
CS3231 - The Theory of
Computing
Yadunand Prem

1. Chapter 1
1.1. Deductive Proofs
Sequence of statements, whose truth leads us from some initial statement, the hypothesis to
conclusion. Each step in the proof must follow by some accepted logical principle, either from
facts or some of the previous statements in the deductive proof.

Theorem 1.1.1 : If 𝑥 ≥ 4 then 2𝑥 ≥ 𝑥2

Proof : ∎

Theorem 1.1.2 : If 𝑥 is the sum of the squares of 4 positive integers, then 2𝑥 ≥ 𝑥2

Proof :
1. 𝑥 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 (Given)
2. 𝑎 ≥ 1, 𝑏 ≥ 1, 𝑐 ≥ 1, 𝑑 ≥ 1 (Given)
3. 𝑎2 ≥ 1, 𝑏2 ≥ 1, 𝑐2 ≥ 1, 𝑑2 ≥ 1 ((2) and properties of arithmetic)
4. 𝑥 ≥ 4 ((1), (3), and properties of arithmetic
5. 2𝑥 ≥ 𝑥2 ((4) and Theorem 1.3) ∎

1.2. Proof by Contradiction
Another way to prove statements of the form “if H then C” is to prove “H and not C implies
falsehood”.

We can start by assuming both hypothesis 𝐻 and negation of conclusion 𝐶 . Complete proof
by showing that something known to be false follows logically from 𝐻 and not 𝐶

1.3. Proofs about sets
1.3.1. Equivalences

To prove the equality of to sets, 𝐸 and 𝐹 , 𝐸 = 𝐹 , we need to prove the following.
1. Proof that if 𝑥 is in 𝐸, then 𝑥 is in 𝐹 .
2. Proof that if 𝑥 is in 𝐹 , then 𝑥 is in 𝐸.

Theorem 1.3.1.1 : 𝑅 ∪ (𝑆 ∩ 𝑇) = (𝑅 ∪ 𝑆) ∩ (𝑅 ∪ 𝑇)

Proof : The two set expressions involved are 𝐸 = 𝑅 ∪ (𝑆 ∩ 𝑇) and 𝐹 = (𝑅 ∪ 𝑆) ∩
(𝑅 ∪ 𝑇). In the if part, we assume element 𝑥 is in 𝐸 and show it is in 𝐹 .

1. 𝑥 is in 𝑅 ∪ (𝑆 ∩ 𝑇) (given)
2. 𝑥 is in 𝑅 or 𝑥 is in 𝑆 ∩ 𝑇 (defn of union)

2

3. 𝑥 is in 𝑅 or 𝑥 is in both 𝑆 and 𝑇 (defn of intersection)
4. 𝑥 is in 𝑅 ∪ 𝑆 (defn of union)
5. 𝑥 is in 𝑅 ∪ 𝑇 (defn of union)
6. 𝑥 is in (𝑅 ∪ 𝑆) ∩ (𝑅 ∪ 𝑇) (4, 5, defn of intersection)

In the only if part, we assume element 𝑥 is in 𝐹 and show it is in 𝐸.
1. 𝑥 is in (𝑅 ∪ 𝑆) ∩ (𝑅 ∪ 𝑇) (Given)
2. 𝑥 is in (𝑅 ∪ 𝑆) (defn of intersection)
3. 𝑥 is in (𝑅 ∪ 𝑇) (defn of intersection)
4. 𝑥 is in 𝑅 or 𝑥 is in both 𝑆 and 𝑇 (2, 3, reasoning about unions)
5. 𝑥 is in 𝑅 or 𝑥 is in 𝑆 ∩ 𝑇 (defn of intersection)
6. 𝑥 is in 𝑅 ∪ (𝑆 ∩ 𝑇) (defn of union)

∎

1.4. Inductive Proofs
Suppose we are given statement 𝑆(𝑛) about an integer 𝑛 to prove. We need to prove 2 things.
1. The basis, where we show 𝑆(𝑖) for a particular integer 𝑖. Usually 𝑖 = 0 or 𝑖 = 1.
2. The inductive step, where we assume 𝑛 ≥ 𝑖, where 𝑖 is the basis integer, and we show that

“if 𝑆(𝑛) then 𝑆(𝑛 + 1)”

These 2 parts should convince us that 𝑆(𝑛) is true for every integer 𝑛 that is equal to or greater
than basis integer 𝑖.

CHAPTER 1 3

2. Central Concept of Automata Theory
2.1. Alphabet
Alphabet is a finite, nonempty set of symbols. We use the symbol Σ for alphabet. Common
alphabets include
1. Σ = {0, 1} the binary alphabet
2. Σ = {𝑎, 𝑏, …, 𝑧} the set of all lowercase letters

2.2. String
String is a finite sequence of symbols chosen from some alphabet. 01101 is a string from the
binary alphabet.

Empty String is the string with 0 occurances of symbols, denoted by 𝜖. This string is a string
that may be chosen from any alphabet whatsoever

Length of String is denoted by |𝑤| , where 𝑤 is a string

Powers of an Alphabet If Σ is an alphabet, we can express the set of all strings of a certain
length. We define Σ𝑘 to be the set of strings of length 𝑘, whose embols is in Σ. Note that
Σ0 = {𝜖}

The set of all strings over an alphabet Σ is denoted Σ∗. For instance, {0, 1}∗ =
{𝜖, 0, 1, 00, 01, 10, 11, …} The set of nonempty strings is denoted by Σ+ The set of nonempty
strings is denoted by Σ+

• Σ+ = Σ1 ∪ Σ2 ∪ …
• Σ∗ = Σ+ ∪ {𝜖}

Concat of Strings Let 𝑥 and 𝑦 be strings. 𝑥𝑦 denotes concatenation of 𝑥 and 𝑦. If 𝑥 is a string
composed of 𝑖 symbols 𝑥 = 𝑎1𝑎2…𝑎𝑖 and 𝑦 is the string composed of 𝑗 symbols 𝑦 = 𝑏1𝑏2…𝑏𝑗
then 𝑥𝑦 is the string of length 𝑖 + 𝑗 : 𝑥𝑦 = 𝑎1…𝑎𝑖𝑏1…𝑏𝑗.

2.3. Languages
A set of strings all of which are chosen from some Σ∗, where Σ is a particular alphabet, is
called a language. If Σ is an alphabet, and 𝐿 ⊆ Σ∗, then 𝐿 is a language over Σ. Language
over Σ need not include strings with all the symbols of Σ, so once we have established than
𝐿 is a language over Σ, we also know it is a language over any alphabet that is a superset of
Σ.

Example languages:
• Σ∗ is a language for any alphabet Σ.
• ∅,the empty language, is a language over any alphabet
• {𝜖}, the language consisting of only empty string.

Only constraint on what can be a language is that all alphabets are finite. Languages can have
an infinite number of strings, but are restricted to consist of strings drawn from one fixed, finite
alphabet.

4

3. Deterministic Finite Automata
DFA consists of
1. Finite set of states, often denoted 𝑄
2. Finite set of input symbols,often denoted Σ
3. A transition function that takes as arguments a state, and an input symbol, and returns a

state. Commonly denoted by 𝛿
4. A start state, one of the states in 𝑄
5. A set of final or accepting states 𝐹 . 𝐹 ⊂ 𝑄

In proofs we often talk about DFA in “5 tuple” notation:

𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

where 𝐴 is the name of the DFA.

3.1. DFA Processes Strings
The Language of a DFA: The set of all strings that result in a sequence of state transitions
from the start state to an accepting state.

We define an extended transition function to describe what happens when we start in any
state, and follow a sequence of inputs, denoted as 𝛿. The extended transition function is a
function that takes state 𝑞 and a string 𝑤 and returns state 𝑝 - the state automaton reaches
when starting in state 𝑞 and processing the sequence of input 𝑤. We define 𝛿 by induction on
the length of input string, as follows:

Definition 3.1.1 () : Extended Transition Function

Basis: 𝛿(𝑞, 𝜖) = 𝑞. That is if we are in state 𝑞 and read no inputs, we are still in state q.

Induction: Suppose 𝑤 is a string of the form 𝑥𝑎, that is 𝑎 is the last symbol of 𝑤 and 𝑥
is the string consisting of all but the last symbol. Then

𝛿(𝑞, 𝑤) = 𝛿(𝛿(𝑞, 𝑥), 𝑎)

3.2. Language of DFA
The language of a DFA 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹), denoted by 𝐿(𝐴) is defined by

𝐿(𝐴) = {𝑤 | 𝛿(𝑞0, 𝑤) ∈ 𝐹}

That is, the language of 𝐴 is the set of strings 𝑤 that take the start state 𝑞0 to one of the
accepting states.

If 𝐿 is 𝐿(𝐴) for some DFA A, then 𝐿 is a regular language

5

Theorem 3.2.1 : For any state 𝑞 and string 𝑥 and 𝑦, 𝛿(𝑞, 𝑥𝑦) = 𝛿(𝛿(𝑞, 𝑥), 𝑦)

Proof : By inducting on |𝑦|

Base case: (𝑦 = 𝜖):

𝛿(𝑞, 𝑥𝜖) = 𝛿(𝑞, 𝑥) and 𝛿(𝛿(𝑞, 𝑥), 𝜖) = 𝛿(𝑞, 𝑥)

Inductive Step: Assume the statement holds for some 𝑦 = 𝑤 ∈ Σ∗, i.e. 𝛿(𝑞, 𝑥𝑤) =
𝛿(𝛿(𝑞, 𝑥), 𝑤)

Let 𝑦 = 𝑤𝑎, 𝑎 ∈ Σ, we have
1. 𝛿(𝑞, 𝑥𝑤𝑎) = 𝛿(𝛿(𝑞, 𝑥𝑤)𝑎) (defn of 𝛿)
2. = 𝛿(𝛿(𝛿(𝑞, 𝑥), 𝑤), 𝑎) (Apply IH)
3. = 𝛿(𝛿(𝑞, 𝑥), 𝑤𝑎) (defn of 𝛿)

So the statement holds true for 𝑤𝑎. ∎

Theorem 3.2.2 : For any state 𝑞, string 𝑥 and symbol 𝑎, 𝛿(𝑞, 𝑎𝑥) = 𝛿(𝛿(𝑞, 𝑎), 𝑥)

Proof :
1. Let 𝑥 = 𝑎 and 𝑦 = 𝑥. Then, 𝛿(𝑞, 𝑎𝑥) = 𝛿(𝛿(𝑞, 𝑎), 𝑥).
2. = 𝛿(𝛿(𝑞, 𝑎), 𝑥) (by defn of 𝛿)

∎

6 DETERMINISTIC FINITE AUTOMATA

4. Nondeterministic Finite Automata
NFA has a set of finite states, finite input symbols, 1 start and a set of accepting states. NFA’s
transition function takes a state and input symbols but returns a set of 0, 1, or more states.

Definition 4.1 (Nondeterministic Finite Automata) :

𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

, where
1. 𝑄 is a finite set of states
2. Σ is a finite set of symbols
3. 𝑞0 ∈ 𝑄, is the start state
4. 𝐹 ⊂ 𝑄, set of final states
5. 𝛿, the transition function, takes in a state in 𝑄 and an input symbol in Σ and returns

a subset of 𝑄.

4.1. Extended Transition function
function 𝛿 takes a state 𝑞, and a string of input symbols 𝑤, and returns the set of states that
the NFA is in if it starts in state 𝑞 and processes string 𝑤.

Definition 4.1.1 (Extended Transition Function for NFA) :

Basis: 𝛿(𝑞, 𝜖) = {𝑞}. That is, without reading any input symbols, we are only in the state
we began in.

Induction: Suppose 𝑤 is of the form 𝑤 = 𝑥𝑎, where 𝑎 is the final symbol of 𝑤 and 𝑥 is
the rest of 𝑤. Also suppose that 𝛿(𝑞, 𝑥) = {𝑝1, …, 𝑝𝑘}. Let

⋃
𝑘

𝑖=1
𝛿(𝑝𝑖, 𝑎) = {𝑟1, 𝑟2, …, 𝑟𝑚}

Then 𝛿(𝑞, 𝑤) = {𝑟1, 𝑟2, …, 𝑟𝑚}

4.2. Language of NFA
NFA accepts string 𝑤 if it is possible to make any sequence of choices of next state, while
reading characters of 𝑤, and go from start state to any accepting state. If 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)
is an NFA, then

𝐿(𝐴) = {𝑤 | 𝛿(𝑞0, 𝑤) ∩ 𝐹 ≠ ∅

That is, 𝐿(𝐴) is the set of strings 𝑤 in Σ∗ such that 𝛿(𝑞0, 𝑤) contains at least 1 accepting state

Example 4.2.1 :

7

Start q₀ q₁ q₂

0, 1
0 1

Prove formally that this NFA accepts language 𝐿 = {𝑤 | 𝑤 ends in 01}

Proof : The following 3 statements characterisze the 3 states:
1. 𝛿(𝑞0, 𝑤) contains 𝑞0 for every 𝑤
2. 𝛿(𝑞0, 𝑤) contains 𝑞1 if and only if 𝑤 ends in 0.
3. 𝛿(𝑞0, 𝑤) contains 𝑞2 if and only if 𝑤 ends in 01.

We prove by induction on |𝑤|.

Basis: If |𝑤| = 0, then 𝑤 = 𝜖.
• Statement (1) says that 𝛿(𝑞0, 𝜖) contains 𝑞0, by defn of 𝛿.
• Statement (2), we know that 𝜖 does not end in 0, and 𝛿(𝑞0, 𝜖) does not contain 𝑞1 by

defn of 𝛿
• Statement (3), same as statement 2.

Induction: Assume 𝑤 = 𝑥𝑎, where 𝑎 is a symbol either in 0 or 1. We assume statements
1-3 hold for 𝑥, and we need to prove them for 𝑤, that is, we assume |𝑤| = 𝑛 + 1, |𝑥| = 𝑛.

1. 𝛿(𝑞0, 𝑥) contains 𝑞0. Since there are transitions from 0/1 from 𝑞0 to itself, it follows
that 𝛿(𝑞0, 𝑤) also contains 𝑞0, so statement 1 is proved for 𝑤

2. (If) Assume 𝑤 ends in 0, i.e. 𝑎 = 0. By statement (1) applied to 𝑥, we know that
𝑞0 ∈ 𝛿(𝑞0, 𝑥). Since there are transitions from 𝑞0 to 𝑞1 on input 0, we know that 𝑞1 ∈
𝛿(𝑞0, 𝑤).
(Only-if) Assume 𝑞1 ∈ 𝛿(𝑞0, 𝑤). Only way to get to 𝑞1 is if 𝑤 = 𝑥0.

3. (If) Assume 𝑤 ends in 01. If 𝑤 = 𝑥𝑎, then 𝑎 = 1 and 𝑥 ends in 0. By statement 2
applied to 𝑥, we know that 𝑞1 ∈ 𝛿(𝑞0, 𝑥). Since there is a transition from 𝑞1 to 𝑞2 on
input 1, we conclude that 𝑞2 ∈ 𝛿(𝑞0, 𝑤)
(Only-if) Suppose 𝑞2 ∈ 𝛿(𝑞0, 𝑤). Only way to get to 𝑞2 is for 𝑤 to be of the form 𝑥1,
where 𝑞1 ∈ 𝛿(𝑞0, 𝑤). By (2) applied to 𝑥, we know that 𝑥 ends in 0. Thus, 𝑤 ends in
01.

∎

4.3. Equivalence of DFA and NFA
We prove this using subset construction. We start with NFA 𝑁 = (𝑄𝑁 , Σ, 𝛿𝑁 , 𝑄0, 𝐹𝑁). The
goal is the description of a DFA 𝐷 = (𝑄𝐷, Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) such that 𝐿(𝐷) = 𝐿(𝑁). The
input alphabets are the same, and the start of 𝐷 is the set containing only the start state of
𝑁 .
• 𝑄𝐷 is the set of subsets of 𝑄𝑁 , that is 𝑄𝐷 is the power set of 𝑄𝑁 . If 𝑄𝑁 has 𝑛 states, 𝑄𝐷

has 2𝑛 states.

8 NONDETERMINISTIC FINITE AUTOMATA

• 𝐹𝐷 is the set of subsets 𝑆 of 𝑄𝑁 such that 𝑆 ∩ 𝐹𝑁 ≠ ∅. 𝐹𝐷 is all sets of 𝑁 ’s states that
include at least 1 accepting state of 𝑁 .

• For each set 𝑆 ⊆ 𝑄𝑁 , and for each input symbol 𝑎 in Σ,

𝛿𝐷(𝑆, 𝑎) = ⋃
𝑝∈𝑆

𝛿𝑁(𝑝, 𝑎)

Theorem 4.3.1 : If 𝐷 = (𝑄𝑑, Σ, 𝛿𝐷, {𝑞0}, 𝐹𝐷) is the DFA constructed from NFA 𝑁 =
(𝑄𝑁 , Σ, 𝛿𝑁 , 𝑞0, 𝐹𝑁) by subset construction, then 𝐿(𝐷) = 𝐿(𝑁).

Proof : We prove by induction on |𝑤| that

𝛿𝐷({𝑞0}, 𝑤) = 𝛿𝑁(𝑞0, 𝑤) (1)

Notice that each of the 𝛿 function returns a set of states from 𝑄𝑁 , but 𝛿𝐷 interprets this
set as one of the states of 𝑄𝐷, while 𝛿𝑁 interprets this set as a subset of 𝑄𝑁 .

Basis: Let |𝑤| = 0, 𝑤 = 𝜖. By basis definition of 𝛿 for DFA and NFA, both 𝛿𝐷({𝑞0}, 𝜖)
and 𝛿𝑁(𝑞0, 𝜖) are {𝑞0}

Induction: Let 𝑤 be of length 𝑛 + 1, assume statement for length 𝑛. 𝑤 = 𝑥𝑎, where 𝑎 is
final symbol of 𝑤. By inductive hypothesis, 𝛿𝐷({𝑞0}, 𝑥) = 𝛿𝑁(𝑞0, 𝑥) = {𝑝1, …, 𝑝𝑘}

Definition 4.1.1 tells us that

𝛿𝑁(𝑞0,𝑤) = ⋃
𝑘

𝑖=1
𝛿𝑁(𝑝𝑖, 𝑎) (2)

and subset construction tells us

𝛿𝐷({𝑝1, …, 𝑝𝑘}, 𝑎) = ⋃
𝑘

𝑖=1
𝛿𝑁(𝑝𝑖, 𝑎) (3)

. We can use this to construct

𝛿𝐷({𝑞0}, 𝑤) = 𝛿𝐷(𝛿𝐷({𝑞0}, 𝑥), 𝑎) = 𝛿𝐷({𝑝1, …, 𝑝𝑘}, 𝑎) = ⋃
𝑘

𝑖=1
𝛿𝑁(𝑝𝑖, 𝑎) (4)

Thus, (2) and (4) demonstrate that 𝛿𝐷({𝑞0}, 𝑤) = 𝛿𝑁(𝑞0, 𝑤). When we observe that 𝐷
and 𝑁 both accept 𝑤 if and only if 𝛿𝐷({𝑞0}, 𝑤) or 𝛿𝑁(𝑞0, 𝑤), respectively, contain a state
𝐹𝑁 , we have a completed proof that 𝐿(𝐷) = 𝐿(𝑁) ∎

Theorem 4.3.2 : Language 𝐿 is accepted by some DFA if and only if 𝐿 is accepted by
some NFA

NONDETERMINISTIC FINITE AUTOMATA 9

Proof : (If) The if part is subset construction and Theorem 4.3.1

(Only if) Convert a DFA into an identical NFA. Let 𝐷 = (𝑄, Σ, 𝛿𝐷, 𝑞0, 𝐹) be a DFA. Define
𝑁 = (𝑄, Σ, 𝛿𝑁 , 𝑞0, 𝐹) to be the equivalent NFA, where 𝛿𝑁 is defined by “if 𝛿𝐷(𝑞, 𝑎) =
𝑝, then 𝛿𝑁(𝑞, 𝑎) = {𝑝}

We can induct on |𝑤|, that

𝛿𝑁(𝑞0, 𝑤) = {𝛿𝐷(𝑞0, 𝑤)}

Basis: (𝑤 = 𝜖)

𝛿𝑁(𝑞0, 𝜖) = {𝑞0} = {𝛿𝐷(𝑞0, 𝑤)}

Inductive Step: Let 𝑤 be of length 𝑛 + 1, 𝑤 = 𝑥𝑎, where 𝑎 is final symbol of 𝑤.

𝛿𝑁(𝑞0, 𝑥𝑎) = ⋃
𝑝∈𝛿𝑁(𝑞0,𝑥)

𝛿𝑁(𝑝, 𝑎) (defn of 𝛿𝑁)

= ⋃
𝑝∈𝛿𝑑({𝑞0},𝑥)

{𝛿𝐷(𝑝, 𝑎)}(I.H)

= {𝛿𝐷(𝑞0, 𝑥𝑎)} (def of 𝛿𝐷)

∎

10 NONDETERMINISTIC FINITE AUTOMATA

5. Reference
• Alphabet - Finite Non empty set of symbols, denoted by Σ

‣ Powers of Alphabet
– Σ2 = {00, 01, 10, 11}
– Σ0 = {𝜖}
– Σ≤2 = Σ0 ∪ Σ1 ∪ Σ2

• String - Sequence of Symbols from Σ, denoted by 𝜖
‣ Concat - 𝑥 = 00, 𝑦 = 10, 𝑥 ⋅ 𝑦 = 𝑥𝑦 = 0010
‣ Substring - 𝑎𝑏 is a substring of 𝑏𝑎𝑏𝑎𝑎, 𝑏𝑏 is not.
‣ Subsequence - 𝑏𝑏𝑎 is not subseq of 𝑏𝑎𝑏𝑎𝑎, 𝑎𝑏𝑏 is

• Length of String - Number of symbols in a string, denoted by |𝑤|
• Language - Set of strings over an alphabet

‣ 𝐿 = {00, 11, 01, 110}
‣ 𝐿 = ∅
‣ 𝐿1 ⋅ 𝐿2 = 𝐿1𝐿2 = {𝑥𝑦 : 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}
‣ 𝐿∗ = {𝑥1𝑥2…𝑥𝑛 : 𝑥1, 𝑥2, …𝑥𝑛 ∈ 𝐿, 𝑛 ∈ ℕ}
‣ 𝐿+ = {𝑥1𝑥2…𝑥𝑛 : 𝑥1, 𝑥2, …𝑥𝑛 ∈ 𝐿, 𝑛 ≥ 1}

5.0.1. Proof Structure

5.0.1.1. Set A = Set B

1. Show 𝐴 ⊆ 𝐵
• Take arbitrary element 𝑥 ∈ 𝐴
• Use definition of A to show 𝑥 ∈ 𝐵
• Therefore, 𝐴 ⊆ 𝐵

2. Show 𝐵 ⊆ 𝐴
• Take arbitrary element 𝑥 ∈ 𝐵
• Use definition of B to show 𝑥 ∈ 𝐴
• Therefore, 𝐵 ⊆ 𝐴

3. Since 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, 𝐴 = 𝐵

11

	Chapter 1
	Deductive Proofs
	Proof by Contradiction
	Proofs about sets
	Equivalences

	Inductive Proofs

	Central Concept of Automata Theory
	Alphabet
	String
	Languages

	Deterministic Finite Automata
	DFA Processes Strings
	Language of DFA

	Nondeterministic Finite Automata
	Extended Transition function
	Language of NFA
	Equivalence of DFA and NFA

	Reference
	Proof Structure
	Set A = Set B

