
1 Tables
Commutative p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p
Associative p ∧ q ∧ r ≡ (p ∧ q) ∧ r
Distributive p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Identity p ∧ true ≡ p p ∨ false ≡ p
Negation p∨ ∼ p ≡ true p∧ ∼ p ≡ false
Double Negative ∼ (∼ p) ≡ p
Idempotent p ∨ p ≡ p p ∧ p ≡ p
Universal bound p ∨ true ≡ true p ∧ false ≡ false
de Morgan’s ∼ (p ∧ q) ≡∼ p∨ ∼ q ∼ (p ∨ q) ≡∼ p∧ ∼ q
Absorption p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ p
Implication p⇒ q ≡∼ p ∨ q
∼(Implication) ∼ (p⇒ q) ≡ p∧ ∼ q

Modus Ponens p =⇒ q, p q
Modus Tollens p =⇒ q,∼ q ∼ p
Generalization p p ∨ q
Specialization p ∧ q p
Conjunction p, q p ∧ q
Elimination p ∨ q,∼ q p
Transitivity p =⇒ q, q =⇒ r p =⇒ r
Division into cases p ∧ q, p =⇒ r, q =⇒ r r
Contradiction ∼ p =⇒ false p

Commutative A ∪B = B ∪A
Associative (A ∪B) ∪ C = A ∪ (B ∪ C)
Distributive A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
Identity A ∪ ∅ = A A ∩ U = A
Complement A ∪ Ā = U A ∩ Ā = ∅
Double Complement ¯̄A = A
Idempotent A ∪A = A A ∩A = A
Universal Bound A ∪ U = U A ∩ ∅ = ∅
De Morgan’s A ∪B = Ā ∩ B̄ A ∩B = Ā ∪ B̄
Absorption A ∪ (A ∩B) = A A ∩ (A ∪B) = A
Complements of U and ∅ Ū = ∅ ∅̄ = U
Set Difference A \B = A ∩ B̄

F1 Commutative a+ b = b+ a ab = ba
F2 Associative (a+ b) + c = a+ (b+ c) (ab)c = a(bc)
F3 Distributive a(b+ c) = ab+ ac (b+ c)a = ba+ ca
F4 Identity 0 + a = a+ 0 = a 1 · a = a · 1 = a
F5 Additive inverses a+ (−a) = (−a) + a = 0
F6 Reciprocals a · 1a = 1

a · a = 1 a ̸= 0

T1 Cancellation Add a+ b = a+ c b = c
T2 Possibility of Sub There is one x, a+ x = b x = b− a
T3 b− a = b+ (−a)
T4 −(−a) = a
T5 a(b− c) = ab− ac
T6 0 · a = a · 0 = 0
T7 Cancellation Mul ab = ac b = c, a ̸= 0
T8 Possibility of Div a ̸= 0, ax = b x = b

a

T9 a ̸= 0, b
a = b · a−1

T10 a ̸= 0, (a−1)−1 = a
T11 Zero Product ab = 0⇒ a = 0 ∨ b = 0
T12 Mul with -ve (−a)b = a(−b)−−(ab) −a

b = −a
b = a

−b

T13 Equiv Frac a
b = ac

bc b ̸= 0, c ̸= 0
T14 Add Frac a

b + c
d = ad+bc

bd b ̸= 0, d ̸= 0
T15 Mul Frac a

b ·
c
d = ac

bd b ̸= 0, d ̸= 0

T16 Div Frac
a
b
c
d
= ac

bd b ̸= 0, d ̸= 0
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Ord1 ∀a, b ∈ R+ a+ b > 0, ab > 0
Ord2 ∀a, b ∈ R ̸=0 a is positive or negative and not both
Ord3 0 is not positive
a < b means b+ (−a) is positive
a ≤ b means a < b or a = b
a < 0 means a is negative
T17 Trichotomy Law a < b ∨ b > a ∨ a = b
T18 Transitive Law a < b and b < c a < c
T19 a < b a+ c < b+ c
T20 a < b and c > 0 ac < bc
T21 a ̸= 0 a2 > 0
T22 1 > 0
T23 a < b and c < 0 ac > bc
T24 a < b −a > −b
T25 ab > 0 a and b are both positive or negative
T26 a < c and b < d a+ b < c+ d
T27 0 < a < c and < 0 < b < d 0 < ab < cd

2 Math
Defn. Even and Odd Integers
n is even ⇔ ∃ an integer k s.t. n = 2k
n is odd ⇔ ∃ an integer k s.t. n = 2k + 1

Defn. Divisibility
n and d are integers and d ̸= 0
d|n⇔ ∃k ∈ Z s.t. n = dk

Theorem 4.2.1. Every Integer is a rational number

Theorem 4.2.2. The sum of any two rational numbers is rational

Theorem 4.3.1. For all a, b ∈ Z+, if a|b, then a ≤ b

Theorem 4.3.2. Only divisors of 1 are 1 and −1

Theorem 4.3.3. ∀a, b, c ∈ Z if a|b, b|c, a|c

Theorem 4.6.1. There is no greatest integer

Proposition. 4.6.4 For all integers n, if n2 is even, then n is even.

Defn. Rational r is rational ⇔ ∃a, b ∈ Z s.t. r = a
b and b ̸= 0

Defn. Fraction in lowest term: fraction a
b is lowest term if largest Z that divies both a and b is 1

Theorem 4.7.1.
√
2 is irrational

3 Logic of Combound Statements
Theorem 3.2.1. Negation of universal stmt ∼ (∀x ∈ D,P (x)) ≡ ∃x ∈ D s.t. ∼ P (x)

Theorem 3.2.1. Negation of existential stmt ∼ (∃x ∈ D s.t. P (x)) ≡ ∀x ∈ D,∼ P (x)

Defn. Contrapositive of p⇒ q ≡∼ q ⇒∼ p

Defn. Converse of p⇒ q is q ⇒ p

Defn. Inverse of p⇒ q is ∼ p⇒∼ q

Defn. Only if: p only if q means ∼ q ⇒∼ p ≡ p⇒ q

Defn. Biconditional: p⇔ q ≡ (p⇒ q) ∧ (q ⇒ p)

Defn. r is sufficient condition for s means if r then s, r ⇒ s
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Defn. r is necessary condition for s means if ∼ r then ∼ s, s⇒ r

Defn. Proof by Contradiction
If you can show that the supposition that sttatement p is false leads to a contradiction, then you can conclude that p is
true

4 Methods of Proof
Statement Proof Approach
∀x ∈ D P (X) Direct: Pick arbitrary x, prove P is true for that x.

Contradiction: Suppose not, i.e. ∃x(∼ p)... Hence supposition ∼ p is false (P3)
∃x ∈ D P (X) Direct: Find x where P is true.

Contradiction: Suppose not, i.e. ∀x(∼ p)... Hence supposition ∼ p is false (P3)
P ⇒ Q Direct: Assume P is true, prove Q

Contradiction: Assume P is true and Q is false, then derive contradiction
Contrapositive: Assume ∼ Q, then prove ∼ P

P ⇔ Q Prove both P ⇒ Q and Q⇒ P
xRy. Prove R is equivalence Prove Reflexive, Symmetric and Transitive

Reflexive
Symmetric

Antisymmetric
Transitive

Defn. Proof by Contraposition
1. Statement to be proved ∀x ∈ D (P (x)⇒ Q(x))
2. Contrapositive Form: ∀x ∈ D (∼ Q(x)⇒∼ P (x))
3. Prove by direct proof
3.1 Suppose x is an element of D s.t. Q(X) is false
3.2 Show that P(x) is false.
4. Therefore, original statement is true

5 Set Theory
Defn. Set: Unordered collection of objects
Order and duplicates don’t matter

Defn. Membership of Set ∈: If S is set, x ∈ S means x is an element of S

Defn. Cardinality of Set |S|: The number of elements in S

Common Sets:

N - Natural Numbers, {0, 1, 2}

Z - Integers

Q - Rational

R - Real

C - Complex

Z± - Positive/Negative Integers

Defn. Subset A ⊆ B ⇔ Every element of A is also an element of B
A ⊆ B ⇔ ∀x(x ∈ A⇒ x ∈ B)

Defn. Proper Subset A ⊊ B ⇔ (A ⊆ B ∧A ̸= B)

Theorem 6.2.4. An empty set is a subset of every set, i.e. ∅ ⊆ A for all sets A

Defn. Cartesian Product A×B = {(a, b) : a ∈ A ∧ b ∈ B}

Defn. Set Equality A = B ⇔ A ⊆ B ∧B ⊆ A
A = B ⇔ ∀x(x ∈ A⇔ x ∈ B)
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Defn. Union: A ∪B = {x ∈ U : x ∈ A ∨ x ∈ B}

Defn. Intersection: A ∩B = {x ∈ U : x ∈ A ∧ x ∈ B}

Defn. Difference: B \A = {x ∈ U : x ∈ B ∧ x ̸∈ A}

Defn. Disjoint: A ∩B = ∅

Theorem 4.4.1. Quotient-Remainder n ∈ Z, d ∈ Z+

there exists unique integers q and r such that n = dq + r and 0 ≤ r < d

Defn. Power Set: The set of all subsets of A, has 2n elements.

Theorem 6.3.1. Suppose A is a finite set with n elements, then P (A) has 2n elements. |P (A)| = 2|n|

Defn. Cartesian Product of An = A1 ×A2 × ...×An = {(a1, a2, ...an) : a1 ∈ A1 ∧ a2 ∈ A2...

Theorem 6.2.1. Subset Relations

1. Inclusion of Intersection: A ∩B ⊆ A,A ∩B ⊆ B
2. Inclusion in Union A ⊆ A ∪B,B ⊆ A ∪B
3. Transitive Property of Substs: A ⊆ B ∧B ⊆ C ⇒ A ⊆ C

6 Relations
Defn. Relation from A to B is a subset of A×B
Given an ordered pair(x, y) ∈ A×B, x is related to y by R is written xRy ⇔ (x, y) ∈ R

Defn. Domain, Co-domain, Range
Let A and B be sets and R be a relation from A to B

1. Domain of R: is set {a ∈ A : aRb for some b ∈ B}
2. Codomain of R: Set B
3. Range of R: is set {b ∈ B : aRb for some a ∈ A}

Defn. Inverse Relation
Let R be a relation from A to B, R−1 = {(y, x) ∈ B ×A : (x, y) ∈ R}
∀x ∈ A, ∀y ∈ B((y, x) ∈ R−1 ⇔ (x, y) ∈ R)

Defn. Relation on a Set A is a relation from A to A.

Defn. Composition of Relations
A, B and C be sets. R ⊆ A×B be a relation. S ⊂ B×C be relation. Composition of R with S, denoted S ◦R is relation
from A to C such that:
∀x ∈ A, ∀z ∈ C(xS ◦Rz ⇔ (∃y ∈ B(xRy ∧ ySz)))

Proposition. Composition is Associative A,B,C,D be sets. R ⊆ A×B, S ⊆ B × C, T ⊆ C ×D
T ◦ (S ◦R) = T ◦ S ◦R

Proposition. Inverse of Composition A,B,C be sets. R ⊆ A×B, S ⊆ B × C
(S ◦R)−1 = R−1 ◦ S−1

Defn. Reflexivity, Symmetry, Transitivity

1. Reflexivity: ∀x ∈ A(xRx)
2. Symmetry: ∀x, y ∈ A(xRy ⇒ yRx)
3. Transitivity:∀x, y, z ∈ A(xRy ∧ yRz ⇒ xRz)

Refer to proof 6

Defn. Transitive Closure
Transitive closure of R is relation Rt on A that satiesfies

1. Rt is transitive
2. R ⊆ Rt

3. If S is any other transitive relation that contains R, then Rt ⊆ S
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Defn. Partition
P is partition of set A if

1. P is a set of which all elements are non empty subsets of A, ∅ ̸= S ⊆ A for all S ∈ P
2. Every element of A is in exactly on element of P,
∀x ∈ A ∃S ∈ P (x ∈ S) and
∀x ∈ A ∃S1, S2 ∈ P (x ∈ S1 ∧ x ∈ S2 ⇒ S1 = S2)

OR ∀x ∈ A ∃!S ∈ P (x ∈ S)
Elements of a partition are called components

Defn. Relation Induced by a partition
Given partition P of A, the relation R induced by partition:
∀x, y ∈ A, xRy ⇒ ∃ a component of S of P s.t. x, y ∈ S

Theorem 8.3.1 (Relation Induced by a Partition). Let A be a set with a partition and let R be a relation induced by
the partition. Then R is reflexive, symmetric and transitive

Defn (Equivalence Relation). A be set and R be relation. R is equivalence relation iff R is reflexive, symmetric and
transitive

Defn. Equivalence Class
Suppose A is set and ∼ is equivalence relation on A. For each A ∈ A, equivalence class of a, denoted [a] and called class
of a is set of all elements x ∈ A s.t. a ∼ x
[a]∼ = {x ∈ A : a ∼ x}

Theorem 8.3.4. The partition induced by an Equivalence Relation
If A is a set and R is an equivalence relation on A, then distinct equivalence classes of R form a partition of A; that is,
the union of the equivalence classes is all of A, and the intersection of any 2 disctinct classes is empty.

Defn. Congruence
Let a, b ∈ Z and n ∈ Z+. Then a is congruent to b modulo n iff a − b = nk, for some k ∈ Z. In other words, n|(a − b).
We write a ≡ b(mod n)

Defn. Set of equivalence classes
Let A be set and ∼ be an equivalence relation on A. Denote by A/ ∼, the set of all equivalence classes with respect to
∼, i.e.

A/ ∼= {[x]∼ : x ∈ A}

Theorem Equivalence Classes. form a partition Let ∼ be an equiv. relation on A. Then A/ ∼ is a partition of A.

Defn (Antisymmetry). R is antisymmetric iff ∀x, y ∈ A(xRy∧yRx⇒ x = y) (DOES NOT IMPLY NOT SYMMETRIC)

Defn (Partial Order Relation). R is Partial Order iff R is reflexive, antisymmetric and transitive.

Defn. Partially Ordered Set Set A is called poset with respect to partial order relation R on A, denoted by (A,R) (Proof
7)

Defn. x ≼ y is used as a general partial order relation notation

Defn (Hasse Diagram). Let ≼ be a partial order on set A. Hasse diagram satisfies the following condition for all distinct
x, y,m ∈ A
If x ≼ y and no m ∈ A is s.t. x ≼ m ≼ y, then x is placed below y with a line joining them, else no line joins x and y.

Defn (Comparability). a, b ∈ A are comparable iff a ≼ b or b ≼ a. Otherwise, they are noncomparable

Defn (Maximal, Minimal, Largest Smallest). Set A be partially ordered w.r.t. a relation ≼ and c ∈ A

1. c is maximal element of A iff ∀x ∈ A, either x ≼ c or x and c are non-comparable. OR ∀xinA(c ≼ x⇒ c = x)
2. c is minimal element of A iff ∀x ∈ A, either c ≼ x or x and c are non-comparable. OR ∀xinA(x ≼ c⇒ c = x)
3. c is largest element of A iff ∀x ∈ A(x ≼ c)
4. c is smallest element of A iff ∀x ∈ A(c ≼ x)

Proposition. A smallest element is minimal
Consider a partial order ≼ on set A. Any smallest element is minimal.

1. Let c be smallest elemnt
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2. Take any x ∈ A s.t. x ≼ c
3. By smallestness, we know c ≼ x too.
4. So c = x by antisymmetry

Defn (Total Order Relations). All elements of the set are comparable
R is total order iff R is a partial order and ∀x, y ∈ A(xRy ∨ yRx)

Defn (Linearization of a partial order). Let ≼ be a partial order on set A. A linearization of ≼ is a total order ≼ ∗ on
A s.t. ∀x, y ∈ A(x ≼ y ⇒ x ≼ ∗ y)

Defn (Kahn’s Algorithm). Input: A finite set A and partial order ≼ on A

1. Set A0 := A and i := 0
2. Repeat until Ai = ∅

2.1. Find minimal element ci of Ai wrt ≼
2.2. Set Ai+1 = Ai \ ci
2.3. Set i = i+ 1

Output: A linearization ≼ ∗ of ≼ defined by setting, for all indicies i, j
ci ≼ ∗ cj ⇔ i ≤ j

Defn (Well ordered set). Let ≼ be a total order on set A. A is well ordered iff every nonempty subset of A contains a
smallest element. OR
∀S ∈ P (A), S ̸= ∅ ⇒ (∃x ∈ S∀y ∈ S(x ≼ y)) E.g. (N,≤) is well ordered but (Z,≤) is not as there is no smallest integer
(Theorem 4.6.1)

7 Proofs
Proof L1S28. Prove that the product of two consecutive odd numbers is always odd.

1. Let a and b be two consecutive odd numbers
1.1. Without loss of generality, assume that a < b, hence b = a+ 2
1.2. Now, a = 2k + 1 (by defn of odd numbers)
1.3. Similarly, b = a+ 2 = 2k + 3
1.4. Therefore, ab = (2k + 1)(2k + 3) = (4k2 + 6k) + (2k + 3) = 4k2 + 8k + 3 = 2(2k2 + 4k + 1) + 1 (by Basic Algebra)
1.5. Let m = (2k2 + 4k + 1) which is an integer (by closure of integers under × and +)
1.6. Then ab = 2m+ 1 which is odd (by defn of odd numbers)
2. Therefore, the product of two consecutive odd numbers is always odd.

Proof L4S16. Sum of 2 even Z is even

1. Let m and n be two particular but arbitrarily chosen even intergers
1.1. Then m = 2r and n = 2s for some Z r and s (by defn of even number)
1.2. m+ n = 2r + 2s = 2(r + s) (by basic algebra)
1.3. 2(r+s) is an integer(closure of int under × and +) and an even number (by defn of even number)
1.4. Hence m+ n is an even number
2. Therefore sum of any two even integers is even

Proof T 4.6.1. There is no greatest integer (Contradiction)

1. Suppose not, i.e. there is a greatest intger
1.1. Lets call this greatest integer g, and g ≥ n for all integers n
1.2. Let G = g + 1
1.3. Now, G is an integer (closure of integers under +) and G > g
1.4. Hence, g is not the greatest integer, contradicting 1.1
2. Hence, the supposition that there is a greatest integer is false.
3. Therefore there is no greatest integer

Proof L5S19. L5S19 Two sets are equal
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1. Let sets X and Y be given. To prove X = Y
2. (⊆) Prove X ⊆ Y
3. (⊇) Prove X ⊇ Y
4. From (2) and (3), we can conclude that X = Y

Proof L5S22. L5S22 {x ∈ Z : x2 = 1} = {1,−1}

1. →
1.1. Take any z ∈ {x ∈ Z : x2 = 1}
1.2. Then z ∈ Z and z2 = 1
1.3. So, z2 − 1 = (z − 1)(z + 1) = 0 (by basic algebra)
1.4. ∴ z − 1 = 0 or z + 1 = 0
1.5. ∴ z = 1 or z = −1
1.6. So, z ∈ {1,−1}
2. ←
2.1. Take any z ∈ {1,−1}
2.2. Then z = 1 or z = −1
2.3. In either case, we have z ∈ Z and z2 = 1
2.4. So, z ∈ {x ∈ Z : x2 = 1}
3. Therefore, {x ∈ Z : x2 = 1} = {1,−1} (from (1) and (2))

Proof L6S27. ∀x, y ∈ Z(xRy ⇔ 3|(x− y)) is reflexive, symmetric, transitive

1. Proof of Reflexivity
1.1. Let a be an arbitrarily chosen integer.
1.2. Now a− a = 0
1.3. 3|0(since 0 = 3 · 0), hence 3|(a− a)
1.4. Therefore aRa (by defn of R)
2. Proof of Symmetry
2.1. Let a, b be arbitrarily chosen integers
2.2. Then 3|(a− b) (by defn of R), hence a− b = 3k for some integer k (by defn of divisibility)
2.3. Multiplying both sides by −1 gives b− a = 3(−k)
2.4. Since −k is an integer, 3|(b− a) (by defn of divisibility)
2.5. Therefore, aRb⇒ bRa (by defn of R)
3. Proof of Transitivity
3.1. Let a, b, c be arbitrarily chosen integers
3.2. Then, 3|(a− b) and 3|(b− c) (by defn of R), hence a− b = 3r and b− c = 3s (by defn of divisiblity)
3.3. Adding both equations gives a− c = 3r + 3s
3.4. Since r + s is an integer, 3|(a− c) (by defn of divisiblity)
3.5. Therefore aRb ∧ bRc⇒ aRc (by defn of R)

Lemma Rel.1 Equivalence Class L6S47. Let ∼ be an equivalence relation on A. The following are equivalent for all
x, y ∈ A (i) x ∼ y, (ii) [x] = [y], (iii) [x] ∩ [y] ̸= ∅

1. x ∼ y ⇒ [x] = [y]
1.1. Suppose x ∼ y
1.2. Then y ∼ x (by symmetry)
1.3. For every z ∈ [x]
1.3.1. x ∼ z (by defn of x)
1.3.2. ∴ y ∼ z (by transitivity of y ∼ x)
1.3.3. ∴ z ∈ [y] (by defn of [y])
1.4. This shows [x] ⊆ [y]
1.5. Switching roles of x and y, we can also see that [y] ⊆ [x]
1.6. Therefore, [x] = [y]
2. [x] = [y]⇒ [x] ∩ [y] ̸= ∅
2.1. Suppose [x] = [y]
2.2. Then [x] ∩ [y] = [x] (by idempotent law for ∩)
2.3. However, we know x ∼ x (by reflexivity of ∼)
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2.4. This shows x ∈ [x] = [x] ∩ [y] (by defn of [x] and (2.2))
2.5. Therefore [x] ∩ [y] ̸= ∅
3. [x] ∩ [y] ̸= ∅ ⇒ x ∼ y
3.1. Suppose [x] ∩ [y] ̸= ∅
3.2. Take z ∈ [x] ∩ [y]
3.3. Then z ∈ [x] and z ∈ [y] (by defn of ∩)
3.4. Then x ∼ z and y ∼ z (by defn of [x] and [y])
3.5. y ∼ z implies z ∼ y (by defn of symmetry)
3.6. Therefore, x ∼ y (by transitivity)

Proposition L6S54. Congruence-mod n is an equivalence relation on Z for every n ∈ Z+

1. (Reflexivity) For all a ∈ Z
1.1. a− a = 0 = n× 0
1.2. So a ≡ a(mod n) (by defn of congruence)
2. (Symmetry)
2.1. Let a, b ∈ Z s.t. a ≡ a(mod n)
2.2. Then there is a k ∈ Z s.t. a− b = nk
2.3. Then b− a = −(a− b) = −nk = n(−k)
2.4. −k ∈ Z (by closure of integers under ×), so b ≡ a(mod n) (by defn of congruence)
3. (Transitivity)
3.1. Let a, b, c ∈ Z s.t. a ≡ a(mod n) and b ≡ c(mod n)
3.2. Then there is a k, l ∈ Z s.t. a− b = nk and b− c = nl
3.3. Then a− c = (a− b) + (b− c) = nk + nl = n(k + 1)
3.4. k + l ∈ Z (by closure of integers under +), so a ≡ c(mod n) (by defn of congruence)

Proof L6S69. ∀a, b ∈ Z+, ∀a|b⇔ b = ka for some integer k. Prove | is a partial order relation on A

1. | is reflexive: Suppose a ∈ A. Then a = 1ȧ, so a|a (by defn of divisiblity)
2. | is antisymmetric
2.1. Suppose a, b ∈ Z+ such that aRb and bRa
2.2. Then b = ra and a = sb for some integers r and s (by defn of divides). It follows that b = ra = r(sb)
2.3. Dividing both sides by b gives 1 = rs
2.4. Only product of two positive integers that equals 1 is 11̇.
2.5. Thus r = s = 1, and so a = sb = 1ḃ = b
2.6. Therefore, | is antisymmetric

OR
2.1. Suppose a, b ∈ Z+ such that a|b and b|a
2.2. then a ≤ b and b ≤ a (by theorem 4.3.1)
2.3. So a = b
3. | is transitive: Show that ∀a, b, c ∈ A, a|b ∧ b|c⇒ a|c) (theorem 4.3.3)

Proof T01Q9. The product of any two odd integers is an odd integer

1. Take any 2 odd numbers a and b
2. Then a = 2k + 1 and b = 2p+ 1 for k, p ∈ Z (by defn of odd number)
3. Then a · b = (2k + 1)(2p+ 1) = (4kp+ 2k) + (2p+ 1) = 2(2kp+ p+ k) + 1 (by defn of odd number)
4. Let q = 2kp+ p+ k which is an integer (by closure of int under + and ×
5. Then nm = 2q + 1 which is odd (by defn of odd numbers)

Proof T01Q10. Let n be an integer. Then n2 is odd iff n is odd

1. Proof By Contraposition, that is "if n is even, n2 is even (⇒)
1.1. Suppose n is even.
1.2. Then ∃k ∈ Z s.t. n = 2k (by defn of even integers)
1.3. n2 = (2k)2 = 4k2 = 2(2k2)
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1.4. Hence, n2 = 2p, where p = 2k2 ∈ Z (by closure of integers under ×)
1.5. Therefore, n2 is even and this proves that if n2 is odd, n is odd.
2. If n is odd, then n× n = n2 is odd (T01Q9)
3. Therefore n2 is odd if and only if n is odd.

Proof T02Q3. Rational numbers are closed under addition

1. Let r and s be rational numbers
2. ∃a, b, c, d ∈ Z s.t. r = a

b , s =
c
d and b ̸= 0, d ̸= 0 (by defn of rational numbers)

3. Hence r + s = a
b + c

d = ad+bc
bd (by basic algebra)

4. ad+ bd ∈ Z and bd ∈ Z (closure of integers under + and ×)
5. bd ̸= 0 since b ̸= 0, d ̸= 0
6. Hence r + s is rational, therefore rational numbers are closed under addition

Proof T02Q10. if n is a product of 2 positive integers a and b, then a ≤ n1/2 or b ≤ n1/2

1. Proof by contraposition, that is if a > n1/2 and b > n1/2, then n is not a product of a and b
2. Suppose a > n1/2 and b > n1/2, then ab > n1/2 · n1/2 = n (by Appendix A T27)
3. Since ab ̸= n, the contrapositive statement is true

or by contradiction

1. Proof by contradiction, that is n = ab and a > n1/2 and b > n1/2

2. Since a > n1/2 and b > n1/2, then ab > n1/2 · n1/2 = n (by Appendix A T27)
3. This contradicts n = ab. Therefore original statement is true

Proof T03Q04. Let A = {2n+ 1 : n ∈ Z} and B = {2n− 5 : n ∈ Z}. Is A = B?

1. ⊆
1.1. Let a ∈ A, and a = 2n+ 1, n ∈ Z
1.2. Then a = 2n+ 1 = 2(n+ 3)− 5
1.3. n+ 3 ∈ Z (by closure of int under +)
1.4. Therefore, a ∈ B (by defn of B)

2. ⊇
2.1. Let b ∈ A, and b = 2n− 5, n ∈ Z
2.2. Then b = 2n− 5 = 2(n− 3) + 1
2.3. n− 3 ∈ Z (by closure of int under −)
2.4. Therefore, b ∈ A (by defn of B)

3. Therefore, A = B

Proof T03Q05. Prove ∀A,B,C,A ∩ (B \ C) = (A ∩B) \ C

1. A ∩ (B \ C) = {x : x ∈ A ∧ x ∈ (B \ C)} (by defn of ∩)
2. = {x : x ∈ A ∧ (x ∈ B ∧ x ̸∈ C)} (by defn of \)
3. = {x : x ∈ (A ∧ x ∈ B) ∧ x ̸∈ C} (by associativity of ∧)
4. = {x : x ∈ (A ∩B) ∧ x ̸∈ C} (by defn of ∩)
5. = {x : x ∈ (A ∩B) \ C (by defn of \)

Proof T03Q05. Prove ∀A,B,C,A ∩ (B \ C) = (A ∩B) \ C

1. A ∩ (B \ C) = {x : x ∈ A ∧ x ∈ (B \ C)} (by defn of ∩)
2. = {x : x ∈ A ∧ (x ∈ B ∧ x ̸∈ C)} (by defn of \)
3. = {x : x ∈ (A ∧ x ∈ B) ∧ x ̸∈ C} (by associativity of ∧)
4. = {x : x ∈ (A ∩B) ∧ x ̸∈ C} (by defn of ∩)
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5. = {x : x ∈ (A ∩B) \ C (by defn of \)

ProofT03Q8. Let A and B be set. Show that A ⊆ B if and only if A ∪B = B
To show A ∪B = B, we need to show A ∪B ⊆ B and B ⊆ A ∪B

1. =⇒
1.1. Suppose A ⊆ B
1.2. (Show A ∪B ⊆ B)

1.2.1. Let z ∈ A ∪B
1.2.2. Then z ∈ A or z ∈ B (by defn of ∪)
1.2.3. Case 1: Suppose z ∈ A, then Z ∈ B as A ⊆ B line (1.1)
1.2.4. Case 2: Suppose z ∈ B, then z ∈ B. We have z ∈ B in either case

1.3. (Show A ∪B ⊇ B)
1.3.1. Let z ∈ B
1.3.2. Then z ∈ A or z ∈ B (by generalization)
1.3.3. So z ∈ A ∪B (by defn of ∪)

1.4. Therefore A ∪B = B
2. ⇐=

2.1. Suppose A ∪B = B
2.2. Let z ∈ A

2.2.1. Then z ∈ A or z ∈ B (by generalization)
2.2.2. So z ∈ A ∪B (by defn of ∪)
2.2.3. So z ∈ B since A ∪B = B (2.1)

2.3. Therefore A ⊆ B
3. Therefore, A ⊆ B if and only iff A ∪B = B

Proof T04Q05. Relation S = {(m,n) ∈ Z2 : m3 + n3is even}, Proof S ◦ S = S

1. (⊆) Suppose (x, z) ∈ S ◦ S
1.1. Then (x, y) ∈ S and (y, z) ∈ S for some y ∈ Z (defn of composition of relations)
1.2. So x3 + y3 is even and y3 + z3 is even
1.3. This implies that x3 + 2y3 + z3 is even
1.4. This implies that x3 + z3 is even as 2y3 is even
1.5. Therefore, (x, z) ∈ S (by defn of S)

2. (⊇) Suppose (x, z) ∈ S
2.1. Then x3 + z3 is even (by defn of S)
2.2. Case 1: x3 is odd.

2.2.1. Then z3 is also odd.
2.2.2. This implies that x3 + 13 is even and 13 + z3 is even
2.2.3. Thus, (x, 1) ∈ S and (1, z) ∈ S (by defn of S)
2.2.4. So, (x, z) ∈ S ◦ S

2.3. Case 2: x3 is even.
2.3.1. Then z3 is also even.
2.3.2. This implies that x3 + 03 is even and 03 + z3 is even
2.3.3. Thus, (x, 0) ∈ S and (0, z) ∈ S (by defn of S)
2.3.4. So, (x, z) ∈ S ◦ S

2.4. In all cases, (x, z) ∈ S ◦ S
OR

3. (⊇) Suppose (x, z) ∈ S
3.1. Note that (x, x) ∈ S as x3 + x3 is even
3.2. Since (x, x) ∈ S and (x, z) ∈ S, we have (x, z) ∈ S ◦ S (by defn of composition of relations)

Proof. R is asymmetric if and only if R is antisymmetric and irreflexive.

1. =⇒
1.1. R is irreflexive (R is irreflexive =⇒ R is antisymmetric and irreflexive)

1.1.1. Let x ∈ A s.t. xRx =⇒ x ̸ Rx (R is Asymmetric)
1.1.2. Since x ̸ Rx, R is irreflexive (by defn of irreflexive)
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1.1. R is antisymmetric (Tutorial Qn 6c)
2. ⇐= (R is antisymmetric and irreflexive =⇒ asymmetry)

2.1. Let x, y ∈ A, s.t. xRy is antisymmetric and irreflexive
2.2. There is 2 cases to consider, x = y and x ̸= y
2.3. x = y

2.3.1. xRx is not valid as it contradicts irreflexive, ∀x ∈ A(x ̸ Rx)
2.3.2. Therefore, xRx =⇒ x ̸ Rx

2.4. x ̸= y
2.4.1. xRy ∧ yRx =⇒ x = y

Proof L07S26 Eg 14. f : Q⇒ Q by setting f(x) = 3x+ 1, x ∈ Q. Is f injective? Yes

1. Let x1, x2 ∈ Q s.t. f(x1) = f(x2)
2. Then 3x1 + 1 = 3x2 + 1
3. So x1 = x2

Proof L07S28 Eg 16. f : Q⇒ Q by setting f(x) = 3x+ 1, x ∈ Q. Is f surjective? Yes

1. Take any y ∈ Q
2. Let x = (y − 1)/3
3. Then x ∈ Q and f(x) = 3x+ 1 = 3( y−1

3 ) + 1 = y

Proof L07S34. If g1 and g2 are inverses of f : X ⇒ Y , then g1 = g2

1. Note that g1, g2 : Y ⇒ X
2. Since g1 and g2 are inverses of f , for all x ∈ X and y ∈ Y, x = g1(y)⇔ y = f(x)⇔ x = g2(y)
3. Therefore, g1 = g2

Proof Theorem 7.2.3. f : X ⇒ Y is bijective iff f has inverse

1. ("if") Suppose f has an inverse, say g : Y ⇒ X
1.1. We show injectivity of f

1.1.1. Let x1, x2 ∈ Xs.t.f(x1) = f(x2)
1.1.2. Define y = f(x1) = f(x2)
1.1.3. Then x1 = g(y) and x2 = g(y) as g is an inverse of f
1.1.4. Hence x1 = x2

1.2. We show surjectivity of f
1.2.1. Let y ∈ Y
1.2.2. Define x = g(y)
1.2.3. Then y = f(x) as g is an inverse of f

1.3. Therefore f is bijective
2. ("Only if") Suppose f is bijective

2.1. Then ∀y ∈ Y ∃!x ∈ X(y = f(x)) (by defn of bijection)
2.2. Define the function g : Y ⇒ X by setting g(y) to be the unique x ∈ X s.t. y = f(x) for all y ∈ Y
2.3. This g is well defined and is an inverse of f (by defn of inverse function)

3. Therefore f : X ⇒ Y is bijective iff f has an inverse

Proof S07S47. (h ◦ g) ◦ f = h ◦ (g ◦ f)

1. Domains of (h ◦ g) ◦ f and h ◦ (g ◦ f) are both A.
2. Codomains of (h ◦ g) ◦ f and h ◦ (g ◦ f) are both D.
3. For every x ∈ A, ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))) = h((g ◦ f)(x)) = (h ◦ (g ◦ f))(x)
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Proof Theorem 7.3.3. If f : X ⇒ Y and g : Y ⇒ Z are both injective, then g ◦ f is injective

1. Suppose f : X ⇒ Y and g : Y ⇒ Z are injections and let x1, x2 ∈ X such that (g ◦ f)(x1) = (g ◦ f)(x2)
2. Then g(f(x1)) = g(f(x2)) (by defn of function composition)
3. Since g is injective, so f(x1) = f(x2) (by defn of injection)
4. Since f is injective, so x1 = x2 (by defn of injection)
5. Therefore g ◦ f is injective

Proof Theorem 7.3.4. If f : X ⇒ Y and g : Y ⇒ Z are both surjective, then g ◦ f is surjective

1. Suppose f : X ⇒ Y and g : Y ⇒ Z are surjections and let z ∈ Z such that (g ◦ f)(x1) = (g ◦ f)(x2)
2. Since g is surjective, so there is an element y ∈ Y s.t. g(y) = z (by defn of surjection)
3. Since f is surjective, so there is an element x ∈ X s.t. f(x) = y (by defn of surjection)
4. Hence there exists an element x ∈ X s.t. (g ◦ f)(x) = g(f(x)) = g(y) = z
5. Therefore, g ◦ f is surjective

Proof. Proof Addition on Zn is well defined

1. Let [x1], [y1], [x2], [y2] ∈ Zn s.t. [x1] = [x2] and [y1] = [y2]
2. Then x1 ≡ x2 (mod n) and y1 ≡ y2 (mod n) (by defn of congruence)
3. Using defn of congruence to find k, l ∈ Z s.t. x1 − x2 = nk and y1 − y2 = nl
4. Note that (x1 + y1)− (x2 + y2) = (x1 − x2) + (y1 − y2) = nk + nl = n(k + l)
5. So x1 + y1 = x2 + y2 (mod n) (by defn of congruence)
6. Therefore, [x1] + [y1] = [x1 + y1] = [x2 + y2] = [x2] + [y2] (by lemma Rel.1 Equivalence classes)

Proof. Proof Multiplication on Zn is well defined

1. Let [x1], [y1], [x2], [y2] ∈ Zn s.t. [x1] = [x2] and [y1] = [y2]
2. Then x1 ≡ x2 (mod n) and y1 ≡ y2 (mod n) (by defn of congruence)
3. Using defn of congruence to find k, l ∈ Z s.t. x1 − x2 = nk and y1 − y2 = nl
4. Note that (x1 · y1)− (x2 · y2) = (nk+x2) · (nl+ y2)− (x2 · y2) = n(nkl+ ky2 + lx2) where (nkl, ky2, lx2) ∈ Z (Closure

of integer addition)
5. So x1 · y1 = x2 · y2 (mod n) (by defn of congruence)
6. Therefore, [x1] · [y1] = [x1 · y1] = [x2 · y2] = [x2] · [y2] (by lemma Rel.1 Equivalence classes)

Proof Theorem 5.2.2. for all n ≥ 1, 1 + 2 + 3 + ...+ n = n(n+1)
2

1. Let p(n) ≡ (1 + 2 + ...+ n = n(n+1)
2 , ∀n ∈ Z+

2. Basis step: 1 = 1(1+1)
2 , therefore P(1) is true.

3. Assume P (k) is true for some k ≥ 1. That is 1 + 2 + ...+ k = k(k+1)
2

4. Inductive Step: (To show P(k+1) is true)
4.1. 1 + 2 + ...+ k + (k + 1) = k(k+1)

2 + (k + 1) = (k+1)((k+1)+1)
2

4.2. Therefore P (k + 1) is true
5. Therefore, P (n) is true for n ∈ Z+ (We have proved P(1) and P (k)⇒ P (k + 1))

Proof Theorem 5.2.3. for any real number r ̸= 1, and any integers n ≥ 0,
∑n

i=0 r
i = rn+1−1

r−1

1. Let P (n) ≡ (
∑n

i=0 r
i = rn+1−1

r−1 , r ̸= 1, n ≥ 0

2. Basis step: r0 = 1 = r1−1
r−1 , therefore P (0) is true

3. Assume P(k) is true for k ≥ 0. That is,
∑k

i=0 r
i = rk+1−1

r−1
4. Inductive Step: (To show P (k + 1) is true)

4.1.
∑k+1

i=0 ri =
∑k

i=0 r
i + rk+1 = rk+1−1

r−1 + rk+1 = rk+1−1+rk+1(r−1)
r−1 = r((k+1)+1)−1

r−1
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4.2. Therefore P (k + 1) is true.
5. Therefore, P (n) is true for n ≥ 0

Proof Proposition 5.3.1. For all integers n ≥ 0, 22n − 1 is divisible by 3

1. Let P (n) ≡ (3|(22n − 1)) for all integers n ≥ 0
2. Basis Step: 22·0 − 1 = 0 is divisible by 3, therefore P(0) is true
3. Assume P(k) is true for k ≥ 0. That is 3|(22k − 1)

3.1. This means that 22k − 1 = 3r for some integer r (by defn of divisibility)
4. Inductive Step: To show P (k + 1) is true

4.1. 22(k+1) − 1 = 22k · 4− 1 = 22k(3 · 1)− 1 = 3 · 22k + (22k − 1) = 3 · 22k + 3r = 3(22k + r)
4.2. Since 3|22(k+1) − 1, therefore P (k + 1) is true

5. Therefore, P(n) is true for all integers n ≥ 0

Proof Proposition 5.3.2. For all integers n ≥ 3, 2n+ 1 < 2n

1. Let P (n) ≡ 2n+ 1 < 2n, for all integers n ≥ 3
2. Basis Step: 2(3) + 1 = 7 < 8 = 23, therefore P(3) is true
3. Assume P(k) is true for k ≥ 3. That is 2k + 1 < 2k

4. Inductive Step: To show P (k + 1) is true
4.1. 2(k + 1) + 1 = (2k + 1) + 2 < 2k + 2 < 2k + 2k = 2k+1 (because 2 < 2k for all integers k ≥ 2
4.2. Therefore P(k+1) is true

5. Therefore, P(n) is true for all integers n ≥ 3

Proof. Any integer > 1 is divisible by a prime number (Proof by 2PI)

1. Let P (n) ≡ (n is divisible by a prime), for n > 1
2. Basis step: P (2) is true since 2 is divisible by 2.
3. Inductive step: To show that for all integers k ≥ 2, if P (i) is true for all integers i from 2 through k, then P(k+1) is

also true.
3.1. Case 1(k+1 is prime): In this case k+1 is divisible by a prime number which is itself
3.2. Case 2(k+1 is not prime): In this case: k + 1 = ab where a and b are integers with 1 < a < k + 1 and

1 < b < k + 1.
3.2.1. Thus, in particular, 2 ≤ a ≤ k and so by inductive hypothesis, a is divisible by a prime number p.
3.2.2. In addition, because k + 1 = ab, so k + 1 is divisible by a
3.2.3. By transitivity of divisibility, k + 1 is divisible by prime p

4. Therefore, any integer greater than 1 is divisible by a prime

Proof. For all integers n ≥ 12, n = 4a+ 5b, for some a, b ∈ N (Proof with 1PI)

1. Let P (n) ≡ (amount of $n can be formed by $4 and $5 coins) for n ≥ 12
2. Basis step: 12 = 3× 4, so 3 $4 can be used. Therefore, P(12) is true.
3. Assume P(k) is true for k ≥ 12
4. Inductive Step: (To show P (k + 1) is true.)

4.1. Case 1: If a $4 coin is used for $k amount, replace it with a $5 coin to make $(k + 1)
4.2. Case 2: If a no $4 coin is used for $k amount, then k ≥ 15, so there must be at least three $5 coins. We can

replace three $5 coins with 4 $4 coins to make $(k + 1)
4.3. In both cases, P(k+1) is true.

5. Therefore, P (n) is true for n ≥ 12

Proof. For all integers n ≥ 12, n = 4a+ 5b, for some a, b ∈ N (Proof with 2PI)

1. Let P (n) ≡ (n = 4a+ 5b) for some a, b ∈ N, n ≥ 12
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2. Basis step: Show P (12), P (13), P (14), P (15) hold.
12 = 4 · 3 + 5 · 0; 13 = 4 · 2 + 5 · 1; 14 = 4 · 1 + 5 · 2; 15 = 4 · 0 + 5 · 3

3. Assume P(i) holds for 12 ≤ i ≤ k given some k ≥ 15
4. Inductive Step: (To show P (k + 1) is true.)

4.1. P (k − 3) holds(by induction hypothesis), so k − 3 = 4a+ 5b for some a, b ∈ N
4.2. k + 1 = (k − 3) + 4 = (4a+ 5b) + 4 = 4(a+ 1) + 5b
4.3. Hence P (k + 1) is true

5. Therefore, P (n) is true for n ≥ 12

Proof. For any positive integer n, if a1, a2, ..., an and b1, b2, ..., bn are real numbers, then
∑n

i=1(ai+bi) =
∑n

i=1 ai+
∑n

i=1 bi

1. Let P (n) = (
∑n

i=1(ai + bi) =
∑n

i=1 ai +
∑n

i=1 bi) for n ≥ 1

2. Basis step: P(1) is true since
∑1

i=1(ai + bi) = a1 + b1 =
∑1

i=1 ai +
∑1

i=1 bi
3. Inductive Hypothesis for some k ≥ 1,

∑k
i=1(ai + bi) =

∑k
i=1 ai +

∑k
i=1 bi

4. Inductive Step:
∑k+1

i=1 (ai + bi) =
∑k

i=1(ai + bi) + (ak+1 + bk+1) (by defn of
∑

)
=

∑k
i=1 ai +

∑k
i=1 bi + (ak+1 + bk+1) (by inductive hypothesis)

=
∑k

i=1 ai + ak+1 +
∑k

i=1 bi + bk+1 (by the associative and commutative laws of algebra)
=

∑k+1
i=1 ai +

∑k+1
i=1 bi (by defn of

∑
)

Therefore P (k + 1) is true
5. Therefore P (n) is true for any positive integer n

Proof. Pigeonhole Principle

1. Note that A is finite. Suppose A = {a1, a2, ..., am} where m = |A|
2. Injectivity of f tells us that if ai ̸= aj , then f(ai) ̸= f(aj)
3. So f(a1), f(a2), ..., f(am) are m different elements of B.
4. This shows that |B| ≥ m = |A|

Proof. Dual Pigeonhole Principle

1. Note that B is finite. Suppose B = {b1, b2, ..., bm} where m = |B|
2. For each bi, use the surjectivity of f to find ai ∈ A s.t. f(ai) = bi
3. If bi ̸= bj , then f(ai) ̸= f(aj) and so ai ̸= aj as f is a function
4. So a1, a2, ..., an are n different elements of A
5. This shows that |A| ≥ n = |B|
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