Lecture 1

Fibonacci

```
def fib(n):
  if n == 0: return 0
  elif n == 1: return 1
  else: return fib(n-1) + fib(n-2)
• T(0) = 2 (if, return)
• T(1) = 3 (if, elif, return)
• T(n) = T(n-1) + T(n-2) + 7 (if, elif, else, +, fib, fib, return)
```

Notations

O —notation

- *Upper Bound*, that is function grows no faster than cg(n)
- $f \in O(g)$ if there is c > 0 and $n_0 > 0$ such that $\forall n \ge n_0 : 0 \le f(n) \le cg(n)$
 - The intuition is that for a large enough n, there is a function g and constant c, such that f(n) is always lesser than g.

Ω -notation

- Lower Bound, that is function grows at least as fast as cg(n)
- $f \in O(g)$ if there is c > 0 and $n_0 > 0$ such that $\forall n \ge n_0 : 0 \le cg(n) \le f(n)$

- Both upper and lower bounded by cg(n)
- $f \in O(g)$ if there is $c_1, c_2 > 0$ and $n_0 > 0$ such that $\forall n \ge n_0 : 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$

o-notation

- Strict upper bound, $0 \le f(n) < cg(n)$

ω -notation

• Strict lower bound, $0 \le cg(n) < f(n)$

Orders of Common Functions

- O(1)
- $O(\log \log n)$
- $O(\log n)$
- $O((\log n)^c)$
- $O(n^c), 0 < c < 1$
- O(n)
- $O(n \log^* n)$
- $O(n \log n) = O(\log n!)$
- $O(n^2)$
- $O(n^c)$
- O(cⁿ)
- O(n!)

- $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \Rightarrow f(n) = o(g(n))$ By defin of limits, $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0$ means:
 $\forall \varepsilon > 0, \exists n_0 > 0, \text{ s.t. } \forall n \geq n_0, \frac{f(n)}{g(n)} < \varepsilon$
- Hence, f(n) < c * g(n)
- Hence, f(n) < c * g(n)• $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \Rightarrow f(n) = O(g(n))$ $0 < \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \Rightarrow f(n) = \Theta(g(n))$ $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) > 0 \Rightarrow f(n) = \Omega(g(n))$ $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty \Rightarrow f(n) = \omega(g(n))$

Lecture 2

Merge Sort

- MERGE-SORT A[1..n]
 - 1. If n = 1, done
- 2. Recursively sort $A\left[1..\left\lceil\frac{n}{2}\right\rceil\right]$ and $A\left[\left\lceil\frac{n}{2}\right\rceil+1..n\right]$
- 3. Merge the 2 sorted lists
- T(n) =
 - $\Theta(1)$ if n = 1
 - $2T\left(\frac{n}{2}\right) + \Theta (n)$ if n > 1

Solving Recurrances

Telescoping Method

- * For a sequence $\sum_{k=0}^{n-1}(a_k-a_k+1)= rac{a_0-a_1}{a_{n-1}-a_n}=a_0-a_n$

- $\bullet \text{ E.g. } T(n) = 2T\left(\frac{n}{2}\right) + n$ $\bullet \frac{T(n)}{n} = \frac{T(\frac{n}{2})}{\frac{n}{2}} + 1$ $\bullet \frac{T(n)}{n} = \frac{T(1)}{1} + \log n$ $\bullet T(n) = n \log n$
- General Solution
- $\begin{array}{l} \bullet \ T(n) = aT\left(\frac{n}{b}\right) + f(n) \\ \bullet \ \frac{T(n)}{g(n)} = \frac{T\left(\frac{n}{b}\right)}{g\left(\frac{n}{b}\right)} + h(n) \end{array}$

• And then sum up occurances of h(n).

Recursion Tree

- Draw the tree, where each node is the f(n) value.
- · Figure out the height of the tree and number of leaves

Master Theorem

· Put recurrance in the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- $a \ge 1, b > 1, f$ is asymptotically positive
- Compare f(n) and $n^{\log_b a}$

Cases

- 1. $f(n) = O(n^{\log_b a \varepsilon}), \varepsilon > 0$ (If $\varepsilon = 0$, case 2)
- f(n) grows polynomically slower than $n^{\log_b a}$
- $: T(n) = \Theta(n^{\log_b a})$
- 2. $f(n) = \Theta(n^{\log_b a} \log^k n), k \ge 0$
 - f(n) and $n^{\log_b a}$ grow similar rates
 - $: T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon}), \varepsilon > 0$
 - f(n) satisfies $af\left(\frac{n}{h}\right) \leq cf(n), c < 1$
 - The regularity condition satisfies that sum of subproblems < f(n)
 - f(n) grows polynomically faster than $n^{\log_b a}$
 - $\therefore T(n) = \Theta(f(n))$

Substitution

- For Upper bound: $T(n) \le cf(n)$
- For Tight bound: $T(n) \le c_2 n^2 c_1 n$

Solve
$$T(n) = 4T(\frac{n}{2}) + n$$

- Guess $T(n) = O(n^3)$
 - Constant c s.t. $T(n) \le cn^3, n \ge n_0$
- · By induction
 - $c = \max\{2, q\}, n_0 = 1$
 - Base Case (n = 1): $T(1) = q \le c(1)^3$
 - Recursive Case (n > 1):

 - Strong induction, assume $T(k) \le ck^3, n > k \ge 1$ $T(n) = 4T\left(\frac{n}{2}\right) + n \le 4c\left(\frac{n}{2}\right)^3 + n = \left(\frac{c}{2}\right)n^3 + n \le cn^3$

Tutorial 2

Telescoping

- $T(n) = 4T(\frac{n}{4}) + \frac{n}{\log n}$ $\frac{T(n)}{n} \frac{T(\frac{n}{4})}{\frac{n}{4}} = \frac{1}{\log n}$ Let $a_i = \frac{\hat{T}(4^i)}{4^i}, i = \log_4 n, a_i a_{i-1} = \frac{1}{2i}$ $\sum_{m=0}^{i-1} (a_{m+1} a_m) = \frac{1}{2i} + \frac{1}{2(i-1)} + \dots + \frac{1}{2} = \frac{1}{2}(H_i)$ (H_i is harmonic)
- $\bullet \ a_i a_0 = O(\log i)$
- $T(4^i) = O(4^i \log i), T(n) = O(n \log \log n)$

Lecture 3

Correctness of Iterative Algos using Invariants

- Initialization: Invariant is true before first iteration of loop
- Maintenance: Invariant is true at start of loop iteration, it is true at start of the next iteration (Induction)
- Termination: Algo at the end gives correct answer

Insertion Sort

- Invariant 1: A[1..i-1] are sorted values of B[1..i-1]
- Invariant 2:

Recursive Algorithms

· Usually use mathematical induction on size of problem

Binary Search

- Induction on length n = ub lb + 1
- · Base Case
- if n <= 0: return False
- Induction Step: if n > 0, ub >= lb
 - Assume algo works for all values ub-lb+1 < n• x == A["mid"]: return True, answer returned correctly
 - x > A[mid], then x is in the array iff it is in A[mid + 1..ub], as A is sorted. Thus by induction answer must be BinarySearch(A, mid+1, ub, x)
- x < A[mid], then x is in the array iff it is in A[lb..mid-1], as A is sorted. Thus by induction answer must be BinarySearch(A, lb, mid-1, x)
- · Thus, answer returned is correct

Divide and Conquer

- 1. Divide problem into smaller subproblems
- 2. Solve subproblems recursively (conquer)

- 3. Combine / Use subproblem to get solution to full problem
- $T(n) = aT\left(\frac{n}{b}\right) + f(n)$
 - \bullet a subproblems
 - Each subproblem is size of atmost $\frac{n}{h}$
- f(n) is time needed to divide problem into subproblems + time to get solution from subproblems (combine)

Merge Sort

- MergeSort(A[lb..ub])
- 2. If ub = lb return
- 3. If ub > lb mid = $\frac{\text{ub+lb}}{2}$ (O(1))
- 4. MergeSort(A[lb,mid]), MergeSort(A[mid+1,ub]) (2 Subproblems, each $\left\lceil \frac{n}{2} \right\rceil$)
- 5. Merge 2 sorted list (Combining: $\Theta(n)$)
- $T(n) = 2T(\frac{n}{2}) + O(n)$ Complexity: $\Theta(n * \log n)$

Powering

- $F(a, n) = F\left(a, \left\lfloor \frac{n}{2} \right\rfloor\right)^2$ if n is even $F(a, n) = F\left(a, \left\lfloor \frac{n}{2} \right\rfloor\right)^2 * F(a, 1)$ if n is odd
- $T(n) = T\left(\frac{n}{2}\right) + O(1)$

Fibonacci

Tutorial 3

Lecture 4

Lower bound for sorting

- Any comparison based sorting runs in $\Omega(n \log n)$
- The tree must contain at least n! leaves for every possible permutation
- Height of binary tree = $\log(n!) = \Omega n \log n$

Tutorial 4

Lecture 5

- · Las Vegas Algorithms
- · Output always correct
- · Monte Carlo
 - Answer may be incorrect with small probability

Tutorial 5

Lecture 6

LCS

- · Check all possible subsequences of A and check if its a subsequence of B and output longest one
- 2^n possible subsequences, Total Time $O(m2^n)$

Recursive

Base Case:

- LCS $(i, 0) = \emptyset$ (i is index A, j is index B)
- LCS $(0, j) = \emptyset$ (*i* is index A, *j* is index B)

If $a_n = b_m$, then $\mathrm{LCS}(n-1, m-1) :: a_n$ Proof by contradiction

- If last symbol in $S = \mathrm{LCS}(n,m)$ is not same as a_n , then last symbol must be a past of $a_1, ... a_{n-1}$, and $b_1, ... b_{n-1}$.
- S is subsequence of $a_1,...a_{n-1},$ and $b_1,...b_{n-1}.$
- Append a_n with S i.e. $S::a_n$ and get subsequence of length 1 more
- Thus S can ont be largest subsequence (Contradiction)
- So far, we only argued a_n must be last symbol in $\mathrm{LCS}(n,m)$
- It is if ne to match \boldsymbol{a}_n with \boldsymbol{b}_m (since \boldsymbol{a}_n is last symbol)
- Therefore $LCS(n, m) = LCS(n 1, m 1) :: a_n$

If
$$a_n \neq b_m, \mathrm{LCS}(n,m) = \max(\mathrm{LCS}(n-1,m), \mathrm{LCS}(n,m-1))$$

Tutorial 6

Greedy vs DP

Lecture 7 Greedy

DP Recap

- · Express solutions recursively
- Small number(polynomial) of subproblems
- · Huge overlap among subproblems, so recursive may take exponential time
- · Compute recursive iteratively in bottom up fashion

Greedy

Recast the problem so that only 1 subproblem needs to be solved at each step.

Lecture 8 Amortized Analysis