in 𝑁internal and 𝑁leaf
– 𝑁sort does’nt incldue write IO for final merging

pass as RID is used for lookup
• 𝑁leaf: Leaf pages scanned for evaluating 𝜎𝑝(𝑅)

‣ 𝑁leaf = ⌈
‖𝜎𝑝𝑝(𝑅)‖

𝑏𝑑
⌉ if clustered

‣ 𝑁leaf = ⌈
‖𝜎𝑝𝑝(𝑅)‖

𝑏𝑖
⌉ if unclustered

• Index Combination
• Cost = 𝑁𝑝

internal + 𝑁𝑝
leaf + 𝑁𝑞

internal + 𝑁𝑞
leaf +

𝑁combine + 𝑁lookup
‣ 𝑁combine: IO cost to compute join of 𝜋𝑝 𝜋𝑞
‣ If min{|𝜋𝑋𝑝

(𝑆𝑝)|, |𝜋𝑋𝑞
(𝑆𝑞)|} ≤ 𝐵

– One of the join operands can fit in mem, then
𝑁combine = 0

Hash based Index Scan
• Cost: 𝑁dir + 𝑁bucket + 𝑁lookup

‣ 𝑁dir: no of directory pages accessed (1 if
extensible hash, 0 otherwise)

‣ 𝑁bucket: max no of index’s primary/overflow pages
accessed

‣ 𝑁lookup = 𝑁sort + min{‖𝜎𝑝𝑐
(𝑅)‖, |𝑅|} if I is not

covering index for 𝜎𝑝(𝑅)

	Storage
	Buffer Manager
	Replacement Policies

	Files

	B+ Tree index
	Tree based Index
	Operations (Right sibling first, then left)
	Insertion
	Deletion
	Bulk Loading

	Hash based Index
	Static Hashing
	Linear Hashing
	Performance

	Extensible Hashing
	Bucket Overflow
	Bucket Deletion
	Performance

	Sorting
	Notation
	External Merge Sort
	Optimized Merge Sort

	Projection
	Sort based approach
	Optimized approach
	Hash based approach

	Selection
	B+ Trees
	Analysis

	Hash based Index Scan

