\subsection{Euclidian n-Spaces} \begin{defn}[Vector Definitions]\ \\ \begin{itemize} \item $n$-vector : $v = (v_1, v_2, ..., v_n)$ \item $\vec{PQ} // \vec{P'Q'} \implies \vec{PQ} = \vec{P'Q'}$ \item $|| \vec{PQ} || = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2}$ \item $u + v = (u_1 + v_1, u_2 + v_2), u = (u_1, u_2), v = (v_1, v_2)$ \item $n$-vector can be viewed as a row matrix / column matrix \end{itemize} \end{defn}