1 Math

Defn. Even and Odd Integers
n is even < J an integer k s.t. n =2k
n is odd < J an integer k s.t. n =2k + 1

Defn. Divisibility

n and d are integers and d # 0

dn< 3k € Zst. n=dk

Theorem 4.2.1. Every Integer is a rational number

Theorem 4.2.2. The sum of any two rational numbers is rational
Theorem 4.3.1. For all a,b € Z", if a|b, then a < b

Theorem 4.3.2. Only divisors of 1 are 1 and —1

Theorem 4.3.3. Va,b,c € Z if a|b, b|c, alc

Theorem 4.6.1. There is no greatest integer

Proposition. 4.6.4 For all integers n, if n? is even, then n is even.

Defn. Rational r is rational < Jda,b € Z s.t. r = § and b # 0

Defn. Fraction in lowest term: fraction § is lowest term if largest Z that divies both a and b is 1

Theorem 4.7.1. /2 is irrational

2 Logic of Combound Statements

Theorem 3.2.1. Negation of universal stmt ~ (Vo € D, P(z)) =3z € D s.t. ~ P(x)
Theorem 3.2.1. Negation of existential stmt ~ (3z € D s.t. P(z)) =Va € D,~ P(x)
Defn. Contrapositive of p = ¢=~¢q¢=7p

Defn. Converse of p=qisqg=1p

Defn. Inverse of p = qis ~p =~gq

Defn. Only if: p only if ¢ means ~ g =>~p=p =g

Defn. Biconditional: p < ¢= (p=q) A (g = D)

Defn. r is sufficient condition for s means if r then s, r = s

Defn. r is necessary condition for s means if ~ r then ~ s, s = r

Defn. Proof by Contradiction
If you can show that the supposition that sttatement p is false leads to a contradiction, then you can conclude that p is
true



3 Methods of Proof

Statement Proof Approach
vz € D P(X) Direct: Pick arbitrary x, prove P is true for that x.
Contradiction: Suppose not, i.e. Jz(~ p)... Hence supposition ~ p is false (P3)
dxr € D P(X) Direct: Find x where P is true.
Contradiction: Suppose not, i.e. Ya(~ p)... Hence supposition ~ p is false (P3)
P=qQ Direct: Assume P is true, prove Q

Contradiction: Assume P is true and Q is false, then derive contradiction
Contrapositive: Assume ~ @, then prove ~ P

P& Q@ Prove both P = @ and Q = P

xRy. Prove R is equivalence | Prove Reflexive, Symmetric and Transitive

Reflexive

Symmetric

Antisymmetric

Transitive

Defn. Proof by Contraposition

1. Statement to be proved Va € D (P(z) = Q(x))
2. Contrapositive Form: Vo € D (~ Q(z) =~ P(x))
3. Prove by direct proof

3.1 Suppose x is an element of D s.t. Q(X) is false
3.2 Show that P(x) is false.

4. Therefore, original statement is true

4 Set Theory

Defn. Set: Unordered collection of objects
Order and duplicates don’t matter

Defn. Membership of Set €: If S is set, x € S means z is an element of S
Defn. Cardinality of Set |S|: The number of elements in S
Common Sets:

N - Natural Numbers, {0, 1,2}

Z - Integers
Q - Rational
R - Real

C - Complex

7* - Positive/Negative Integers

Defn. Subset A C B < Every element of A is also an element of B
ACB&Ve(re A= 2 € B)

Defn. Proper Subset AC B< (AC BAA#B)
Theorem 6.2.4. An empty set is a subset of every set, i.e. ) C A for all sets A
Defn. Cartesian Product A x B = {(a,b) :a € AANb € B}

Defn. Set Equality A=B< ACBABCA
A=B&Ve(r € A< x € B)

Defn. Union: AUB={zcU:x€ AVzec B}
Defn. Intersection: ANB={z€U:z€ ANz € B}
Defn. Difference: B\ A={zcU:x€ BAz ¢ A}

Defn. Disjoint: ANB =10
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Theorem 4.4.1. Quotient-Remainder n € Z,d € Z™*
there exists unique integers q and r such that n =dg+r and 0 <r < d

Defn. Power Set: The set of all subsets of A, has 2™ elements.

Theorem 6.3.1. Suppose A is a finite set with n elements, then P(A) has 2" elements. |P(A)| = 2!"!
Defn. Cartesian Product of A,, = A1 X Ay x ... x A, = {(a1,a2,...an) : a1 € A1 Nay € As...
Theorem 6.2.1. Subset Relations

Inclusion of Intersection: AUB C A, AUBCB
Inclusion in Union AC AUB,BCAUB
Transitive Property of Substs: ACBABCC=ACC

5 Relations

Defn. Relation from A to B is a subset of A x B
Given an ordered pair(z,y) € A x B, x is related to y by R is written xRy < (z,y) € R

Defn. Domain, Co-domain, Range
Let A and B be sets and R be a relation from A to B

Domain of R: is set {a € A : aRb for some b € B}
Codomain of R: Set B
Range of R: is set {b € B : aRb for some a € A}

Defn. Inverse Relation
Let R be a relation from A to B, R~! = {(y,7) € Bx A: (x,y) € R}
Vo € AVy € B((y,z) € R~! & (2,9) € R)

Defn. Relation on a Set A is a relation from A to A.

Defn. Composition of Relations

A, B and C be sets. R C A x B be arelation. S C B x C be relation. Composition of R with S, denoted S o R is relation
from A to C such that:

Vo € A,Vz € C(xzS o Rz < (Jy € B(xRy AySz)))

Proposition. Composition is Associative A, B,C,D besets. RCAXx B, SCBxC, TCCxD
To(SoR)=ToSoR

Proposition. Inverse of Composition A, B,C be sets. RC Ax B, SC BxC(C
(SoR)™'=R 108!

Defn. Reflexivity, Symmetry, Transitivity

Reflexivity: Vo € A(zRx)
Symmetry: Vz,y € A(xRy = yRx)
Transitivity:Vz,y, z € A(zRy A yRz = xRz)

Refer to proof 6

Defn. Transitive Closure
Transitive closure of R is relation R* on A that satiesfies

R? is transitive
RC R
If S is any other transitive relation that contains R, then Rt C S

Defn. Partition
P is partition of set A if

P is a set of which all elements are non empty subsets of A, ) £S5 C A for all S € P
Every element of A is in exactly on element of P,

Ve e A3IS € P(x € S) and

VIGAESl,SQ EP(zESH ANx € S = 5 :SQ)
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Elements of a partition are called components

Defn. Relation Induced by a partition
Given partition P of A, the relation R induced by partition:
Vr,y € A,zRy = 3 a component of S of P s.t. z,y € S

Theorem 8.3.1 (Relation Induced by a Partition). Let A be a set with a partition and let R be a relation induced by
the partition. Then R is reflexive, symmetric and transitive

Defn (Equivalence Relation). A be set and R be relation. R is equivalence relation iff R is reflexive, symmetric and
transitive

Defn. Equivalence Class

Suppose A is set and ~ is equivalence relation on A. For each A € A, equivalence class of a, denoted [a] and called class
of a is set of all elements z € A s.t. a ~x

[al. ={x€A:a~z}

Theorem 8.3.4. The partition induced by an Equivalence Relation
If A is a set and R is an equivalence relation on A, then distinct equivalence classes of R form a partition of A; that is,
the union of the equivalence classes is all of A, and the intersection of any 2 disctinct classes is empty.

Defn. Congruence
Let a,b € Z and n € Z*. Then a is congruent to b modulo n iff @ — b = nk, for some k € Z. In other words, n|(a — b).
We write a = b(mod n)

Defn. Set of equivalence classes
Let A be set and ~ be an equivalence relation on A. Denote by A/ ~, the set of all equivalence classes with respect to
~, ie.

A ~={[z]~ 1z € A}

Theorem Equivalence Classes. form a partition Let ~ be an equiv. relation on A. Then A/ ~ is a partition of A.
Defn (Antisymmetry). R is antisymmetric iff Vo, y € A(xRyAyRx = = =y) (DOES NOT IMPLY NOT SYMMETRIC)
Defn (Partial Order Relation). R is Partial Order iff R is reflexive, antisymmetric and transitive.

Defn. Partially Ordered Set Set A is called poset with respect to partial order relation R on A, denoted by (A, R) (Proof
7)

Defn. x < y is used as a general partial order relation notation

Defn (Hasse Diagram). Let < be a partial order on set A. Hasse diagram satisfies the following condition for all distinct
x,y,me€ A
Ifx < yand nom € Aisst. x < m =<y, then x is placed below y with a line joining them, else no line joins = and y.

Defn (Comparability). a,b € A are comparable iff a < b or b < a. Otherwise, they are noncomparable
Defn (Maximal, Minimal, Largest Smallest). Set A be partially ordered w.r.t. a relation < and c € A

¢ is maximal element of A iff Vo € A, either z < ¢ or « and ¢ are non-comparable. OR VzinA(c < x = ¢ = x)
¢ is minimal element of A iff Vo € A, either ¢ < x or « and ¢ are non-comparable. OR VzinA(z < ¢ = c=1x)
c is largest element of A iff Vz € A(z < ¢)

¢ is smallest element of A iff Vo € A(c < )

N

Proposition. A smallest element is minimal
Consider a partial order < on set A. Any smallest element is minimal.

Let ¢ be smallest elemnt

Take any z € As.t. z < ¢

By smallestness, we know ¢ < z too.
So ¢ = x by antisymmetry

=N

Defn (Total Order Relations). All elements of the set are comparable
R is total order iff R is a partial order and Va,y € A(zRy V yRzx)

Defn (Linearization of a partial order). Let < be a partial order on set A. A linearization of < is a total order < * on



Ast. Ve,ye Az sy=a < *y)
Defn (Kahn’s Algorithm). Input: A finite set A and partial order < on A

1. Set Ag:=Aandi:=0
Repeat until A; = 0
2.1. Find minimal element ¢; of A; wrt <
2.2. Set Ai+1 = Al \Ci
23. Seti=1i+1

Output: A linearization < * of < defined by setting, for all indicies i, j
cis*c; i< ]

Defn (Well ordered set). Let < be a total order on set A. A is well ordered iff every nonempty subset of A contains a
smallest element. OR

VS e P(A),S #0 = (Fx € SVy € S(z < y)) E.g. (N,<) is well ordered but (Z, <) is not as there is no smallest integer
(Theorem 4.6.1)

6 Proofs

Proof L1528. Prove that the product of two consecutive odd numbers is always odd.

1. Let a and b be two consecutive odd numbers

1.1. Without loss of generality, assume that a < b, hence b = a + 2

1.2. Now, a = 2k + 1 (by defn of odd numbers)

1.3. Similarly, b=a+2=2k+3

1.4. Therefore, ab = (2k + 1)(2k + 3) = (4k* + 6k) + (2k + 3) = 4k* + 8k + 3 = 2(2k* + 4k + 1) + 1 (by Basic Algebra)
1.5. Let m = (2k? + 4k + 1) which is an integer (by closure of integers under x and +)

1.6. Then ab = 2m + 1 which is odd (by defn of odd numbers)

2. Therefore, the product of two consecutive odd numbers is always odd.

Proof L4516. Sum of 2 even Z is even

1. Let m and n be two particular but arbitrarily chosen even intergers

1.1. Then m = 2r and n = 2s for some Z r and s (by defn of even number)

1.2. m+4n=2r+2s=2(r+s) (by basic algebra)

1.3. 2(r+s) is an integer(closure of int under x and +) and an even number (by defn of even number)
1.4. Hence m + n is an even number

2. Therefore sum of any two even integers is even

Proof T 4.6.1. There is no greatest integer (Contradiction)

1. Suppose not, i.e. there is a greatest intger

1.1. Lets call this greatest integer g, and g > n for all integers n
12. Let G=g+1

1.3. Now, G is an integer (closure of integers under +) and G > ¢
1.4. Hence, g is not the greatest integer, contradicting 1.1

2. Hence, the supposition that there is a greatest integer is false.
3. Therefore there is no greatest integer

Proof L5519. L5S19 Two sets are equal

Let sets X and Y be given. To prove X =Y
(C) Prove X CY

(2) Prove X DY

From (2) and (3), we can conclude that X =Y

N



Proof L5S822. 15S22 {x € Z : 2> =1} = {1, -1}

1. —

1.1. Takeany z € {z € Z: 2% =1}

1.2. Then z € Z and 2% =1

1.3. So, 22 —1= (2 —1)(z+ 1) = 0 (by basic algebra)
14, ~.2—=1=0o0rz+1=0

1.5, -.z=1lorz=-1

1.6. So, z € {l,—1}

2.+

2.1. Take any z € {1, -1}

2.2. Thenz=1lorz=-1

2.3. In either case, we have z € Z and 22 =1

24. So,z€{re€Z:2?>=1}

3. Therefore, {z € Z : 22 =1} = {1, —1} (from (1) and (2))

Proof L6S27. Vx,y € Z(xRy < 3|(z — y)) is reflexive, symmetric, transitive

1. Proof of Reflexivity

1.1. Let a be an arbitrarily chosen integer.

1.2. Nowa—a=0

1.3. 3]0(since 0 = 3 - 0), hence 3|(a — a)

1.4. Therefore aRa (by defn of R)

2. Proof of Symmetry

2.1. Let a, b be arbitrarily chosen integers

2.2. Then 3|(a — b) (by defn of R), hence a — b = 3k for some integer k (by defn of divisibility)
2.3.  Multiplying both sides by —1 gives b — a = 3(—k)

2.4. Since —k is an integer, 3|(b — a) (by defn of divisibility)

2.5. Therefore, aRb = bRa (by defn of R)

3. Proof of Transitivity

3.1. Let a, b, ¢ be arbitrarily chosen integers

3.2. Then, 3|(a — b) and 3|(b — ¢) (by defn of R), hence a —b = 3r and b — ¢ = 3s (by defn of divisiblity)
3.3. Adding both equations gives a — ¢ = 3r + 3s

3.4. Since r + s is an integer, 3|(a — ¢) (by defn of divisiblity)

3.5. Therefore aRb A bRc = aRc (by defn of R)

Lemma Equivalence Class L6S47. Let ~ be an equivalence relation on A. The following are equivalent for all x,y € A

(i) z ~y, (i) [2] = [y], (i) [z] N [y] # 0

L s~y (=

1.1. Suppose xz ~y

1.2. Then y ~ z (by symmetry)

1.3. For every z € [x]

1.3.1. z ~ z (by defn of x)

1.3.2. .y~ z (by transitivity of y ~ x)

1.3.3. .z € [y] (by defn of [y])

1.4. This shows [z] C [y]

1.5.  Switching roles of z and y, we can also see that [y] C [z]
1.6. Therefore, [x] = [y]
2. fal=[yl=[ny #0

2.1. Suppose [z] = [y]

2.2. Then [z] N [y] = [z] (by idempotent law for N)
2.3. However, we know = ~ z (by reflexivity of ~)
2.4. This shows z € [z] = [z] N [y] (by defn of [x] and (2.2))
2.5. Therefore [z] N [y] # 0
3. RNl 0=~y

3.1. Suppose [z] N [y] # 0

3.2. Take z € [z] N [y]

3.3. Then z € [z] and z € [y] (by defn of N)

3.4. Then x ~ z and y ~ z (by defn of [z] and [y])



3.5. y~ z implies z ~ y (by defn of symmetry)
3.6. Therefore,  ~ y (by transitivity)

Proposition L6S54. Congruence-mod n is an equivalence relation on Z for every n € Z™

1. (Reflexivity) For all a € Z

1.1. a—a=0=nx0

1.2. So a = a(mod n) (by defn of congruence)

2. (Symmetry)

2.1. Let a,b€Zs.t. a=a(modn)

2.2. Then thereisa k€ Z s.t. a —b=nk

2.3. Thenb—a=—(a—b)=—nk=n(—k)

2.4. —k € Z (by closure of integers under x), so b = a(mod n) (by defn of congruence)
3. (Transitivity)

3.1. Let a,b,c € Z s.t. a=a(mod n) and b = ¢(mod n)

3.2. Then thereisa k,l € Z st. a—b=nk and b—c=nl

33. Thena—c=(a—b)+(b—c)=nk+nl=n(k+1)

34. k+1€7Z (by closure of integers under +), so a = ¢(mod n) (by defn of congruence)

Proof L6S69. Ya,b € Z",Ya|b < b = ka for some integer k. Prove | is a partial order relation on A

1. | is reflexive: Suppose a € A. Then a = 1a, so ala (by defn of divisiblity)
2. | is antisymmetric
2.1. Suppose a,b € Z* such that aRb and bRa
2.2. Then b =ra and a = sb for some integers r and s (by defn of divides). It follows that b = ra = r(sb)
2.3. Dividing both sides by b gives 1 = rs
2.4.  Only product of two positive integers that equals 1 is 11.
2.5. Thusr:s:l,andsoa:sbzll}:b
2.6. Therefore, | is antisymmetric
OR
2.1. Suppose a,b € ZT such that a|b and b|a
2.2. then a < band b < a (by theorem 4.3.1)
23. Soa=b
3. | is transitive: Show that Va,b,c € A,alb A blc = alc) (theorem 4.3.3)

Proof T01Q9. The product of any two odd integers is an odd integer

Take any 2 odd numbers a and b

Then a =2k + 1 and b =2p+ 1 for k,p € Z (by defn of odd number)

Thena-b= 2k +1)2p+1) = (4dkp+2k)+ 2p+1) = 2(2kp + p+ k) + 1 (by defn of odd number)
Let ¢ = 2kp + p + k which is an integer (by closure of int under + and x

Then nm = 2q + 1 which is odd (by defn of odd numbers)

CU @ o=

Proof T01Q10. Let n be an integer. Then n? is odd iff n is odd

1. Proof By Contraposition, that is "if n is even, n?

1.1.  Suppose n is even.

1.2. Then 3k € Z s.t. n =2k (by defn of even integers)

1.3, n? = (2k)? = 4k% = 2(2k?)

1.4. Hence, n? = 2p, where p = 2k? € Z (by closure of integers under x )
1.5. Therefore, n? is even and this proves that if n? is odd, n is odd.

2. If nis odd, then n x n = n? is odd (T01Q9)

3. Therefore n? is odd if and only if n is odd.

is even (=)
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Proof T02Q)3. Rational numbers are closed under addition

Let r and s be rational numbers

Ja,b,c,d € Zst. r=¢,5= 5 and b # 0,d # 0 (by defn of rational numbers)
Hence r + s = % + & = 24t¢ (hy basic algebra)

ad+bd € Z and bd € Z (closure of integers under + and x)

bd # 0 since b # 0,d # 0

Hence r + s is rational, therefore rational numbers are closed under addition

Proof T02Q10. if n is a product of 2 positive integers a and b, then a < n'/? or b < n'/?

Proof by contraposition, that is if a > n'/2 and b > n'/2, then n is not a product of a and b
Suppose a > n'/? and b > n'/2, then ab > n'/? - n'/?2 = n (by Appendix A T27)
Since ab # n, the contrapositive statement is true

or by contradiction

Proof by contradiction, that is n = ab and a > n'/? and b > n'/?
Since a > n'/? and b > n'/2, then ab > n'/? - n'/? = n (by Appendix A T27)
This contradicts n = ab. Therefore original statement is true

Proof T03Q04. Let A={2n+1:n€Z}and B={2n—-5:n€Z}. Is A= B?

-

1.1. Letac€A,anda=2n+1,ne?Z
1.2. Thena=2n+1=2(n+3)—5

1.3. n+3 € Z (by closure of int under +)
1.4. Therefore, a € B (by defn of B)

D

21. Letbe Ajandb=2n—-5,n€Z
92.2. Thenb=2n—5=2(n—3)+1

2.3. n—3¢€ Z (by closure of int under —)
2.4. Therefore, b € A (by defn of B)
Therefore, A = B

Proof T03Q05. Prove VA, B,C,AN(B\C)=(ANB)\C

AN(B\C)={z:2 € ANz € (B\C)} (by defn of N)
={zx:x € AN(zx € BNz ¢ C)} (by defn of \)
={x:2x € (ANz € B) ANz ¢ C} (by associativity of A)
={z:x€(ANB)Azx &C} (by defn of N)
={z:x€(ANB)\C (by defn of \)

Proof T03Q05. Prove VA, B,C,AN(B\C)=(ANB)\C

AN(B\C)={z:z€ ANz € (B\C)} (by defn of N)
={r:x € AN(z € BAz & C)} (by defn of \)
={x:zxe(ANz € B)Az ¢ C} (by associativity of A)
={z:z€(ANB)Azx &C} (by defn of N)
={z:2€(ANB)\C (by defn of \)

ProofT03Q8. Let A and B be set. Show that A C B if and only if AUB =B
To show AU B = B, we need to show AUB C Band BC AUB



1.1. Suppose AC B
1.2. (Show AU B C B)
1.2.1. Letz€ AUB
1.2.2. Then z € A or z € B (by defn of U)
1.2.3. Case 1: Suppose z € A, then Z € B as A C B line (1.1)
1.2.4. Case 2: Suppose z € B, then z € B. We have z € B in either case
1.3. (Show AU B D B)
1.3.1. Letz€ B
1.3.2. Then z € A or z € B (by generalization)
1.3.3. So z € AU B (by defn of U)
1.4. Therefore AUB =B

p—
2.1. Suppose AUB =B
22. Letze A

2.2.1. Then z € A or z € B (by generalization)
2.2.2. So ze€ AU B (by defn of U)
2.2.3. So z € Bsince AUB =B (2.1)

2.3. Therefore A C B

Therefore, A C B if and only if AUB =B

Proof T04Q05. Relation S = {(m,n) € Z*: m® + n®is even}, Proof So S =S

(C) Suppose (z,z) € So S
1.1. Then (x,y) € S and (y,2) € S for some y € Z (defn of composition of relations)
1.2. So 23+ g2 is even and 4> + 23 is even
1.3. This implies that =3 + 2y> + 23 is even
1.4. This implies that 23 + 23 is even as 2y is even
1.5. Therefore, (z,z) € S (by defn of S)
(D) Suppose (z,z) € S
2.1. Then 23 + 23 is even (by defn of S)
2.2. Case 1: 22 is odd.
2.2.1. Then 23 is also odd.
2.2.2. This implies that 23 4 13 is even and 13 + 23 is even
2.2.3. Thus, (z,1) € S and (1, 2) € S (by defn of S)
2.24. So, (x,z) € SoS
2.3. Case 2: 23 is even.
2.3.1. Then 23 is also even.
2.3.2. This implies that 23 + 03 is even and 03 + 23 is even
2.3.3. Thus, (z,0) € S and (0, z) € S (by defn of S)
2.3.4. So, (z,z) € SoS
2.4. In all cases, (x,2) € So S
OR
(2) Suppose (z,z) € S
3.1. Note that (z,z) € S as 2% + 27 is even
3.2. Since (z,z) € S and (z,2) € S, we have (z,z) € S oS (by defn of composition of relations)

Proof. R is asymmetric if and only if R is antisymmetric and irreflexive.

1. =
1.1. R is irreflexive (R is irreflexive = R is antisymmetric and irreflexive)
1.1.1. Let x € As.t. ztRx = = Rz (R is Asymmetric)
1.1.2. Since z Rz, R is irreflexive (by defn of irreflexive)
1.1. R is antisymmetric (Tutorial Qn 6¢)
2. <= (R is antisymmetric and irreflexive = asymmetry)
2.1. Let z,y € A, s.t. xRy is antisymmetric and irreflexive
2.2. There is 2 cases to consider, x =y and x # y
23. z=y
2.3.1. xRz is not valid as it contradicts irreflexive, Vo € A(x Rx)
2.3.2. Therefore, tRx = z Rx



2.4.

T Fy
2.4.1.

rRynNyRr — x =y
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7 Tables

Commutative PAG=EqAP pVg=qVp
Associative pAgAT=(DAQ AT

Distributive pA(gVr)=((pAqV(pAT) pV(gATr)=(pVq A(pVr)
Identity p Atrue = p pVfalse = p
Negation pV ~ p = true pA ~ p = false
Double Negative ~(~p)=p

Idempotent pVD=p PAP=Dp
Universal bound pV true = true p A false = false
de Morgan’s ~ (pAq) =~pV~q ~ (pVq) =~pA~gq
Absorption pV(pAg =p pA(pVqg =p
Implication p=q=~pVgqg

~(Implication) ~(p=q) =pA~q

Modus Ponens p = q,p q

Modus Tollens p = ¢q,~¢q ~ D
Generalization P pVyq
Specialization pAq P
Conjunction D, q pAq
Elimination pVg,~q P
Transitivity p = ¢,q = T p =T
Division into cases pANg,p = 1,q = T T
Contradiction ~p — false P
Commutative AUuB=BUA

Associative (AUB)UC =AU (BUCQC)

Distributive AU(BNC)=(AUB)N(AUC) | AN(BUC)=(ANB)U(ANCQC)
Identity Aup=A ANU=A
Complement AUA=U ANA=1
Double Complement A=A

Idempotent AUA=A ANA=A
Universal Bound AUU=U ANP=10

De Morgan’s AUB=ANB ANB=AUB
Absorption AU(ANB)=A AN(AUB)=A
Complements of U and () U=10 0=U

Set Difference A\B=ANB

F1 Commutative a+b=b+a ab =ba

F2 Associative

F3 Distributive

F4 Identity

F5 Additive inverses

(a+b)+c=a+(b+c)
a(b+c) =ab+ ac
0O+a=a+0=a

a+(—a)=(—a)+a=0

(ab)e = a(be)
(b+c)a=ba+ca
l-a=a-1=a

F6 Reciprocals a~%:%~a:1 a#0
T1 Cancellation Add a+b=a+c b=c
T2 Possibility of Sub There is one z,a +x =b r=b—a
T3 b—a=b+(—a)

T4 —(—a)=a

T5 a(b—c) =ab—ac

T6 0ca=a-0=0

T7 Cancellation Mul ab = ac b=c,a#0
T8 Possibility of Div a#0,ar=> x = g
T9 a#0,2=b-a"!

T10 a#0,(a)t=a

T11 Zero Product ab=0=a=0Vb=0

T12 Mul with -ve (—a)b = a(—b) — —(ab) ==
T13 Equiv Frac =15 b#0,c#0
T14 Add Frac 44 ¢ = adtbe b#0,d#0
T15 Mul Frac Toe =14 b#0,d#0
T16 Div Frac g b#0,d#0
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Ordl

Ord2

Ord3

a<b

a<b

a<0

T17 Trichotomy Law
T18 Transitive Law
T19

T20

T21

T22

T23

T24

T25

T26

T30

Ya,b € RT
V(I,bER¢O
0 is not positive
means b+ (—a) is positive
means a < bora=1>»
means a is negative
a<bVb>aVa=5b
a<band b<c
a<b
a<bandc>0
a#0
1>0
a<band c<0
a<b
ab >0
a<candb<d
0<a<cand <0<b<d

a+b>0,ab>0
a is positive or negative and not both

a<c
at+c<b+ec

ac < be

a®>>0

ac > be
—a > —b
a and b are both positive or negative
a+b<c+d
0<ab<ecd
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