1 Tables

Commutative PAG=EqAP pVg=qVp
Associative pAgAT=(DAQ AT

Distributive pA(gVr)=((pAqV(pAT) pV(gATr)=(pVq A(pVr)
Identity p Atrue = p pVfalse = p
Negation pV ~ p = true pA ~ p = false
Double Negative ~(~p)=p

Idempotent pVD=p PAP=Dp
Universal bound pV true = true p A false = false
de Morgan’s ~ (pAq) =~pV~q ~ (pVq) =~pA~gq
Absorption pV(pAg =p pA(pVqg =p
Implication p=q=~pVgqg

~(Implication) ~(p=q) =pA~q

Modus Ponens p = q,p q

Modus Tollens p = ¢q,~¢q ~ D
Generalization P pVyq
Specialization pAq P
Conjunction D, q pAq
Elimination pVg,~q P
Transitivity p = ¢,q = T p =T
Division into cases pANg,p = 1,q = T T
Contradiction ~p — false P
Commutative AUuB=BUA

Associative (AUB)UC =AU (BUCQC)

Distributive AU(BNC)=(AUB)N(AUC) | AN(BUC)=(ANB)U(ANCQC)
Identity Aup=A ANU=A
Complement AUA=U ANA=1
Double Complement A=A

Idempotent AUA=A ANA=A
Universal Bound AUU=U ANP=10

De Morgan’s AUB=ANB ANB=AUB
Absorption AU(ANB)=A AN(AUB)=A
Complements of U and () U=10 0=U

Set Difference A\B=ANB

F1 Commutative a+b=b+a ab =ba

F2 Associative

F3 Distributive

F4 Identity

F5 Additive inverses

(a+b)+c=a+(b+c)
a(b+c) =ab+ ac
0O+a=a+0=a

a+(—a)=(—a)+a=0

(ab)e = a(be)
(b+c)a=ba+ca
l-a=a-1=a

F6 Reciprocals a~%:%~a:1 a#0
T1 Cancellation Add a+b=a+c b=c
T2 Possibility of Sub There is one z,a +x =b r=b—a
T3 b—a=b+(—a)

T4 —(—a)=a

T5 a(b—c) =ab—ac

T6 0ca=a-0=0

T7 Cancellation Mul ab = ac b=c,a#0
T8 Possibility of Div a#0,ar=> x = g
T9 a#0,2=b-a"!

T10 a#0,(a)t=a

T11 Zero Product ab=0=a=0Vb=0

T12 Mul with -ve (—a)b = a(—b) — —(ab) ==
T13 Equiv Frac =15 b#0,c#0
T14 Add Frac 44 ¢ = adtbe b#0,d#0
T15 Mul Frac Toe =14 b#0,d#0
T16 Div Frac g b#0,d#0




Ordl

Ord2

Ord3

a<b

a<b

a<0

T17 Trichotomy Law
T18 Transitive Law
T19

T20

T21

T22

T23

T24

T25

T26

T27

2 Math

Ya,b € RT
V(I,bER¢O
0 is not positive
means b+ (—a) is positive
means a < bora=1>»
means a is negative
a<bVb>aVa=5b
a<band b<c
a<b
a<bandc>0
a#0
1>0
a<band c<0
a<b
ab >0
a<candb<d
0<a<cand <0<b<d

Defn. Even and Odd Integers
n is even < 3 an integer k s.t. n = 2k
n is odd < J an integer k s.t. n =2k + 1

Defn. Divisibility

n and d are integers and d # 0
dn< 3k €Zst. n=dk

Theorem 4.2.1. Every Integer is a rational number

Theorem 4.2.2.

Theorem 4.3.1. For all a,b € ZT, if a|b, then a < b

Theorem 4.3.2.

Only divisors of 1 are 1 and —1

Theorem 4.3.3. Va,b,c € Z if a|b, blc, a|c

Theorem 4.6.1.

There is no greatest integer

a+b>0,ab>0
a is positive or negative and not both

a<c
at+c<b+ec

ac < be

a®>>0

ac > be
—a > —b
a and b are both positive or negative
a+b<c+d
0<ab<ecd

The sum of any two rational numbers is rational

Proposition. 4.6.4 For all integers n, if n? is even, then n is even.

Defn. Rational r is rational < Ja,b € Z s.t. r = ¢ and b # 0

Defn. Fraction in lowest term: fraction § is lowest term if largest Z that divies both @ and b is 1

a

Theorem 4.7.1. /2 is irrational

3 Logic of Combound Statements

Theorem 3.2.1. Negation of universal stmt ~ (Vo € D, P(z)) = 3z € D s.t. ~ P(x)

Theorem 3.2.1. Negation of existential stmt ~ (3z € D s.t. P(z)) =Va € D,~ P(x)

Defn. Contrapositive of p = ¢=~qg=~p

Defn. Converse of p=qis¢=p

Defn. Inverse of p = qis ~p =>~g¢g

Defn. Only if: p only if ¢ means ~ ¢ =>~p=p=¢

Defn. Biconditional: p< ¢=(p=¢) A (¢ = p)

Defn.

r is sufficient condition for s means if r then s, r = s




Defn. r is necessary condition for s means if ~ r then ~ s, s = r

Defn. Proof by Contradiction
If you can show that the supposition that sttatement p is false leads to a contradiction, then you can conclude that p is
true

4 Methods of Proof

Statement Proof Approach
Ve € D P(X) Direct: Pick arbitrary x, prove P is true for that x.
Contradiction: Suppose not, i.e. Jz(~ p)... Hence supposition ~ p is false (P3)
dr € D P(X) Direct: Find x where P is true.
Contradiction: Suppose not, i.e. Va(~ p)... Hence supposition ~ p is false (P3)
P=Q Direct: Assume P is true, prove Q

Contradiction: Assume P is true and Q is false, then derive contradiction
Contrapositive: Assume ~ @, then prove ~ P
PsQ Prove both P = @ and Q = P
xRy. Prove R is equivalence | Prove Reflexive, Symmetric and Transitive
Reflexive
Symmetric
Antisymmetric
Transitive

Defn. Proof by Contraposition

1. Statement to be proved Vz € D (P(z) = Q(x))
2. Contrapositive Form: Vo € D (~ Q(z) =~ P(x))
3. Prove by direct proof

3.1 Suppose x is an element of D s.t. Q(X) is false
3.2 Show that P(x) is false.

4. Therefore, original statement is true

5 Set Theory

Defn. Set: Unordered collection of objects
Order and duplicates don’t matter

Defn. Membership of Set €: If S is set, x € S means z is an element of S
Defn. Cardinality of Set |S|: The number of elements in S
Common Sets:

N - Natural Numbers, {0, 1,2}

Z - Integers
Q - Rational
R - Real

C - Complex

7* - Positive/Negative Integers

Defn. Subset A C B < Every element of A is also an element of B
ACB&eVe(re A=z € B)

Defn. Proper Subset AC B< (AC BAA#B)
Theorem 6.2.4. An empty set is a subset of every set, i.e. § C A for all sets A
Defn. Cartesian Product A x B = {(a,b) :a € AANb€ B}

Defn. Set Equality A=B< ACBABCA
A=BoVe(re A<z € B)
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Defn. Union: AUB={xeU:z€ AVz e B}
Defn. Intersection: ANB={zxecU:x€ ANz € B}
Defn. Difference: B\ A={x €U :z€ BAx ¢ A}
Defn. Disjoint: AN B =

Theorem 4.4.1. Quotient-Remainder n € Z,d € Z™
there exists unique integers q and r such that n =dg+r and 0 <r <d

Defn. Power Set: The set of all subsets of A, has 2" elements.

Theorem 6.3.1. Suppose A is a finite set with n elements, then P(A) has 2" elements. |P(A)| = 2"
Defn. Cartesian Product of A, = A1 X Ay x ... x A, = {(a1,az,...an) : a1 € A1 Nay € A,...
Theorem 6.2.1. Subset Relations

Inclusion of Intersection: ANBC A, ANBCB
Inclusion in Union AC AUB,BCAUB
Transitive Property of Substs: ACBABCC=ACC(C

6 Relations

Defn. Relation from A to B is a subset of A x B
Given an ordered pair(z,y) € A x B, x is related to y by R is written 2Ry < (z,y) € R

Defn. Domain, Co-domain, Range
Let A and B be sets and R be a relation from A to B

Domain of R: is set {a € A : aRb for some b € B}
Codomain of R: Set B
Range of R: is set {b € B : aRb for some a € A}

Defn. Inverse Relation
Let R be a relation from A to B, R™! = {(y,z) € Bx A: (z,y) € R}
Vo € A,Vy € B((y,x) € R~' & (2,y) € R)

Defn. Relation on a Set A is a relation from A to A.

Defn. Composition of Relations

A, B and C be sets. R C A x B be a relation. S C B x C be relation. Composition of R with S, denoted S o R is relation
from A to C such that:

Ve € A,Vz € C(xSo Rz < (Jy € B(xRy AySz)))

Proposition. Composition is Associative A, B,C, D besets. RCAXx B, SCBxC, TCCxD
To(SoR)=ToSoR

Proposition. Inverse of Composition A, B,C be sets. RC Ax B, SC B xC(C
(SoR)™'=R 108!

Defn. Reflexivity, Symmetry, Transitivity

Reflexivity: Vo € A(zRx)
Symmetry: Vz,y € A(xRy = yRx)
Transitivity:Vz,y, 2 € A(xRy A yRz = zRz2)

Refer to proof 6

Defn. Transitive Closure
Transitive closure of R is relation R on A that satiesfies

R! is transitive
RC R
If S is any other transitive relation that contains R, then Rt C S



Defn. Partition
P is partition of set A if

P is a set of which all elements are non empty subsets of A, ) #S C A for all S € P
Every element of A is in exactly on element of P,

Ve e A3IS € P(x €S) and

VxEAEiSl,Sg EP(JEESl ANx €Sy =5 :SQ)

ORVre AJS e P(xebl)
Elements of a partition are called components

Defn. Relation Induced by a partition
Given partition P of A, the relation R induced by partition:
Ve,y € A, xRy = 3 a component of S of P s.t. z,y € S

Theorem 8.3.1 (Relation Induced by a Partition). Let A be a set with a partition and let R be a relation induced by
the partition. Then R is reflexive, symmetric and transitive

Defn (Equivalence Relation). A be set and R be relation. R is equivalence relation iff R is reflexive, symmetric and
transitive

Defn. Equivalence Class

Suppose A is set and ~ is equivalence relation on A. For each A € A, equivalence class of a, denoted [a] and called class
of a is set of all elements z € A s.t. a ~ x

[al. ={x€A:a~z}

Theorem 8.3.4. The partition induced by an Equivalence Relation
If A is a set and R is an equivalence relation on A, then distinct equivalence classes of R form a partition of A; that is,
the union of the equivalence classes is all of A, and the intersection of any 2 disctinct classes is empty.

Defn. Congruence
Let a,b € Z and n € Z*. Then a is congruent to b modulo n iff @ — b = nk, for some k € Z. In other words, n|(a — b).
We write a = b(mod n)

Defn. Set of equivalence classes
Let A be set and ~ be an equivalence relation on A. Denote by A/ ~, the set of all equivalence classes with respect to
~, ie.

A) ~={[z]~ 1z € A}

Theorem Equivalence Classes. form a partition Let ~ be an equiv. relation on A. Then A/ ~ is a partition of A.
Defn (Antisymmetry). R is antisymmetric iff Vz,y € A(xRyAyRx = = =y) (DOES NOT IMPLY NOT SYMMETRIC)
Defn (Partial Order Relation). R is Partial Order iff R is reflexive, antisymmetric and transitive.

Defn. Partially Ordered Set Set A is called poset with respect to partial order relation R on A, denoted by (A, R) (Proof
7)

Defn. x < y is used as a general partial order relation notation

Defn (Hasse Diagram). Let < be a partial order on set A. Hasse diagram satisfies the following condition for all distinct
x,y,m€ A
Ifx xyand nom € Aisst. £ < m =<y, then x is placed below y with a line joining them, else no line joins = and y.

Defn (Comparability). a,b € A are comparable iff a < b or b < a. Otherwise, they are noncomparable
Defn (Maximal, Minimal, Largest Smallest). Set A be partially ordered w.r.t. a relation < and c € A

¢ is maximal element of A iff Vo € A, either z < ¢ or « and ¢ are non-comparable. OR VzinA(c X v = c=1x)
¢ is minimal element of A iff Va € A, either ¢ < « or x and ¢ are non-comparable. OR VzinA(z < ¢ = ¢ = x)
c is largest element of A iff Vo € A(z < ¢)

¢ is smallest element of A iff Vo € A(c % x)

=N

Proposition. A smallest element is minimal
Consider a partial order < on set A. Any smallest element is minimal.

1. Let ¢ be smallest elemnt



1.
1.1

2.

1.

2. Takeanyz € Ast. x ¢
3. By smallestness, we know ¢ < z too.
4. So ¢ = x by antisymmetry

Defn (Total Order Relations). All elements of the set are comparable
R is total order iff R is a partial order and Va,y € A(zRy V yRzx)

Defn (Linearization of a partial order). Let < be a partial order on set A. A linearization of < is a total order < * on
Ast. Ve,yc Az y=a < *y)

Defn (Kahn’s Algorithm). Input: A finite set A and partial order < on A

1. Set Ag:=Aandi:=0
Repeat until A; = 0
2.1. Find minimal element ¢; of A; wrt <
2.2. Set Ai+1 == Al \Ci
2.3. Seti=1i+1

Output: A linearization < * of < defined by setting, for all indicies i, j
ciX*xc; i<

Defn (Well ordered set). Let < be a total order on set A. A is well ordered iff every nonempty subset of A contains a
smallest element. OR

VS e P(A),S #0 = (Fz € SVy € S(z < y)) E.g. (N,<) is well ordered but (Z, <) is not as there is no smallest integer
(Theorem 4.6.1)

7 Proofs

Proof L1528. Prove that the product of two consecutive odd numbers is always odd.

Let a and b be two consecutive odd numbers

. Without loss of generality, assume that a < b, hence b = a + 2
1.2.
1.3.
1.4.
1.5.
1.6.

Now, a = 2k + 1 (by defn of odd numbers)
Similarly, b=a+2 =2k +3
Therefore, ab = (2k + 1)(2k + 3) = (4k? + 6k) + (2k + 3) = 4k? + 8k + 3 = 2(2k? + 4k + 1) + 1 (by Basic Algebra)
Let m = (2k? 4+ 4k + 1) which is an integer (by closure of integers under x and +)
Then ab = 2m + 1 which is odd (by defn of odd numbers)
Therefore, the product of two consecutive odd numbers is always odd.

Proof L4516. Sum of 2 even Z is even

Let m and n be two particular but arbitrarily chosen even intergers

1.1. Then m = 2r and n = 2s for some Z r and s (by defn of even number)

1.2. m+n=2r+2s=2(r+s) (by basic algebra)

1.3. 2(r+s) is an integer(closure of int under x and +) and an even number (by defn of even number)
1.4. Hence m + n is an even number

2.

1.

1.1.
1.2.
1.3.
1.4.

2.
3.

Therefore sum of any two even integers is even

Proof T 4.6.1. There is no greatest integer (Contradiction)

Suppose not, i.e. there is a greatest intger
Lets call this greatest integer g, and g > n for all integers n
Let G=g+1
Now, G is an integer (closure of integers under +) and G > g
Hence, g is not the greatest integer, contradicting 1.1
Hence, the supposition that there is a greatest integer is false.
Therefore there is no greatest integer

Proof L5519. L5519 Two sets are equal



1. Let sets X and Y be given. To prove X =Y

2. (©) Prove X CY

3. (2)Prove X DY

4. From (2) and (3), we can conclude that X =Y
Proof L5S822. 15S22 {x € Z : 2> =1} = {1, -1}

1. —

1.1. Takeany z € {z € Z: 2% =1}

1.2. Then z € Z and 22 =1

1.3. So, 22 —1= (2 —1)(z+ 1) = 0 (by basic algebra)
14. -.z—1=00rz4+1=0

15, r.z=1lorz=-1

1.6. So, z € {l,—1}

2.

2.1. Take any z € {1, -1}

2.2. Thenz=1lorz=-1

2.3. In either case, we have z € Z and 22 =1

24. So,z€{r€Z:2?>=1}

3. Therefore, {z € Z : 2? =1} = {1, —1} (from (1) and (2))

Proof L6S27. Vx,y € Z(xRy < 3|(xz — y)) is reflexive, symmetric, transitive

1. Proof of Reflexivity

1.1. Let a be an arbitrarily chosen integer.

1.2. Nowa—a=0

1.3. 3]0(since 0 = 3 - 0), hence 3|(a — a)

1.4. Therefore aRa (by defn of R)

2. Proof of Symmetry

2.1. Let a, b be arbitrarily chosen integers

2.2. Then 3|(a — b) (by defn of R), hence a — b = 3k for some integer k (by defn of divisibility)
2.3.  Multiplying both sides by —1 gives b — a = 3(—k)

2.4. Since —k is an integer, 3|(b — a) (by defn of divisibility)

2.5. Therefore, aRb = bRa (by defn of R)

3. Proof of Transitivity

3.1. Let a, b, ¢ be arbitrarily chosen integers

3.2. Then, 3|(a — b) and 3|(b — ¢) (by defn of R), hence a —b = 3r and b — ¢ = 3s (by defn of divisiblity)
3.3. Adding both equations gives a — ¢ = 3r + 3s

3.4. Since r + s is an integer, 3|(a — ¢) (by defn of divisiblity)

3.5. Therefore aRb A bRc = aRc (by defn of R)

Lemma Rel.1 Equivalence Class L6S547. Let ~ be an equivalence relation on A. The following are equivalent for all
z,y €A () x~y, (i) 2] = [y], (iil) [z] N [y] # 0

L s~y (g =y
1.1. Suppose xz ~y
1.2. Then y ~ z (by symmetry)
1.3. For every z € [x]
1.3.1. z ~ z (by defn of x)
1.3.2. .y~ z (by transitivity of y ~ x)
1.3.3. .z € [y] (by defn of [y])
1.4. This shows [z] C [y]
1.5.  Switching roles of z and y, we can also see that [y] C [z]
1.6. Therefore, [x] = [y]
2. fal=[yl=[nfy #0
2.1. Suppose [z] = [y]
2.2. Then [z] N [y] = [z] (by idempotent law for N)
2.3. However, we know = ~ z (by reflexivity of ~)



2.4. This shows z € [z] = [z] N [y] (by defn of [x] and (2.2))
2.5. Therefore [z] N [y] # 0

3. RNl A0~y

3.1. Suppose [z]N[y] # 0

3.2. Take z € [z] N [y]

3.3. Then z € [z] and z € [y] (by defn of N)

3.4. Then x ~ z and y ~ z (by defn of [z] and [y])

3.5. y~ z implies z ~ y (by defn of symmetry)

3.6. Therefore,  ~ y (by transitivity)

Proposition L6554. Congruence-mod n is an equivalence relation on Z for every n € Z™

1. (Reflexivity) For all a € Z

1.1. a—a=0=nx0

1.2. So a = a(mod n) (by defn of congruence)

2. (Symmetry)

2.1. Let a,b€Zs.t. a=a(mod n)

2.2. Then thereisa k€ Z s.t. a —b=nk

2.3. Then b—a= —(a—b) =—nk=n(—k)

2.4. —k € Z (by closure of integers under x), so b = a(mod n) (by defn of congruence)
3. (Transitivity)

3.1. Let a,b,c € Z s.t. a=a(mod n) and b = ¢(mod n)

3.2. Then thereisa k,l € Z s.t. a—b=nk and b—c=nl

33. Thena—c=(a—b)+(b—c)=nk+nl=nk+1)

34. k+1€7Z (by closure of integers under +), so a = ¢(mod n) (by defn of congruence)

Proof L6S69. Ya,b € Z",Ya|b < b = ka for some integer k. Prove | is a partial order relation on A

1. | is reflexive: Suppose a € A. Then a = 1a, so ala (by defn of divisiblity)
2. | is antisymmetric
2.1. Suppose a,b € Z* such that aRb and bRa
2.2. Then b =ra and a = sb for some integers r and s (by defn of divides). It follows that b = ra = r(sb)
2.3. Dividing both sides by b gives 1 = rs
2.4.  Only product of two positive integers that equals 1 is 11.
2.5. Thusr:s:l,andsoa:sbzlb:b
2.6. Therefore, | is antisymmetric
OR
2.1. Suppose a,b € ZT such that a|b and b|a
2.2. then a <band b < a (by theorem 4.3.1)
23. Soa=b
3. | is transitive: Show that Va,b,c € A, alb A blc = a|c) (theorem 4.3.3)

Proof T01Q9. The product of any two odd integers is an odd integer

Take any 2 odd numbers a and b

Then a =2k + 1 and b =2p+ 1 for k,p € Z (by defn of odd number)

Then a-b= 2k +1)(2p+1) = (4kp +2k) + 2p+ 1) = 2(2kp + p+ k) + 1 (by defn of odd number)
Let ¢ = 2kp + p + k which is an integer (by closure of int under + and X

Then nm = 2q + 1 which is odd (by defn of odd numbers)

Gt o =

Proof T01Q10. Let n be an integer. Then n? is odd iff n is odd

1. Proof By Contraposition, that is "if n is even, n?

1.1. Suppose n is even.
1.2. Then 3k € Z s.t. n =2k (by defn of even integers)
1.3. n2 = (2k)? = 4k = 2(2k?)

is even (=)



1.4. Hence, n? = 2p, where p = 2k? € Z (by closure of integers under x )
1.5. Therefore, n? is even and this proves that if n? is odd, n is odd.

2.
3.

AN e

o

o

CU @ =

> N

If n is odd, then n x n = n? is odd (T01Q9)
Therefore n? is odd if and only if » is odd.

Proof T02Q)3. Rational numbers are closed under addition

Let r and s be rational numbers

Ja,b,c,d € Zst. r = ¢,5= 5 and b # 0,d # 0 (by defn of rational numbers)
Hence r + s = % + & = 24th¢ (hy basic algebra)

ad+bd € Z and bd € Z (closure of integers under + and x)

bd # 0 since b # 0,d # 0

Hence r + s is rational, therefore rational numbers are closed under addition

Proof T02Q10. if n is a product of 2 positive integers a and b, then a < n'/? or b < n'/?

Proof by contraposition, that is if a > n'/2 and b > n'/2, then n is not a product of a and b
Suppose a > n'/? and b > n'/2, then ab > n'/? - n'/?2 = n (by Appendix A T27)
Since ab # n, the contrapositive statement is true

or by contradiction

Proof by contradiction, that is n = ab and a > n'/? and b > n'/?
Since a > n'/? and b > n'/2, then ab > n'/? - n'/? = n (by Appendix A T27)
This contradicts n = ab. Therefore original statement is true

Proof T03Q04. Let A={2n+1:n€Z}and B={2n—-5:n€Z}. Is A= B?

-

1.1. Letac€A,anda=2n+1,ne?Z
1.2. Thena=2n+1=2(n+3)—5

1.3. n+3 € Z (by closure of int under +)
1.4. Therefore, a € B (by defn of B)

D)

21. Letbe Ajandb=2n—-5,n€Z
2.2. Thenb=2n—5=2(n—3)+1

2.3. n—3¢€ Z (by closure of int under —)
2.4. Therefore, b € A (by defn of B)
Therefore, A = B

Proof T03Q05. Prove VA, B,C,AN(B\C)=(ANB)\C

AN(B\C)={z:2 € ANz € (B\C)} (by defn of N)
={zx:z € AN(zx € BAz ¢ C)} (by defn of \)
={x:2x€ (ANz € B) ANz ¢ C} (by associativity of A)
={z:z€(ANB)Azx &C} (by defn of N)
={z:2x€(ANB)\C (by defn of \)

Proof T03Q05. Prove VA, B,C,AN(B\C)=(ANB)\C

AN(B\C)={z:z € ANz € (B\C)} (by defn of N)
={r:x € AN(z € BAz ¢ C)} (by defn of \)
={x:zxe(ANz € B)Az¢C} (by associativity of A)
={z:z€(ANB)Azx &C} (by defn of N)



={z:2€(ANB)\C (by defn of \)

ProofT03Q8. Let A and B be set. Show that A C B if and only if AUB =B
To show AU B = B, we need to show AUB C Band BC AUB

=
1.1.
1.2.

1.3.

1.4.

2.1.
2.2,

2.3.

Suppose A C B

(Show AU B C B)

1.2.1. Letz€ AUB

1.2.2. Then z € A or z € B (by defn of U)

1.2.3. Case 1: Suppose z € A, then Z € B as A C B line (1.1)
1.2.4. Case 2: Suppose z € B, then z € B. We have z € B in either case
(Show AU B 2 B)

1.3.1. Letze B

1.3.2. Then z € A or z € B (by generalization)

1.3.3. So z € AU B (by defn of U)

Therefore AUB =B

Suppose AUB =B

Let z€ A

2.2.1. Then z € A or z € B (by generalization)
2.2.2. So z € AU B (by defn of U)

2.2.3. Soz € Bsince AUB =B (2.1)
Therefore A C B

Therefore, A C B if and only iff AUB = B

Proof T04Q05. Relation S = {(m,n) € Z* : m3 + n®is even}, Proof So S =S

(C) Suppose (z,z) € So S

1.1.
1.2.
1.3.
1.4.
1.5.

Then (z,y) € S and (y, z) € S for some y € Z (defn of composition of relations)

So 3 4+ 33 is even and > + 23 is even

This implies that z3 + 2y + 23 is even

This implies that =3 + 22 is even as 2y> is even
Therefore, (z,z) € S (by defn of )

(2) Suppose (z,z) € S

2.1.
2.2.

2.3.

2.4.
OR

Then 22 + 23 is even (by defn of S)

Case 1: 23 is odd.

2.2.1. Then 23 is also odd.

2.2.2. This implies that z3 + 12 is even and 13 + 23 is even
2.2.3. Thus, (z,1) € S and (1,2) € S (by defn of S)

2.24. So, (x,z) € SoS

Case 2: 23 is even.

2.3.1. Then 23 is also even.

2.3.2. This implies that 23 4 03 is even and 0% + 23 is even
2.3.3. Thus, (z,0) € S and (0,2) € S (by defn of S)

2.3.4. So, (z,z)€ SoS

In all cases, (z,2) € So S

(D) Suppose (z,z) € S

3.1.
3.2.

Note that (z,x) € S as 23 + 23 is even

Since (z,x) € S and (z,2) € S, we have (z,z) € So S (by defn of composition of relations)

Proof. R is asymmetric if and only if R is antisymmetric and irreflexive.

1.

1.1.

=
R is irreflexive (R is irreflexive = R is antisymmetric and irreflexive)
1.1.1. Let x € As.t. zRx = = Rz (R is Asymmetric)
1.1.2. Since z Rz, R is irreflexive (by defn of irreflexive)
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1.1. R is antisymmetric (Tutorial Qn 6c)
2. <= (R is antisymmetric and irreflexive = asymmetry)
2.1. Let z,y € A, s.t. xRy is antisymmetric and irreflexive
2.2. There is 2 cases to consider, z =y and = # y
23. z=y
2.3.1. xRz is not valid as it contradicts irreflexive, Vo € A(z Rx)
2.3.2. Therefore, tRt = z= Rzx

24. z#y
241, zRyNyRr — z =y

Proof LOTS26 Eqg 14. f:Q = Q by setting f(z) =3z + 1,z € Q. Is f injective? Yes

1. Let z1,20 € Q s.t. f(z1) = f(x2)
2. Then 3z +1=3z5+1
3. Sox1 = a9

Proof LO7S28 Eq 16. [ :Q = Q by setting f(z) =3z + 1,2 € Q. Is f surjective? Yes

1. Take any y € Q
2. Letz=(y—1)/3
3. Then:c6@&ndf(x)=3x+1:3(%)+1:y

Proof LO7534. If g1 and g are inverses of f : X = Y, then g; = ¢

1. Note that g1,92: Y = X
2. Since g1 and gy are inverses of f, forallz € X andy e Y,z =¢1(y) © y = f(z) & x = g2(y)
3. Therefore, g1 = g

Proof Theorem 7.2.53. f: X =Y is bijective iff f has inverse

1. ("if") Suppose f has an inverse, say g: Y = X
1.1. We show injectivity of f
1.1.1. Let x1,25 € Xs.t.f(l‘l) = f(d?g)
1.1.2. Define y = f(z1) = f(z2)
1.1.3. Then z1 = g(y) and z2 = g(y) as g is an inverse of f
1.1.4. Hence 1 = x>
1.2.  We show surjectivity of f
121. LetyeY
1.2.2. Define z = g(y)
1.2.3. Then y = f(z) as g is an inverse of {
1.3. Therefore f is bijective
2. ("Only if") Suppose f is bijective
2.1. Then Vy €Y 3z € X(y = f(z)) (by defn of bijection)
2.2. Define the function g : Y = X by setting g(y) to be the unique z € X s.t. y = f(z) forally € Y
2.3. This g is well defined and is an inverse of f (by defn of inverse function)
3. Therefore f: X =Y is bijective iff f has an inverse

Proof 807547, (hog)o f=ho(go f)

1. Domains of (hog)o f and ho(go f) are both A.
2. Codomains of (hog)o f and ho(go f) are both D.
3.

For every z € A, ((hog) o f)(x) = (hog)(f(x)) = h(g(f(x))) = h((g o )(x)) = (ho(go f))(x)
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Proof Theorem 7.3.3. If f: X =Y and ¢g:Y = Z are both injective, then g o f is injective

Suppose f: X =Y and g: Y = Z are injections and let x1,29 € X such that (go f)(z1) = (g o f)(z2)
Then g(f(z1)) = g(f(z2)) (by defn of function composition)

Since g is injective, so f(z1) = f(x2) (by defn of injection)

Since f is injective, so £1 = xo (by defn of injection)

Therefore g o f is injective

G o=

Proof Theorem 7.3.4. If f: X =Y and ¢g:Y = Z are both surjective, then g o f is surjective

Suppose f: X =Y and ¢g: Y = Z are surjections and let z € Z such that (go f)(z1) = (go f)(z2)
Since g is surjective, so there is an element y € Y s.t. g(y) = z (by defn of surjection)

Since f is surjective, so there is an element z € X s.t. f(z) =y (by defn of surjection)

Hence there exists an element © € X s.t. (go f)(z) = g(f(x)) =g(y) ==

Therefore, g o f is surjective

Gt oo =

Proof. Proof Addition on Z,, is well defined

Let [a1], [1], [22]; [y2] € Zn s.t. [21] = [wo] and [y1] = [yo]

Then 1 = x5 (mod n) and y; = y2 (mod n) (by defn of congruence)

Using defn of congruence to find k,l € Z s.t. ©1 — 9 = nk and y; — y2 = nl

Note that (z1 +y1) — (z2 +y2) = (x1 —x2) + (31 — y2) = nk+nl =n(k +1)

So x1 + y1 = x2 + y2 (mod n) (by defn of congruence)

Therefore, [z1] + [y1] = [z1 + y1] = [x2 + y2] = [22] + [y2] (by lemma Rel.1 Equivalence classes)

A e

Proof. Proof Multiplication on Z,, is well defined

L. Let [z1], [t1], [x2], [y2] € Zn s.t. [21] = [22] and [y1] = [yo]

2. Then x1 = 25 (mod n) and y; = y2 (mod n) (by defn of congruence)

3. Using defn of congruence to find k,l € Z s.t. 1 — 22 =nk and y; — y2 = nl

4. Note that (z1-y1) — (z2-y2) = (nk +x2) - (Nl +y2) — (x2 - y2) = n(nkl + kys + lza) where (nkl, kya,lze) € Z (Closure
of integer addition)

5. Soxy-y1 = 22 -y2 (mod n) (by defn of congruence)

6. Therefore, [z1] - [y1] = [z1 - y1] = [x2 - y2] = [22] - [y2] (by lemma Rel.1 Equivalence classes)

Proof Theorem 5.2.2. foralln>1,14+424+3+...+n= w

Let p(n) = (14+2+...4+n= %,VnEZ*‘

Basis step: 1 = M therefore P(1) is true.

Assume P(k) is true for some k> 1. Thatis 1+2+4 ...+ k=
Inductive Step: (To show P(k+1) is true)

A1 1424 o+ k4 (k1) = BED 4 (g 4 1) = DD

4.2. Therefore P(k+ 1) is true

5. Therefore, P(n) is true for n € Z* (We have proved P(1) and P(k) = P(k + 1))

k(k+1)
2

- e

pntl_q
r—1

Proof Theorem 5.2.3. for any real number r # 1, and any integers n > 0,7 rt =

1. Let P(n) = (X1 ri =" +1_1 7 #1,n>0
2. Basisstep: ¥ =1= :_1 ) (0) is true
3. Assume P(k) is true for k > 0. That is, Y35 ri =
4. Inductive Step: (To show P(k + 1) is true)

4.1. ZkJrol i = Z ot R = 7“1_1 4kt =

rkti_g
r—1

k+1_1+rk+1(r_1) o P+ 4
r—1 - r—1
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5.

4.2. Therefore P(k+ 1) is true.
Therefore, P(n) is true for n > 0

Proof Proposition 5.3.1. For all integers n > 0,2%" — 1 is divisible by 3

1.

Let P(n) = (3[(22" — 1)) for all integers n > 0

Basis Step: 220 — 1 = 0 is divisible by 3, therefore P(0) is true

Assume P(k) is true for k > 0. That is 3|(22% — 1)

3.1. This means that 22* — 1 = 3r for some integer r (by defn of divisibility)

Inductive Step: To show P(k + 1) is true

4.1, 220+ 1 =22k .4 1 =2%3.1)-1=3-2% 4 (22F — 1) =3.22F 1 3r = 3(2% + 1)
4.2. Since 3|22(**+1D — 1 therefore P(k + 1) is true

Therefore, P(n) is true for all integers n > 0

Proof Proposition 5.3.2. For all integers n > 3,2n+1 < 2"

=N

Let P(n) =2n+1 < 2™, for all integers n > 3

Basis Step: 2(3) +1 =7 < 8 = 23, therefore P(3) is true

Assume P(k) is true for k > 3. That is 2k + 1 < 2F

Inductive Step: To show P(k + 1) is true

41. 2(k+1)+1=(2k+1)+2 <2 +2 < 2% + 2% = 2% (because 2 < 2% for all integers k > 2
4.2. Therefore P(k+1) is true

Therefore, P(n) is true for all integers n > 3

Proof. Any integer > 1 is divisible by a prime number (Proof by 2PI)

N

Let P(n) = (n is divisible by a prime), for n > 1

Basis step: P(2) is true since 2 is divisible by 2.

Inductive step: To show that for all integers k > 2, if P(i) is true for all integers 4 from 2 through &, then P(k+1) is

also true.

3.1. Case 1(k+1 is prime): In this case k+1 is divisible by a prime number which is itself

3.2. Case 2(k+1 is not prime): In this case: k4 1 = ab where a and b are integers with 1 < a < k + 1 and
1<b<k+1.
3.2.1. Thus, in particular, 2 < a < k and so by inductive hypothesis, a is divisible by a prime number p.
3.2.2. In addition, because k + 1 = ab, so k + 1 is divisible by a
3.2.3. By transitivity of divisibility, k£ + 1 is divisible by prime p

Therefore, any integer greater than 1 is divisible by a prime

Proof. For all integers n > 12,n = 4a + 5b, for some a,b € N (Proof with 1PI)

W N

Let P(n) = (amount of $n can be formed by $4 and $5 coins) for n > 12

Basis step: 12 =3 x 4, so 3 $4 can be used. Therefore, P(12) is true.

Assume P(k) is true for k > 12

Inductive Step: (To show P(k + 1) is true.)

4.1. Case 1: If a $4 coin is used for $k amount, replace it with a $5 coin to make $(k + 1)

4.2. Case 2: If a no $4 coin is used for $k amount, then k& > 15, so there must be at least three $5 coins. We can
replace three $5 coins with 4 $4 coins to make $(k + 1)

4.3. In both cases, P(k+1) is true.

Therefore, P(n) is true for n > 12

Proof. For all integers n > 12,n = 4a + 5b, for some a,b € N (Proof with 2PI)

1.

Let P(n) = (n = 4a + 5b) for some a,b € N,;n > 12
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2. Basis step: Show P(12), P(13), P(14), P(15) hold.
12=4-345-0;13=4-2+5-1;14=4-14+5-2;15=4-0+5-3
Assume P(i) holds for 12 < i < k given some k > 15
4. Inductive Step: (To show P(k + 1) is true.)
4.1. P(k — 3) holds(by induction hypothesis), so k — 3 = 4a + 5b for some a,b € N
42. k+1=(k—3)+4=(4a+5b)+4=4(a+1)+5b
4.3. Hence P(k + 1) is true
5. Therefore, P(n) is true for n > 12

©w

Proof. For any positive integer n, if a1, as, ..., a, and by, ba, ..., b, are real numbers, then > (a;4+b;) = > 1 a;i+Y 1y b

Let P(n) = (3271, (ai +bi) = 3200 a; + 251, by) for n > 1

Basis step: P(1) is true since 23:1(‘“ +b)=a1+b = 23:1 a; + 23:1 b;

Inductive Hypothesis for some k > 1, Zle(ai +b;) = Zle a; + Zle b;

Inductive Step: Zfill (a; +b;) = Zf:l(ai + ;) + (ak+1 + br+1) (by defn of >7)

= Ele a; + Ele b; + (ag+1 + br+1) (by inductive hypothesis)

= ZZZI a; + akzl ;r Zle b; + br+1 (by the associative and commutative laws of algebra)
= Zi:11 a; + Zzil bi (by defn of }°)

Therefore P(k + 1) is true

5. Therefore P(n) is true for any positive integer n

=W e

Proof. Pigeonhole Principle

Note that A is finite. Suppose A = {ay, ag, ..., a;, } where m = |A]
Injectivity of f tells us that if a; # a;, then f(a;) # f(a;)

So f(a1), f(az), ..., f(am) are m different elements of B.

This shows that |B| > m = | 4|

Ll e

Proof. Dual Pigeonhole Principle

Note that B is finite. Suppose B = {b1,ba, ..., by, } where m = |B]|
For each b;, use the surjectivity of f to find a; € A s.t. f(a;) =b;
If b; # bj, then f(a;) # f(a;) and so a; # a; as f is a function
So ay,as, ..., a, are n different elements of A

This shows that |A| > n = |B|

GU o=
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