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1. Chapter1

1.1. Deductive Proofs

Sequence of statements, whose truth leads us from some initial statement, the hypothesis to
conclusion.Each step in the proof must follow by some accepted logical principle, either from
facts or some of the previous statements in the deductive proof.

Theorem1.1.1:If z > 4 then 2% > 2

Proof: [ ]

Theorem 1.1.2: If z is the sum of the squares of 4 positive integers, then 2% > 22

Proof:

z = a® + b + ¢ + d? (Given)

a>1,b>1,¢>1,d > 1(Given)

a®>1,b%2>1,c? > 1,d? > 1((2) and properties of arithmetic)

x > 4((1), (3), and properties of arithmetic

5. 2% > 22 ((4) and Theorem 1.3) ]
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1.2. Proof by Contradiction

Another way to prove statements of the form “if H then C" is to prove “H and not C implies
falsehood"”.

We can start by assuming both hypothesis H and negation of conclusion C. Complete proof
by showing that something known to be false follows logically from H and not C

1.3. Proofs about sets

1.3.1. Equivalences

To prove the equality of to sets, ' and F, E = F', we need to prove the following.
1. Proof thatif zisin E,then zisin F.
2. Proof thatif zisin F,then zisin E.

Theorem1.311: RU(SNT)=(RUS)N(RUT)

Proof: The two set expressions involved are E = RU(SNT) and F=(RUS)N
(RUT).Inthe if part, we assume element z is in E and show itisin F'.

1. zisin RU (S NT) (given)
2. zisin Rorzisin S NT (defn of union)



zisin Ror zisinboth S and T (defn of intersection)
zisin R U S (defn of union)

zisin RUT (defn of union)

6. zisin (RUS)N(RUT) (4,5,defn of intersection)

o ;o

In the only if part, we assume element x is in F'and show itisin E.
1. zisin(RUS)N (RUT) (Given)

xisin (R U S) (defn of intersection)

zisin (R UT) (defn of intersection)

zisin Ror zisinboth S and T (2, 3, reasoning about unions)
zisin Rorzisin S NT (defn of intersection)

xzisin RU (S NT) (defn of union)

S

1.4. Inductive Proofs

Suppose we are given statement S (n) about an integer n to prove. We need to prove 2 things.

1. The basis, where we show S(i) for a particular integer i. Usually i = 0 ori = 1.

2. Theinductive step, where we assume n > i, where i is the basis integer, and we show that
“if S(n) then S(n + 1)"

These 2 parts should convince us that S(n) is true for every integer n that is equal to or greater
than basis integer i.
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2. Central Concept of Automata Theory
2.1. Alphabet

Alphabet is a finite, nonempty set of symbols. We use the symbol X for alphabet. Common
alphabets include

1. ¥ = {0, 1} the binary alphabet

2. ¥ ={a,b, ..., z} the set of all lowercase letters

2.2. String

String is a finite sequence of symbols chosen from some alphabet. 01101 is a string from the
binary alphabet.

Empty String is the string with O occurances of symbols, denoted by ¢. This string is a string
that may be chosen from any alphabet whatsoever

Length of String is denoted by |w|, where w is a string

Powers of an Alphabet If X is an alphabet, we can express the set of all strings of a certain
length. We define ©* to be the set of strings of length k, whose embols is in ¥. Note that
20 = {e}

The set of all strings over an alphabet ¥ is denoted ¥*. For instance, {0,1}* =
{¢,0,1,00,01, 10, 11, ...} The set of nonempty strings is denoted by X+ The set of nonempty
strings is denoted by X

Xt =3lux?u..

- Y=Yt U{e}

Concat of Strings Let x and y be strings. zy denotes concatenation of z and y. If x is a string
composed of i symbols z = a; a,...a; and yis the string composed of j symbolsy = b, b,...b;
then zy is the string of length i + j : zy = a;...a;b;...b;.

2.3. Languages

A set of strings all of which are chosen from some ¥*, where X is a particular alphabet, is
called a language. If X is an alphabet, and L C X*, then L is a language over X. Language
over ¥ need not include strings with all the symbols of ¥, so once we have established than
L is alanguage over 3, we also know it is a language over any alphabet that is a superset of
3.

Example languages:

- X*is alanguage for any alphabet X.

- (the empty language, is a language over any alphabet
- {e},the language consisting of only empty string.

Only constraint on what can be alanguage is that all alphabets are finite. Languages can have
aninfinite number of strings, but are restricted to consist of strings drawn from one fixed, finite
alphabet.



3. Deterministic Finite Automata

DFA consists of

1. Finite set of states, often denoted @@

2. Finite set of input symbols,often denoted X

3. Atransition function that takes as arguments a state, and an input symbol, and returns a
state. Commonly denoted by §

4. A start state, one of the states in Q

5. A set of final or accepting states F. F' C Q)

In proofs we often talk about DFA in “5 tuple” notation:
A = (Q7275aq07F)
where A is the name of the DFA.

3.1. DFA Processes Strings

The Language of a DFA: The set of all strings that result in a sequence of state transitions
from the start state to an accepting state.

We define an extended transition function to describe what happens when we start in any
state, and follow a sequence of inputs, denoted as 5. The extended transition function is a
function that takes state ¢ and a string w and returns state p - the state automaton reaches
when starting in state ¢ and processing the sequence of input w. We define ) by induction on
the length of input string, as follows:

Definition 3.1.1 () : Extended Transition Function
Basis: §(¢, €) = ¢. That s if we are in state ¢ and read no inputs, we are still in state .

Induction: Suppose w is a string of the form za, that is a is the last symbol of w and x
is the string consisting of all but the last symbol. Then

5(q,w) = 5(5(q,x),a>

3.2. Language of DFA
The language ofaDFA A = (Q, %, 6, q,, F'), denoted by L(A) is defined by

L(A) = {w | §(gp,w) € F}

That is, the language of A is the set of strings w that take the start state ¢, to one of the
accepting states.

If Lis L(A) for some DFA A, then L is a regular language



Theorem 3.2.1: For any state g and string z and y, 6 (¢, zy) = S(S(q, x), y)

Proof: By inducting on |y|
Base case: (y = ¢):
b(q,2e) = b(q,2) and §(8(q,2), ) = 8(g,2)

Inductive Step: Assume the statement holds for some y = w € ¥*, ie. 3(q, Tw) =

AL A

5((5(q,9:),w>

Lety = wa, a € X, we have
1. 6(q, zwa) = 5(3((1, xw)a) (defn of §)

2. =6(3(6(g,2),w),a) (Apply IH)
3. = 6(0(q, x), wa) (defn of )

So the statement holds true for wa. ]
Theorem 3.2.2: For any state g, string = and symbol a, § (¢, az) = §(8(q, a), z)

Proof:
1. Letz =aand y = z.Then, §(q, az) = 5<$(q, a, a:)
2. =6(0(q,a),z) (by defn of §)
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4. Nondeterministic Finite Automata

NFA has a set of finite states, finite input symbols, 1 start and a set of accepting states. NFA's
transition function takes a state and input symbols but returns a set of O, 1, or more states.

Definition 4.1 (Nondeterministic Finite Automata):

A: (Q72755q07F)

,Where

Q is afinite set of states

Y is a finite set of symbols

qo € Q. is the start state

F C Q, set of final states

d, the transition function, takes in a state in () and an input symbol in 3 and returns
a subset of Q.

ok wbdN -

4.1. Extended Transition function

function ¢ takes a state g, and a string of input symbols w, and returns the set of states that
the NFA is in if it starts in state g and processes string w.

Definition 4.1.1 (Extended Transition Function for NFA):

Basis: S(q, ¢) = {q}. Thatis, without reading any input symbols, we are only in the state
we beganin.

Induction: Suppose w is of the form w = xa, where a is the final symbol of w and z is
the rest of w. Also suppose that S(q, z) ={py, ..., }-Let

k
U d(psya) ={ry,ry, ;T }

=1

Then S(q, ’U)) = {T17T2a ey Tm}

4.2. Language of NFA

NFA accepts string w if it is possible to make any sequence of choices of next state, while
reading characters of w, and go from start state to any accepting state.If A = (Q, %, 6, ¢y, F)
is an NFA, then

L(A) = {w | 8(gg,w) N F # 0
Thatis, L(A) is the set of strings w in X* such that 4 (g, w) contains at least 1 accepting state

Example 4.2.1:



Prove formally that this NFA accepts language L = {w | w ends in 01}

Proof: The following 3 statements characterisze the 3 states:
1. 8(qy, w) contains g, for every w

2. 6(qy, w) contains g, if and only if w ends in 0.

3. 4(q,, w) contains ¢, if and only if w ends in O1.

We prove by induction on |w|.

Basis: If jw| = 0, then w = €.

. Statement (1) says that § (gy, €) contains g, by defn of 5.

. Statement (2), we know that ¢ does not end in 0, and & (qy, €) does not contain ¢, by
defn of §

- Statement (3), same as statement 2.

Induction: Assume w = za, where a is a symbol either in 0 or 1. We assume statements
1-3 hold for z, and we need to prove them for w, thatis, we assume |w| = n + 1, |z| = n.

A

1. 4(qy, z) contains g,. Since there are transitions from 0/1 from g, to itself, it follows
that §(¢,, w) also contains g, so statement 1 is proved for w

2. (If) Assume w ends in O, i.e. a = 0. By statement (1) applied to z, we know that
qo € 3(q0, x). Since there are transitions from g, to ¢; on input O, we know that ¢, €

S(Q()a w). .
(Only-if) Assume ¢; € 6(qy, w).Only way to get to g, is if w = x0.

3. (If) Assume w ends in O1. If w = za, then a = 1 and x ends in 0. By statement 2
applied to z, we know that ¢; € S(qo, x). Since there is a transition from ¢, to ¢, on
input 1, we conclude that ¢, € §(g,, w)

(Only-if) Suppose g, € S(qo, w). Only way to get to g, is for w to be of the form x1,
where ¢; € ) (gy, w). By (2) applied to z, we know that z ends in O. Thus, w ends in
01.

4.3. Equivalence of DFA and NFA

We prove this using subset construction. We start with NFA N = (Qy, 2,05, @y, Fi)- The
goal is the description of a DFA D = (Qp, %,dp,{q,}, Fp) such that L(D) = L(N). The
input alphabets are the same, and the start of D is the set containing only the start state of

+ Qpisthe set of subsets of Q , thatis @, is the power set of Q 5. If Q5 has n states, Q@
has 2" states.
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- Fp, is the set of subsets S of @ such that S N Fy # 0. F, is all sets of N's states that
include at least 1 accepting state of V.
- Foreachset S C @, and for each input symbol a in %,

0p(S,a) = | dn(p,a)

peS

Theorem 4.3.1:If D = (Q4,%,0p,{qo}, Fp) is the DFA constructed from NFA N =
(Qn, 2,0y, 9y, Fy) by subset construction, then L(D) = L(N).

Proof: We prove by induction on |w| that

Sp({ao}, w) = dx (40, w) (1)

Notice that each of the § function returns a set of states from Q , but § , interprets this
set as one of the states of Q ;,, while §  interprets this set as a subset of Q .

Basis: Let |w| = 0, w = €. By basis definition of § for DFA and NFA, both 6, ({g,}, €)
and o (o, ) are {qo}

Induction: Let w be of length n + 1, assume statement for length n.w = xa, where a is
final symbol of w. By inductive hypothesis, § , ({g}, 2) = d 5 (qp, ) = {py, -, P1.}

Definition 4.1.1 tells us that

and subset construction tells us

Sp({p1,--sPx},a) = U5N(piaa) (3)

=1
.We can use this to construct

k
SD({QO}aw) = 6D<SD({QO}7w)7UJ> =dp({p1,--pe}a) = U on(ps,a)  (4)

=1

Thus, (2) and (4) demonstrate that 6, ({g, }, w) = d 5 (g, w). When we observe that D
and NV both accept wif and only if § ;, ({ g, }, w) or § (g, , w), respectively, contain a state
F}, we have a completed proof that L(D) = L(N) ]

Theorem 4.3.2: Language L is accepted by some DFA if and only if L is accepted by
some NFA
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Proof: (If) The if part is subset construction and Theorem 4.3.1

(Onlyif) Converta DFAinto anidentical NFA.Let D = (Q, X, 0, qo, F') be aDFA.Define
N =(Q,%,0y,q, F) to be the equivalent NFA, where § ; is defined by “if 6 5(q,a) =

p.thendy(q,a) = {p}

We can induct on |w|, that

A

S (g0, w) = {p (g, w) }
Basis: (w = ¢)
SN(Q07€) ={qo} = {SD(%,U’)}
Inductive Step: Let w be of length n + 1, w = za, where a is final symbol of w.

SN(Qo;l'a) = U on(p,a) (defn of SN)

PEd N (90,)

= U {épmao}rh
p€dy({go},x)

= {5D(q0,xa)} (def of SD)
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5. Reference

- Alphabet - Finite Non empty set of symbols, denoted by X
» Powers of Alphabet
- %2 ={00,01,10,11}
- 20 ={¢}
-ys2=x0uxtux?
- String - Sequence of Symbols from X, denoted by ¢
» Concat-x =00,y =10,z -y = zy = 0010
» Substring - ab is a substring of babaa, bb is not.
» Subsequence - bba is not subseq of babaa, abb is
+ Length of String - Number of symbols in a string, denoted by |w|
- Language - Set of strings over an alphabet
» L =1{00,11,01,110}
» L=1
Ly -Lyo=L,Ly,={xy:x € L,y € Ly}
» L* ={zy29..x,, : T,,To,...x,, € L,n € N}

v

» LT = {z 2.7, : 1, %9, ...x,, € Lyn > 1}
5.0.1. Proof Structure

5.0.1.1. Set A =SetB

1. Show A C B
- Take arbitrary elementxz € A
- Use definition of Ato show x € B
« Therefore, A C B

2. ShowB C A
- Take arbitrary element x € B
+ Use definition of Bto show x € A
« Therefore, BC A

3. SinceACBandBC A A=B

1
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