1 Tables

Commutative	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Associative	$p \wedge q \wedge r \equiv (p \wedge q) \wedge r$	
Distributive	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity	$p \wedge \text{true} \equiv p$	$p \vee \text{false} \equiv p$
Negation	$p \lor crue = p$ $p \lor \sim p \equiv \text{true}$	$p \land \text{table} = p$ $p \land \sim p \equiv \text{false}$
_		$p \wedge p \equiv \text{raise}$
Double Negative	$\sim (\sim p) \equiv p$	
Idempotent	$p \lor p \equiv p$	$p \wedge p \equiv p$
Universal bound	$p \vee \text{true} \equiv \text{true}$	$p \land \text{false} \equiv \text{false}$
de Morgan's	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Implication	$p \Rightarrow q \equiv \sim p \lor q$	
\sim (Implication)	$\sim (p \Rightarrow q) \equiv p \land \sim q$	
/	(1 1) 1 1	
Modus Ponens	$p \implies q, p$	q
Modus Tollens	$p \longrightarrow q, p$ $p \Longrightarrow q, \sim q$	
Generalization		$\sim p$
	p	$p \lor q$
Specialization	$p \wedge q$	p
Conjunction	p,q	$p \wedge q$
Elimination	$p \lor q, \sim q$	p
Transitivity	$p \implies q, q \implies r$	$p \implies r$
Division into cases	$p \land q, p \implies r, q \implies r$	r
Contradiction	$\sim p \implies \text{false}$	p
	•	•
Commutative	$A \cup B = B \cup A$	
Associative	$(A \cup B) \cup C = A \cup (B \cup C)$	
Distributive	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$A \cup \emptyset = A$	$A \cap U = A$
Identity		
Complement	$A \cup \bar{A} = U$	$A \cap \bar{A} = \emptyset$
Double Complement	$\bar{A} = A$	
Idempotent	$A \cup A = A$	$A \cap A = A$
Universal Bound	$A \cup U = U$	$A \cap \emptyset = \emptyset$
De Morgan's	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \bar{A} \cup \bar{B}$
Absorption	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Complements of U and Ø	$\bar{U} = \emptyset$	$\bar{\emptyset} = U$
Set Difference	$A \setminus B = A \cap \bar{B}$	$\psi = 0$
Set Difference	$A \setminus D = A \cap D$	
E1 Commentation		. 1. 1
F1 Commutative	a+b=b+a	ab = ba
F2 Associative	(a+b)+c=a+(b+c)	(ab)c = a(bc)
F3 Distributive	a(b+c) = ab + ac	(b+c)a = ba + ca
F4 Identity	0 + a = a + 0 = a	$1 \cdot a = a \cdot 1 = a$
F5 Additive inverses	a + (-a) = (-a) + a = 0	
F6 Reciprocals	$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$	$a \neq 0$
	50 50	
T1 Cancellation Add	a+b=a+c	b = c
T2 Possibility of Sub	There is one $x, a + x = b$	x = b - a
Т3	b - a = b + (-a)	
T4	-(-a) = a	
T5	a(b-c) = ab - ac	
T6	$a(b-c) = ab - ac$ $0 \cdot a = a \cdot 0 = 0$	
		1 / 0
T7 Cancellation Mul	ab = ac	$b = c, a \neq 0$
T8 Possibility of Div	$a \neq 0, ax = b$	$x = \frac{b}{a}$
T9	$a \neq 0, \frac{b}{a} = b \cdot a^{-1}$	
T10	$a \neq 0, (a^{-1})^{-1} = a$	
T11 Zero Product	$ab = 0 \Rightarrow a = 0 \lor b = 0$	
T12 Mul with -ve	(-a)b = a(-b)(ab)	$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$
T13 Equiv Frac		$b \stackrel{b}{\neq} 0, c \neq 0$
T14 Add Frac	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$b \neq 0, c \neq 0$ $b \neq 0, d \neq 0$
	$\frac{1}{b} + \frac{1}{d} = \frac{1}{bd}$	
T15 Mul Frac	$\frac{\overline{b}}{b} \cdot \frac{\overline{d}}{a} = \frac{\overline{b}}{b} \frac{\overline{d}}{d}$	$b \neq 0, d \neq 0$
T16 Div Frac	$\frac{a}{b} = \frac{ac}{bc}$ $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ac}{bd}$	$b \neq 0, d \neq 0$
1	a	·

O 11	\	
Ord1	$\forall a, b \in \mathbb{R}^+$	a+b>0, ab>0
Ord2	$\forall a, b \in \mathbb{R}_{\neq 0}$	a is positive or negative and not both
Ord3	0 is not positive	
a < b	means $b + (-a)$ is positive	
$a \leq b$	means $a < b$ or $a = b$	
a < 0	means a is negative	
T17 Trichotomy Law	$a < b \lor b > a \lor a = b$	
T18 Transitive Law	a < b and b < c	a < c
T19	a < b	a+c < b+c
T20	a < b and c > 0	ac < bc
T21	$a \neq 0$	$a^2 > 0$
T22	1 > 0	
T23	a < b and c < 0	ac > bc
T24	a < b	-a > -b
T25	ab > 0	a and b are both positive or negative
T26	a < c and b < d	a+b < c+d
T27	0 < a < c and < 0 < b < d	0 < ab < cd

2 Math

Defn. Even and Odd Integers n is even $\Leftrightarrow \exists$ an integer k s.t. n=2k n is odd $\Leftrightarrow \exists$ an integer k s.t. n=2k+1

Defn. Divisibility n and d are integers and $d \neq 0$ $d|n \Leftrightarrow \exists k \in \mathbb{Z} \text{ s.t. } n = dk$

Theorem 4.2.1. Every Integer is a rational number

Theorem 4.2.2. The sum of any two rational numbers is rational

Theorem 4.3.1. For all $a, b \in \mathbb{Z}^+$, if a|b, then $a \leq b$

Theorem 4.3.2. Only divisors of 1 are 1 and -1

Theorem 4.3.3. $\forall a, b, c \in \mathbb{Z} \text{ if } a|b, b|c, a|c$

Theorem 4.6.1. There is no greatest integer

Proposition. 4.6.4 For all integers n, if n^2 is even, then n is even.

Defn. Rational r is rational $\Leftrightarrow \exists a,b \in \mathbb{Z} \text{ s.t. } r = \frac{a}{b} \text{ and } b \neq 0$

Defn. Fraction in lowest term: fraction $\frac{a}{b}$ is lowest term if largest \mathbb{Z} that divies both a and b is 1

Theorem 4.7.1. $\sqrt{2}$ is irrational

3 Logic of Combound Statements

Theorem 3.2.1. Negation of universal stmt $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \text{ s.t. } \sim P(x)$

Theorem 3.2.1. Negation of existential stmt $\sim (\exists x \in D \text{ s.t. } P(x)) \equiv \forall x \in D, \sim P(x)$

Defn. Contrapositive of $p \Rightarrow q \equiv \sim q \Rightarrow \sim p$

Defn. Converse of $p \Rightarrow q$ is $q \Rightarrow p$

Defn. Inverse of $p \Rightarrow q$ is $\sim p \Rightarrow \sim q$

Defn. Only if: p only if q means $\sim q \Rightarrow \sim p \equiv p \Rightarrow q$

Defn. Biconditional: $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$

Defn. r is sufficient condition for s means if r then $s, r \Rightarrow s$

Defn. r is necessary condition for s means if $\sim r$ then $\sim s, s \Rightarrow r$

Defn. Proof by Contradiction

If you can show that the supposition that statement p is false leads to a contradiction, then you can conclude that p is true

4 Methods of Proof

Statement	Proof Approach	
$\forall x \in D \ P(X)$	Direct: Pick arbitrary x, prove P is true for that x.	
	Contradiction: Suppose not, i.e. $\exists x (\sim p)$ Hence supposition $\sim p$ is false (P3)	
$\exists x \in D \ P(X)$	Direct: Find x where P is true.	
	Contradiction: Suppose not, i.e. $\forall x (\sim p)$ Hence supposition $\sim p$ is false (P3)	
$P \Rightarrow Q$	Direct: Assume P is true, prove Q	
	Contradiction: Assume P is true and Q is false, then derive contradiction	
	Contrapositive: Assume $\sim Q$, then prove $\sim P$	
$P \Leftrightarrow Q$	Prove both $P \Rightarrow Q$ and $Q \Rightarrow P$	
xRy. Prove R is equivalence	Prove Reflexive, Symmetric and Transitive	
Reflexive		
Symmetric		
Antisymmetric		
Transitive		

Defn. Proof by Contraposition

- 1. Statement to be proved $\forall x \in D \ (P(x) \Rightarrow Q(x))$
- 2. Contrapositive Form: $\forall x \in D \ (\sim Q(x) \Rightarrow \sim P(x))$
- 3. Prove by direct proof
- 3.1 Suppose x is an element of D s.t. Q(X) is false
- 3.2 Show that P(x) is false.
- 4. Therefore, original statement is true

5 Set Theory

Defn. Set: Unordered collection of objects

Order and duplicates don't matter

Defn. Membership of Set \in : If S is set, $x \in S$ means x is an element of S

Defn. Cardinality of Set |S|: The number of elements in S

Common Sets:

 \mathbb{N} - Natural Numbers, $\{0, 1, 2\}$

 \mathbb{Z} - Integers

Q - Rational

 $\mathbb R$ - Real

 $\mathbb C$ - Complex

 \mathbb{Z}^{\pm} - Positive/Negative Integers

Defn. Subset $A \subseteq B \Leftrightarrow$ Every element of A is also an element of B $A \subseteq B \Leftrightarrow \forall x (x \in A \Rightarrow x \in B)$

Defn. Proper Subset $A \subsetneq B \Leftrightarrow (A \subseteq B \land A \neq B)$

Theorem 6.2.4. An empty set is a subset of every set, i.e. $\emptyset \subseteq A$ for all sets A

Defn. Cartesian Product $A \times B = \{(a, b) : a \in A \land b \in B\}$

Defn. Set Equality $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$ $A = B \Leftrightarrow \forall x (x \in A \Leftrightarrow x \in B)$

Defn. Union: $A \cup B = \{x \in U : x \in A \lor x \in B\}$

Defn. Intersection: $A \cap B = \{x \in U : x \in A \land x \in B\}$

Defn. Difference: $B \setminus A = \{x \in U : x \in B \land x \notin A\}$

Defn. Disjoint: $A \cap B = \emptyset$

Theorem 4.4.1. Quotient-Remainder $n \in \mathbb{Z}, d \in \mathbb{Z}^+$

there exists unique integers q and r such that n = dq + r and $0 \le r < d$

Defn. Power Set: The set of all subsets of A, has 2^n elements.

Theorem 6.3.1. Suppose A is a finite set with n elements, then P(A) has 2^n elements. $|P(A)| = 2^{|n|}$

Defn. Cartesian Product of $A_n = A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ... a_n) : a_1 \in A_1 \wedge a_2 \in A_2...$

Theorem 6.2.1. Subset Relations

- 1. Inclusion of Intersection: $A \cap B \subseteq A, A \cap B \subseteq B$
- 2. Inclusion in Union $A \subseteq A \cup B, B \subseteq A \cup B$
- 3. Transitive Property of Substs: $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$

6 Relations

Defn. Relation from A to B is a subset of $A \times B$

Given an ordered pair $(x,y) \in A \times B$, x is related to y by R is written $xRy \Leftrightarrow (x,y) \in R$

Defn. Domain, Co-domain, Range

Let A and B be sets and R be a relation from A to B

- 1. Domain of R: is set $\{a \in A : aRb \text{ for some } b \in B\}$
- 2. Codomain of R: Set B
- 3. Range of R: is set $\{b \in B : aRb \text{ for some } a \in A\}$

Defn. Inverse Relation

Let R be a relation from A to B, $R^{-1} = \{(y, x) \in B \times A : (x, y) \in R\}$ $\forall x \in A, \forall y \in B((y, x) \in R^{-1} \Leftrightarrow (x, y) \in R)$

Defn. Relation on a Set A is a relation from A to A.

Defn. Composition of Relations

A, B and C be sets. $R \subseteq A \times B$ be a relation. $S \subset B \times C$ be relation. Composition of R with S, denoted $S \circ R$ is relation from A to C such that:

 $\forall x \in A, \forall z \in C(xS \circ Rz \Leftrightarrow (\exists y \in B(xRy \land ySz)))$

Proposition. Composition is Associative A, B, C, D be sets. $R \subseteq A \times B, S \subseteq B \times C, T \subseteq C \times D$ $T \circ (S \circ R) = T \circ S \circ R$

Proposition. Inverse of Composition A, B, C be sets. $R \subseteq A \times B, S \subseteq B \times C$ $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Defn. Reflexivity, Symmetry, Transitivity

- 1. Reflexivity: $\forall x \in A(xRx)$
- 2. Symmetry: $\forall x, y \in A(xRy \Rightarrow yRx)$
- 3. Transitivity: $\forall x, y, z \in A(xRy \land yRz \Rightarrow xRz)$

Refer to proof 6

Defn. Transitive Closure

Transitive closure of R is relation R^t on A that satisfies

- 1. R^t is transitive
- 2. $R \subseteq R^t$
- 3. If \overline{S} is any other transitive relation that contains R, then $R^t \subseteq S$

Defn. Partition

P is partition of set A if

- 1. P is a set of which all elements are non empty subsets of A, $\emptyset \neq S \subseteq A$ for all $S \in P$
- 2. Every element of A is in exactly on element of P,

 $\forall x \in A \ \exists S \in P(x \in S) \ \text{and}$

 $\forall x \in A \ \exists S_1, S_2 \in P(x \in S_1 \land x \in S_2 \Rightarrow S_1 = S_2)$

OR $\forall x \in A \exists ! S \in P(x \in S)$

Elements of a partition are called components

Defn. Relation Induced by a partition

Given partition P of A, the relation R induced by partition:

 $\forall x, y \in A, xRy \Rightarrow \exists$ a component of S of P s.t. $x, y \in S$

Theorem 8.3.1 (Relation Induced by a Partition). Let A be a set with a partition and let R be a relation induced by the partition. Then R is reflexive, symmetric and transitive

Defn (Equivalence Relation). A be set and R be relation. R is equivalence relation iff R is reflexive, symmetric and transitive

Defn. Equivalence Class

Suppose A is set and \sim is equivalence relation on A. For each $A \in A$, equivalence class of a, denoted [a] and called class of a is set of all elements $x \in A$ s.t. $a \sim x$

$$[a]_{\sim} = \{ x \in A : a \sim x \}$$

Theorem 8.3.4. The partition induced by an Equivalence Relation

If A is a set and R is an equivalence relation on A, then distinct equivalence classes of R form a partition of A; that is, the union of the equivalence classes is all of A, and the intersection of any 2 disctinct classes is empty.

Defn. Congruence

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n iff a - b = nk, for some $k \in \mathbb{Z}$. In other words, n | (a - b). We write $a \equiv b \pmod{n}$

Defn. Set of equivalence classes

Let A be set and \sim be an equivalence relation on A. Denote by A/\sim , the set of all equivalence classes with respect to \sim , i.e.

$$A/\sim = \{[x]_\sim : x \in A\}$$

Theorem Equivalence Classes. form a partition Let \sim be an equiv. relation on A. Then A/\sim is a partition of A.

Defn (Antisymmetry). R is antisymmetric iff $\forall x, y \in A(xRy \land yRx \Rightarrow x = y)$ (DOES NOT IMPLY NOT SYMMETRIC)

Defn (Partial Order Relation). R is Partial Order iff R is reflexive, antisymmetric and transitive.

Defn. Partially Ordered Set Set A is called poset with respect to partial order relation R on A, denoted by (A, R) (Proof 7)

Defn. $x \leq y$ is used as a general partial order relation notation

Defn (Hasse Diagram). Let \preccurlyeq be a partial order on set A. Hasse diagram satisfies the following condition for all distinct $x, y, m \in A$

If $x \leq y$ and no $m \in A$ is s.t. $x \leq m \leq y$, then x is placed below y with a line joining them, else no line joins x and y.

Defn (Comparability). $a, b \in A$ are comparable iff $a \leq b$ or $b \leq a$. Otherwise, they are **noncomparable**

Defn (Maximal, Minimal, Largest Smallest). Set A be partially ordered w.r.t. a relation \leq and $c \in A$

- 1. c is maximal element of A iff $\forall x \in A$, either $x \leq c$ or x and c are non-comparable. OR $\forall x in A (c \leq x \Rightarrow c = x)$
- 2. c is minimal element of A iff $\forall x \in A$, either $c \leq x$ or x and c are non-comparable. OR $\forall x in A (x \leq c \Rightarrow c = x)$
- 3. c is largest element of A iff $\forall x \in A(x \leq c)$
- 4. c is smallest element of A iff $\forall x \in A(c \leq x)$

Proposition. A smallest element is minimal

Consider a partial order \leq on set A. Any smallest element is minimal.

1. Let c be smallest elemnt

- 2. Take any $x \in A$ s.t. $x \leq c$
- 3. By smallestness, we know $c \leq x$ too.
- 4. So c = x by antisymmetry

Defn (Total Order Relations). All elements of the set are comparable

R is total order iff R is a partial order and $\forall x, y \in A(xRy \vee yRx)$

Defn (Linearization of a partial order). Let \preccurlyeq be a partial order on set A. A linearization of \preccurlyeq is a total order $\preccurlyeq *$ on A s.t. $\forall x, y \in A(x \preccurlyeq y \Rightarrow x \preccurlyeq * y)$

Defn (Kahn's Algorithm). Input: A finite set A and partial order \leq on A

- 1. Set $A_0 := A$ and i := 0
- 2. Repeat until $A_i = \emptyset$
 - 2.1. Find minimal element c_i of A_i wrt \leq
 - 2.2. Set $A_{i+1} = A_i \setminus c_i$
 - 2.3. Set i = i + 1

Output: A linearization $\leq *$ of \leq defined by setting, for all indicies i, j $c_i \leq *$ $c_j \Leftrightarrow i \leq j$

Defn (Well ordered set). Let \leq be a total order on set A. A is well ordered iff every nonempty subset of A contains a smallest element. OR

 $\forall S \in P(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S(x \leq y))$ E.g. (\mathbb{N}, \leq) is well ordered but (\mathbb{Z}, \leq) is not as there is no smallest integer (Theorem 4.6.1)

7 Proofs

Proof L1S28. Prove that the product of two consecutive odd numbers is always odd.

- 1. Let a and b be two consecutive odd numbers
- 1.1. Without loss of generality, assume that a < b, hence b = a + 2
- 1.2. Now, a = 2k + 1 (by defin of odd numbers)
- 1.3. Similarly, b = a + 2 = 2k + 3
- 1.4. Therefore, $ab = (2k+1)(2k+3) = (4k^2+6k) + (2k+3) = 4k^2+8k+3 = 2(2k^2+4k+1)+1$ (by Basic Algebra)
- 1.5. Let $m = (2k^2 + 4k + 1)$ which is an integer (by closure of integers under \times and +)
- 1.6. Then ab = 2m + 1 which is odd (by defin of odd numbers)
- 2. Therefore, the product of two consecutive odd numbers is always odd.

Proof L4S16. Sum of 2 even \mathbb{Z} is even

- 1. Let m and n be two particular but arbitrarily chosen even intergers
- 1.1. Then m = 2r and n = 2s for some \mathbb{Z} r and s (by defining of even number)
- 1.2. m + n = 2r + 2s = 2(r + s) (by basic algebra)
- 1.3. 2(r+s) is an integer (closure of int under \times and +) and an even number (by defin of even number)
- 1.4. Hence m + n is an even number
- 2. Therefore sum of any two even integers is even

Proof T 4.6.1. There is no greatest integer (Contradiction)

- 1. Suppose not, i.e. there is a greatest intger
- 1.1. Lets call this greatest integer g, and $g \ge n$ for all integers n
- 1.2. Let G = g + 1
- 1.3. Now, G is an integer (closure of integers under +) and G > g
- 1.4. Hence, g is not the greatest integer, contradicting 1.1
- 2. Hence, the supposition that there is a greatest integer is false.
- 3. Therefore there is no greatest integer

- 1. Let sets X and Y be given. To prove X = Y
- 2. (\subseteq) Prove $X \subseteq Y$
- 3. (\supseteq) Prove $X \supseteq Y$
- 4. From (2) and (3), we can conclude that X = Y

Proof L5S22. L5S22 $\{x \in Z : x^2 = 1\} = \{1, -1\}$

- $1. \rightarrow$
- 1.1. Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$
- 1.2. Then $z \in \mathbb{Z}$ and $z^2 = 1$
- 1.3. So, $z^2 1 = (z 1)(z + 1) = 0$ (by basic algebra)
- 1.4. $\therefore z 1 = 0 \text{ or } z + 1 = 0$
- 1.5. $\therefore z = 1 \text{ or } z = -1$
- 1.6. So, $z \in \{1, -1\}$
- $2. \leftarrow$
- 2.1. Take any $z \in \{1, -1\}$
- 2.2. Then z = 1 or z = -1
- 2.3. In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$
- 2.4. So, $z \in \{x \in \mathbb{Z} : x^2 = 1\}$
- 3. Therefore, $\{x \in Z : x^2 = 1\} = \{1, -1\}$ (from (1) and (2))

Proof L6S27. $\forall x, y \in \mathbb{Z}(xRy \Leftrightarrow 3|(x-y))$ is reflexive, symmetric, transitive

- 1. Proof of Reflexivity
- 1.1. Let a be an arbitrarily chosen integer.
- 1.2. Now a a = 0
- 1.3. $3|0(\text{since }0=3\cdot 0), \text{ hence }3|(a-a)$
- 1.4. Therefore aRa (by defn of R)
- 2. Proof of Symmetry
- 2.1. Let a, b be arbitrarily chosen integers
- 2.2. Then 3|(a-b) (by defin of R), hence a-b=3k for some integer k (by defin of divisibility)
- 2.3. Multiplying both sides by -1 gives b a = 3(-k)
- 2.4. Since -k is an integer, 3|(b-a) (by defin of divisibility)
- 2.5. Therefore, $aRb \Rightarrow bRa$ (by defn of R)
- 3. Proof of Transitivity
- 3.1. Let a, b, c be arbitrarily chosen integers
- 3.2. Then, 3|(a-b) and 3|(b-c) (by defin of R), hence a-b=3r and b-c=3s (by defin of divisibility)
- 3.3. Adding both equations gives a c = 3r + 3s
- 3.4. Since r + s is an integer, 3|(a c) (by defin of divisibility)
- 3.5. Therefore $aRb \wedge bRc \Rightarrow aRc$ (by defin of R)

Lemma Rel.1 Equivalence Class L6S47. Let \sim be an equivalence relation on A. The following are equivalent for all $x, y \in A$ (i) $x \sim y$, (ii) [x] = [y], (iii) $[x] \cap [y] \neq \emptyset$

- 1. $x \sim y \Rightarrow [x] = [y]$
- 1.1. Suppose $x \sim y$
- 1.2. Then $y \sim x$ (by symmetry)
- 1.3. For every $z \in [x]$
- 1.3.1. $x \sim z$ (by defin of x)
- 1.3.2. $\therefore y \sim z$ (by transitivity of $y \sim x$)
- 1.3.3. $\therefore z \in [y]$ (by defin of [y])
- 1.4. This shows $[x] \subseteq [y]$
- 1.5. Switching roles of x and y, we can also see that $[y] \subseteq [x]$
- 1.6. Therefore, [x] = [y]
- 2. $[x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$
- 2.1. Suppose [x] = [y]
- 2.2. Then $[x] \cap [y] = [x]$ (by idempotent law for \cap)
- 2.3. However, we know $x \sim x$ (by reflexivity of \sim)

- 2.4. This shows $x \in [x] = [x] \cap [y]$ (by defin of [x] and (2.2))
- 2.5. Therefore $[x] \cap [y] \neq \emptyset$
- 3. $[x] \cap [y] \neq \emptyset \Rightarrow x \sim y$
- 3.1. Suppose $[x] \cap [y] \neq \emptyset$
- 3.2. Take $z \in [x] \cap [y]$
- 3.3. Then $z \in [x]$ and $z \in [y]$ (by defin of \cap)
- 3.4. Then $x \sim z$ and $y \sim z$ (by defin of [x] and [y])
- 3.5. $y \sim z$ implies $z \sim y$ (by defin of symmetry)
- 3.6. Therefore, $x \sim y$ (by transitivity)

Proposition L6S54. Congruence-mod n is an equivalence relation on \mathbb{Z} for every $n \in \mathbb{Z}^+$

- 1. (Reflexivity) For all $a \in \mathbb{Z}$
- 1.1. $a a = 0 = n \times 0$
- 1.2. So $a \equiv a \pmod{n}$ (by defin of congruence)
- 2. (Symmetry)
- 2.1. Let $a, b \in \mathbb{Z}$ s.t. $a \equiv a \pmod{n}$
- 2.2. Then there is a $k \in \mathbb{Z}$ s.t. a b = nk
- 2.3. Then b a = -(a b) = -nk = n(-k)
- 2.4. $-k \in \mathbb{Z}$ (by closure of integers under \times), so $b \equiv a \pmod{n}$ (by defin of congruence)
- 3. (Transitivity)
- 3.1. Let $a, b, c \in \mathbb{Z}$ s.t. $a \equiv a \pmod{n}$ and $b \equiv c \pmod{n}$
- 3.2. Then there is a $k, l \in \mathbb{Z}$ s.t. a b = nk and b c = nl
- 3.3. Then a c = (a b) + (b c) = nk + nl = n(k + 1)
- 3.4. $k+l \in \mathbb{Z}$ (by closure of integers under +), so $a \equiv c \pmod{n}$ (by defin of congruence)

Proof L6S69. $\forall a, b \in \mathbb{Z}^+, \forall a | b \Leftrightarrow b = ka$ for some integer k. Prove | is a partial order relation on A

- 1. | is reflexive: Suppose $a \in A$. Then $a = 1\dot{a}$, so a|a (by defin of divisibility)
- 2. | is antisymmetric
- 2.1. Suppose $a, b \in \mathbb{Z}^+$ such that aRb and bRa
- 2.2. Then b = ra and a = sb for some integers r and s (by definition of divides). It follows that b = ra = r(sb)
- 2.3. Dividing both sides by b gives 1 = rs
- 2.4. Only product of two positive integers that equals 1 is 1i.
- 2.5. Thus r = s = 1, and so $a = sb = 1\dot{b} = b$
- 2.6. Therefore, | is antisymmetric

OR

- 2.1. Suppose $a, b \in \mathbb{Z}^+$ such that a|b and b|a
- 2.2. then $a \leq b$ and $b \leq a$ (by theorem 4.3.1)
- 2.3. So a = b
- 3. | is transitive: Show that $\forall a, b, c \in A, a | b \land b | c \Rightarrow a | c$) (theorem 4.3.3)

Proof T01Q9. The product of any two odd integers is an odd integer

- 1. Take any 2 odd numbers a and b
- 2. Then a = 2k + 1 and b = 2p + 1 for $k, p \in \mathbb{Z}$ (by defin of odd number)
- 3. Then $a \cdot b = (2k+1)(2p+1) = (4kp+2k) + (2p+1) = 2(2kp+p+k) + 1$ (by defin of odd number)
- 4. Let q = 2kp + p + k which is an integer (by closure of int under + and ×
- 5. Then nm = 2q + 1 which is odd (by defn of odd numbers)

Proof T01Q10. Let n be an integer. Then n^2 is odd iff n is odd

- 1. Proof By Contraposition, that is "if n is even, n^2 is even (\Rightarrow)
- 1.1. Suppose n is even.
- 1.2. Then $\exists k \in \mathbb{Z} \text{ s.t. } n = 2k \text{ (by defn of even integers)}$
- 1.3. $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$

- 1.4. Hence, $n^2 = 2p$, where $p = 2k^2 \in \mathbb{Z}$ (by closure of integers under \times)
- 1.5. Therefore, n^2 is even and this proves that if n^2 is odd, n is odd.
- 2. If n is odd, then $n \times n = n^2$ is odd (T01Q9)
- Therefore n^2 is odd if and only if n is odd.

Proof T02Q3. Rational numbers are closed under addition

- 1. Let r and s be rational numbers
- 2. $\exists a, b, c, d \in \mathbb{Z}$ s.t. $r = \frac{a}{b}, s = \frac{c}{d}$ and $b \neq 0, d \neq 0$ (by defin of rational numbers) 3. Hence $r + s = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ (by basic algebra)
- $ad + bd \in Z$ and $bd \in Z$ (closure of integers under + and \times)
- 5. $bd \neq 0$ since $b \neq 0, d \neq 0$
- 6. Hence r + s is rational, therefore rational numbers are closed under addition

Proof T02Q10. if n is a product of 2 positive integers a and b, then $a \le n^{1/2}$ or $b \le n^{1/2}$

- 1. Proof by contraposition, that is if $a > n^{1/2}$ and $b > n^{1/2}$, then n is not a product of a and b
- Suppose $a > n^{1/2}$ and $b > n^{1/2}$, then $ab > n^{1/2} \cdot n^{1/2} = n$ (by Appendix A T27)
- Since $ab \neq n$, the contrapositive statement is true

or by contradiction

- Proof by contradiction, that is n = ab and $a > n^{1/2}$ and $b > n^{1/2}$
- Since $a > n^{1/2}$ and $b > n^{1/2}$, then $ab > n^{1/2} \cdot n^{1/2} = n$ (by Appendix A T27)
- This contradicts n = ab. Therefore original statement is true

Proof T03Q04. Let $A = \{2n + 1 : n \in \mathbb{Z}\}$ and $B = \{2n - 5 : n \in \mathbb{Z}\}$. Is A = B?

- \subseteq
 - 1.1. Let $a \in A$, and $a = 2n + 1, n \in \mathbb{Z}$
 - 1.2. Then a = 2n + 1 = 2(n+3) 5
 - 1.3. $n+3 \in \mathbb{Z}$ (by closure of int under +)
 - 1.4. Therefore, $a \in B$ (by defin of B)
- \supseteq
 - 2.1. Let $b \in A$, and $b = 2n 5, n \in \mathbb{Z}$
 - 2.2. Then b = 2n 5 = 2(n 3) + 1
 - 2.3. $n-3 \in \mathbb{Z}$ (by closure of int under -)
 - 2.4. Therefore, $b \in A$ (by defn of B)
- 3. Therefore, A = B

Proof T03Q05. Prove $\forall A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus C$

- 1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by defin of \cap)
- $= \{x : x \in A \land (x \in B \land x \notin C)\} \text{ (by defn of } \setminus \}$
- 3. $= \{x : x \in (A \land x \in B) \land x \notin C\}$ (by associativity of \land)
- 4. $= \{x : x \in (A \cap B) \land x \notin C\}$ (by defin of \cap)
- 5. = $\{x : x \in (A \cap B) \setminus C \text{ (by defn of } \setminus \}$

Proof T03Q05. Prove $\forall A, B, C, A \cap (B \setminus C) = (A \cap B) \setminus C$

- 1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by defin of \cap)
- $= \{x : x \in A \land (x \in B \land x \notin C)\} \text{ (by defn of } \setminus)$
- 3. $= \{x : x \in (A \land x \in B) \land x \notin C\}$ (by associativity of \land)
- 4. $= \{x : x \in (A \cap B) \land x \notin C\}$ (by defin of \cap)

```
5. = \{x : x \in (A \cap B) \setminus C \text{ (by defn of } \setminus \}
    ProofT03Q8. Let A and B be set. Show that A \subseteq B if and only if A \cup B = B
    To show A \cup B = B, we need to show A \cup B \subseteq B and B \subseteq A \cup B
    1.1. Suppose A \subseteq B
    1.2. (Show A \cup B \subseteq B)
           1.2.1. Let z \in A \cup B
           1.2.2. Then z \in A or z \in B (by defin of \cup)
           1.2.3. Case 1: Suppose z \in A, then Z \in B as A \subseteq B line (1.1)
           1.2.4. Case 2: Suppose z \in B, then z \in B. We have z \in B in either case
    1.3. (Show A \cup B \supseteq B)
           1.3.1. Let z \in B
           1.3.2. Then z \in A or z \in B (by generalization)
           1.3.3. So z \in A \cup B (by defn of \cup)
    1.4.
           Therefore A \cup B = B
     \Leftarrow
    2.1. Suppose A \cup B = B
    2.2. Let z \in A
           2.2.1. Then z \in A or z \in B (by generalization)
           2.2.2. So z \in A \cup B (by defin of \cup)
           2.2.3. So z \in B since A \cup B = B (2.1)
    2.3. Therefore A \subseteq B
3. Therefore, A \subseteq B if and only iff A \cup B = B
    Proof T04Q05. Relation S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3 \text{ is even} \}, Proof S \circ S = S
1. (\subseteq) Suppose (x, z) \in S \circ S
    1.1. Then (x,y) \in S and (y,z) \in S for some y \in Z (defin of composition of relations)
    1.2. So x^3 + y^3 is even and y^3 + z^3 is even 1.3. This implies that x^3 + 2y^3 + z^3 is even
    1.4. This implies that x^3 + z^3 is even as 2y^3 is even
    1.5. Therefore, (x, z) \in S (by defin of S)
   (\supseteq) Suppose (x, z) \in S
    2.1. Then x^3 + z^3 is even (by defin of S)
    2.2. Case 1: x^3 is odd.
           2.2.1. Then z^3 is also odd.
           2.2.2. This implies that x^3 + 1^3 is even and 1^3 + z^3 is even
           2.2.3. Thus, (x, 1) \in S and (1, z) \in S (by defin of S)
           2.2.4. So, (x, z) \in S \circ S
    2.3. Case 2: x^3 is even.
           2.3.1. Then z^3 is also even.
           2.3.2. This implies that x^3 + 0^3 is even and 0^3 + z^3 is even
           2.3.3. Thus, (x,0) \in S and (0,z) \in S (by defin of S)
           2.3.4. So, (x, z) \in S \circ S
    2.4.
          In all cases, (x, z) \in S \circ S
    OR
```

Proof. R is asymmetric if and only if R is antisymmetric and irreflexive.

 (\supseteq) Suppose $(x,z) \in S$

3.1. Note that $(x, x) \in S$ as $x^3 + x^3$ is even

. \Longrightarrow 1.1. R is irreflexive (R is irreflexive \Longrightarrow R is antisymmetric and irreflexive)
1.1.1. Let $x \in A$ s.t. $xRx \Longrightarrow x \not Rx$ (R is Asymmetric)
1.1.2. Since $x \not Rx$, R is irreflexive (by defn of irreflexive)

3.2. Since $(x,x) \in S$ and $(x,z) \in S$, we have $(x,z) \in S \circ S$ (by defin of composition of relations)

- 1.1. R is antisymmetric (Tutorial Qn 6c)
- 2. \Leftarrow (R is antisymmetric and irreflexive \implies asymmetry)
 - 2.1. Let $x, y \in A$, s.t. xRy is antisymmetric and irreflexive
 - 2.2. There is 2 cases to consider, x = y and $x \neq y$
 - 2.3. x = y
 - 2.3.1. xRx is not valid as it contradicts irreflexive, $\forall x \in A(x Rx)$
 - 2.3.2. Therefore, $xRx \implies x \not Rx$
 - 2.4. $x \neq y$
 - 2.4.1. $xRy \wedge yRx \implies x = y$

Proof L07S26 Eg 14. $f: \mathbb{Q} \Rightarrow \mathbb{Q}$ by setting $f(x) = 3x + 1, x \in Q$. Is f injective? Yes

- 1. Let $x_1, x_2 \in \mathbb{Q}$ s.t. $f(x_1) = f(x_2)$
- 2. Then $3x_1 + 1 = 3x_2 + 1$
- 3. So $x_1 = x_2$

Proof L07S28 Eg 16. $f: \mathbb{Q} \Rightarrow \mathbb{Q}$ by setting $f(x) = 3x + 1, x \in \mathbb{Q}$. Is f surjective? Yes

- 1. Take any $y \in \mathbb{Q}$
- 2. Let x = (y 1)/3
- 3. Then $x \in \mathbb{Q}$ and $f(x) = 3x + 1 = 3(\frac{y-1}{3}) + 1 = y$

Proof L07S34. If g_1 and g_2 are inverses of $f: X \Rightarrow Y$, then $g_1 = g_2$

- 1. Note that $g_1, g_2: Y \Rightarrow X$
- 2. Since g_1 and g_2 are inverses of f, for all $x \in X$ and $y \in Y, x = g_1(y) \Leftrightarrow y = f(x) \Leftrightarrow x = g_2(y)$
- 3. Therefore, $g_1 = g_2$

Proof Theorem 7.2.3. $f: X \Rightarrow Y$ is bijective iff f has inverse

- 1. ("if") Suppose f has an inverse, say $g: Y \Rightarrow X$
 - 1.1. We show injectivity of f
 - 1.1.1. Let $x_1, x_2 \in Xs.t. f(x_1) = f(x_2)$
 - 1.1.2. Define $y = f(x_1) = f(x_2)$
 - 1.1.3. Then $x_1 = g(y)$ and $x_2 = g(y)$ as g is an inverse of f
 - 1.1.4. Hence $x_1 = x_2$
 - 1.2. We show surjectivity of f
 - 1.2.1. Let $y \in Y$
 - 1.2.2. Define x = g(y)
 - 1.2.3. Then y = f(x) as g is an inverse of f
 - 1.3. Therefore f is bijective
- 2. ("Only if") Suppose f is bijective
 - 2.1. Then $\forall y \in Y \exists ! x \in X(y = f(x))$ (by defin of bijection)
 - 2.2. Define the function $g: Y \Rightarrow X$ by setting g(y) to be the unique $x \in X$ s.t. y = f(x) for all $y \in Y$
 - 2.3. This q is well defined and is an inverse of f (by defined inverse function)
- 3. Therefore $f: X \Rightarrow Y$ is bijective iff f has an inverse

Proof S07S47. $(h \circ g) \circ f = h \circ (g \circ f)$

- 1. Domains of $(h \circ g) \circ f$ and $h \circ (g \circ f)$ are both A.
- 2. Codomains of $(h \circ g) \circ f$ and $h \circ (g \circ f)$ are both D.
- 3. For every $x \in A$, $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))) = h((g \circ f)(x)) = (h \circ (g \circ f))(x)$

Proof Theorem 7.3.3. If $f: X \Rightarrow Y$ and $g: Y \Rightarrow Z$ are both injective, then $g \circ f$ is injective

- Suppose $f: X \Rightarrow Y$ and $g: Y \Rightarrow Z$ are injections and let $x_1, x_2 \in X$ such that $(g \circ f)(x_1) = (g \circ f)(x_2)$
- Then $g(f(x_1)) = g(f(x_2))$ (by defin of function composition)
- Since g is injective, so $f(x_1) = f(x_2)$ (by defin of injection)
- Since f is injective, so $x_1 = x_2$ (by defin of injection)
- Therefore $g \circ f$ is injective

Proof Theorem 7.3.4. If $f: X \Rightarrow Y$ and $q: Y \Rightarrow Z$ are both surjective, then $q \circ f$ is surjective

- Suppose $f: X \Rightarrow Y$ and $g: Y \Rightarrow Z$ are surjections and let $z \in Z$ such that $(g \circ f)(x_1) = (g \circ f)(x_2)$
- Since g is surjective, so there is an element $y \in Y$ s.t. g(y) = z (by defin of surjection)
- Since f is surjective, so there is an element $x \in X$ s.t. f(x) = y (by defin of surjection)
- 4. Hence there exists an element $x \in X$ s.t. $(g \circ f)(x) = g(f(x)) = g(y) = z$
- Therefore, $g \circ f$ is surjective

Proof. Proof Addition on \mathbb{Z}_n is well defined

- 1. Let $[x_1], [y_1], [x_2], [y_2] \in \mathbb{Z}_n$ s.t. $[x_1] = [x_2]$ and $[y_1] = [y_2]$
- Then $x_1 \equiv x_2 \pmod{n}$ and $y_1 \equiv y_2 \pmod{n}$ (by defin of congruence)
- Using definition of congruence to find $k, l \in \mathbb{Z}$ s.t. $x_1 x_2 = nk$ and $y_1 y_2 = nl$
- 4. Note that $(x_1 + y_1) (x_2 + y_2) = (x_1 x_2) + (y_1 y_2) = nk + nl = n(k + l)$
- 5. So $x_1 + y_1 = x_2 + y_2 \pmod{n}$ (by defin of congruence)
- Therefore, $[x_1] + [y_1] = [x_1 + y_1] = [x_2 + y_2] = [x_2] + [y_2]$ (by lemma Rel.1 Equivalence classes)

Proof. Proof Multiplication on \mathbb{Z}_n is well defined

- 1. Let $[x_1], [y_1], [x_2], [y_2] \in \mathbb{Z}_n$ s.t. $[x_1] = [x_2]$ and $[y_1] = [y_2]$
- Then $x_1 \equiv x_2 \pmod{n}$ and $y_1 \equiv y_2 \pmod{n}$ (by defin of congruence)
- 3. Using defin of congruence to find $k, l \in \mathbb{Z}$ s.t. $x_1 x_2 = nk$ and $y_1 y_2 = nl$
- Note that $(x_1 \cdot y_1) (x_2 \cdot y_2) = (nk + x_2) \cdot (nl + y_2) (x_2 \cdot y_2) = n(nkl + ky_2 + lx_2)$ where $(nkl, ky_2, lx_2) \in \mathbb{Z}$ (Closure of integer addition)
- So $x_1 \cdot y_1 = x_2 \cdot y_2 \pmod{n}$ (by defin of congruence)
- Therefore, $[x_1] \cdot [y_1] = [x_1 \cdot y_1] = [x_2 \cdot y_2] = [x_2] \cdot [y_2]$ (by lemma Rel.1 Equivalence classes)

Proof Theorem 5.2.2. for all $n \ge 1, 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

- 1. Let $p(n) \equiv (1 + 2 + ... + n = \frac{n(n+1)}{2}, \forall n \in \mathbb{Z}^+$
- 2. Basis step: $1 = \frac{1(1+1)}{2}$, therefore P(1) is true.
- 3. Assume P(k) is true for some $k \ge 1$. That is $1+2+\ldots+k=\frac{k(k+1)}{2}$
- Inductive Step: (To show P(k+1) is true) 4.1. $1+2+...+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
 - 4.2. Therefore P(k+1) is true
- Therefore, P(n) is true for $n \in \mathbb{Z}^+$ (We have proved P(1) and $P(k) \Rightarrow P(k+1)$)

Proof Theorem 5.2.3. for any real number $r \neq 1$, and any integers $n \geq 0$, $\sum_{i=0}^{n} r^i = \frac{r^{n+1}-1}{r-1}$

- 1. Let $P(n) \equiv (\sum_{i=0}^n r^i = \frac{r^{n+1}-1}{r-1}, r \neq 1, n \geq 0$ 2. Basis step: $r^0 = 1 = \frac{r^1-1}{r-1}$, therefore P(0) is true

3. Assume P(k) is true for
$$k \ge 0$$
. That is, $\sum_{i=0}^k r^i = \frac{r^{k+1}-1}{r-1}$
4. Inductive Step: (To show $P(k+1)$ is true)
4.1. $\sum_{i=0}^{k+1} r^i = \sum_{i=0}^k r^i + r^{k+1} = \frac{r^{k+1}-1}{r-1} + r^{k+1} = \frac{r^{k+1}-1+r^{k+1}(r-1)}{r-1} = \frac{r^{((k+1)+1)}-1}{r-1}$

- 4.2. Therefore P(k+1) is true.
- Therefore, P(n) is true for $n \geq 0$

Proof Proposition 5.3.1. For all integers $n \ge 0, 2^{2n} - 1$ is divisible by 3

- Let $P(n) \equiv (3|(2^{2n}-1))$ for all integers $n \geq 0$
- Basis Step: $2^{2 \cdot 0} 1 = 0$ is divisible by 3, therefore P(0) is true
- Assume P(k) is true for $k \ge 0$. That is $3|(2^{2k} 1)$ 3.1. This means that $2^{2k} 1 = 3r$ for some integer r (by defin of divisibility)
- Inductive Step: To show P(k+1) is true
 - $4.1. \quad 2^{2(k+1)} 1 = 2^{2k} \cdot 4 1 = 2^{2k} \cdot (3 \cdot 1) 1 = 3 \cdot 2^{2k} + (2^{2k} 1) = 3 \cdot 2^{2k} + 3r = 3(2^{2k} + r)$
 - 4.2. Since $3|2^{2(k+1)}-1$, therefore P(k+1) is true
- Therefore, P(n) is true for all integers $n \geq 0$

Proof Proposition 5.3.2. For all integers $n \geq 3, 2n + 1 < 2^n$

- 1. Let $P(n) \equiv 2n + 1 < 2^n$, for all integers $n \geq 3$
- 2. Basis Step: $2(3) + 1 = 7 < 8 = 2^3$, therefore P(3) is true
- Assume P(k) is true for k > 3. That is $2k + 1 < 2^k$
- Inductive Step: To show P(k+1) is true
 - 4.1. $2(k+1)+1=(2k+1)+2<2^k+2<2^k+2^k=2^{k+1}$ (because $2<2^k$ for all integers $k\geq 2$
 - 4.2. Therefore P(k+1) is true
- 5. Therefore, P(n) is true for all integers $n \geq 3$

Proof. Any integer > 1 is divisible by a prime number (Proof by 2PI)

- 1. Let $P(n) \equiv (n \text{ is divisible by a prime}), \text{ for } n > 1$
- Basis step: P(2) is true since 2 is divisible by 2.
- Inductive step: To show that for all integers $k \geq 2$, if P(i) is true for all integers i from 2 through k, then P(k+1) is also true.
 - 3.1. Case 1(k+1) is prime: In this case k+1 is divisible by a prime number which is itself
 - 3.2. Case 2(k+1) is not prime): In this case: k+1=ab where a and b are integers with 1 < a < k+1 and 1 < b < k + 1.
 - 3.2.1. Thus, in particular, $2 \le a \le k$ and so by inductive hypothesis, a is divisible by a prime number p.
 - 3.2.2. In addition, because k + 1 = ab, so k + 1 is divisible by a
 - 3.2.3. By transitivity of divisibility, k+1 is divisible by prime p
- Therefore, any integer greater than 1 is divisible by a prime

Proof. For all integers $n \geq 12$, n = 4a + 5b, for some $a, b \in \mathbb{N}$ (Proof with 1PI)

- 1. Let $P(n) \equiv \text{(amount of } \$n \text{ can be formed by } \$4 \text{ and } \$5 \text{ coins) for } n \geq 12$
- 2. Basis step: $12 = 3 \times 4$, so 3 \$4 can be used. Therefore, P(12) is true.
- Assume P(k) is true for $k \ge 12$
- 4. Inductive Step: (To show P(k+1) is true.)
 - 4.1. Case 1: If a \$4 coin is used for \$k amount, replace it with a \$5 coin to make \$(k+1)
 - 4.2. Case 2: If a no \$4 coin is used for \$k amount, then $k \geq 15$, so there must be at least three \$5 coins. We can replace three \$5 coins with 4 \$4 coins to make (k+1)
 - 4.3. In both cases, P(k+1) is true.
- Therefore, P(n) is true for $n \ge 12$

Proof. For all integers $n \geq 12$, n = 4a + 5b, for some $a, b \in \mathbb{N}$ (Proof with 2PI)

1. Let $P(n) \equiv (n = 4a + 5b)$ for some $a, b \in \mathbb{N}, n \ge 12$

- Basis step: Show P(12), P(13), P(14), P(15) hold. $12 = 4 \cdot 3 + 5 \cdot 0; 13 = 4 \cdot 2 + 5 \cdot 1; 14 = 4 \cdot 1 + 5 \cdot 2; 15 = 4 \cdot 0 + 5 \cdot 3$
- Assume P(i) holds for $12 \le i \le k$ given some $k \ge 15$
- 4. Inductive Step: (To show P(k+1) is true.)
 - 4.1. P(k-3) holds(by induction hypothesis), so k-3=4a+5b for some $a,b\in\mathbb{N}$
 - 4.2. k+1=(k-3)+4=(4a+5b)+4=4(a+1)+5b
 - 4.3. Hence P(k+1) is true
- Therefore, P(n) is true for $n \ge 12$

Proof. For any positive integer n, if $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ are real numbers, then $\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$

- Let P(n) = (∑_{i=1}ⁿ (a_i + b_i) = ∑_{i=1}ⁿ a_i + ∑_{i=1}ⁿ b_i) for n ≥ 1
 Basis step: P(1) is true since ∑_{i=1}¹ (a_i + b_i) = a₁ + b₁ = ∑_{i=1}¹ a_i + ∑_{i=1}¹ b_i
 Inductive Hypothesis for some k ≥ 1, ∑_{i=1}^k (a_i + b_i) = ∑_{i=1}^k a_i + ∑_{i=1}^k b_i
 Inductive Step: ∑_{i=1}^{k+1} (a_i + b_i) = ∑_{i=1}^k (a_i + b_i) + (a_{k+1} + b_{k+1}) (by defin of ∑) = ∑_{i=1}^k a_i + ∑_{i=1}^k b_i + (a_{k+1} + b_{k+1}) (by inductive hypothesis) = ∑_{i=1}^k a_i + a_{k+1} + ∑_{i=1}^k b_i + b_{k+1} (by the associative and commutative laws of algebra) = ∑_{i=1}^{k+1} a_i + ∑_{i=1}^{k+1} b_i (by defin of ∑) Therefore P(k + 1) is true
 Therefore P(n) is true for any positive integer n
- Therefore P(n) is true for any positive integer n

Proof. Pigeonhole Principle

- 1. Note that A is finite. Suppose $A = \{a_1, a_2, ..., a_m\}$ where m = |A|
- Injectivity of f tells us that if $a_i \neq a_j$, then $f(a_i) \neq f(a_j)$
- So $f(a_1), f(a_2), ..., f(a_m)$ are m different elements of B.
- This shows that $|B| \ge m = |A|$

Proof. Dual Pigeonhole Principle

- Note that B is finite. Suppose $B = \{b_1, b_2, ..., b_m\}$ where m = |B|
- For each b_i , use the surjectivity of f to find $a_i \in A$ s.t. $f(a_i) = b_i$
- If $b_i \neq b_j$, then $f(a_i) \neq f(a_j)$ and so $a_i \neq a_j$ as f is a function
- So $a_1, a_2, ..., a_n$ are n different elements of A
- This shows that $|A| \ge n = |B|$