
Lecture 1
Fibonacci
def fib(n):
  if n == 0: return 0
  elif n == 1: return 1
  else: return fib(n-1) + fib(n-2)
• T(0) = 2 (if, return)
• T(1) = 3 (if, elif, return)
• T(n) = T(n-1) + T(n-2) + 7 (if, elif, else, +, fib, fib, return)

Notations

𝑂−notation
• Upper Bound, that is function grows no faster than 𝑐𝑔(𝑛)
• 𝑓 ∈ 𝑂(𝑔) if there is 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0 : 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)

• The intuition is that for a large enough 𝑛, there is a function 𝑔 and constant 𝑐, such that 𝑓(𝑛) is always lesser than 𝑔.

Ω−notation
• Lower Bound, that is function grows at least as fast as 𝑐𝑔(𝑛)
• 𝑓 ∈ 𝑂(𝑔) if there is 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0 : 0 ≤ 𝑐𝑔(𝑛) ≤ 𝑓(𝑛)

Θ −notation
• Both upper and lower bounded by 𝑐𝑔(𝑛)
• 𝑓 ∈ 𝑂(𝑔) if there is 𝑐1, 𝑐2 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0 : 0 ≤ 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛)

𝑜-notation
• Strict upper bound, 0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛)

𝜔-notation
• Strict lower bound, 0 ≤ 𝑐𝑔(𝑛) < 𝑓(𝑛)

Orders of Common Functions
• 𝑂(1)
• 𝑂(log log 𝑛)
• 𝑂(log 𝑛)
• 𝑂((log 𝑛)𝑐)
• 𝑂(𝑛𝑐), 0 < 𝑐 < 1
• 𝑂(𝑛)
• 𝑂(𝑛 log∗ 𝑛)
• 𝑂(𝑛 log 𝑛) = 𝑂(log 𝑛!)
• 𝑂(𝑛2)
• 𝑂(𝑛𝑐)
• 𝑂(𝑐𝑛)
• 𝑂(𝑛!)

Limits
• lim
𝑛→∞

(𝑓(𝑛)𝑔(𝑛)) = 0 ⇒ 𝑓(𝑛) = 𝑜(𝑔(𝑛))
• By defn of limits, lim

𝑛→∞
(𝑓(𝑛)𝑔(𝑛)) = 0 means:

• ∀𝜀 > 0, ∃𝑛0 > 0, s.t. ∀𝑛 ≥ 𝑛0,
𝑓(𝑛)
𝑔(𝑛) < 𝜀

• Hence, 𝑓(𝑛) < 𝑐 ∗ 𝑔(𝑛)
• lim
𝑛→∞

(𝑓(𝑛)𝑔(𝑛)) < ∞ ⇒ 𝑓(𝑛) = 𝑂(𝑔(𝑛))
• 0 < lim

𝑛→∞
(𝑓(𝑛)𝑔(𝑛)) < ∞ ⇒ 𝑓(𝑛) = Θ(𝑔(𝑛))

• lim
𝑛→∞

(𝑓(𝑛)𝑔(𝑛)) > 0 ⇒ 𝑓(𝑛) = Ω(𝑔(𝑛))
• lim
𝑛→∞

(𝑓(𝑛)𝑔(𝑛)) = ∞ ⇒ 𝑓(𝑛) = 𝜔(𝑔(𝑛))

Lecture 2
Merge Sort
• MERGE-SORT 𝐴[1..𝑛]

1. If 𝑛 = 1, done
2. Recursively sort 𝐴[1..⌈𝑛2 ⌉] and 𝐴[⌈𝑛2 ⌉ + 1..𝑛]
3. Merge the 2 sorted lists

• 𝑇 (𝑛) =
• Θ(1) if 𝑛 = 1
• 2𝑇(𝑛2 ) + Θ − (𝑛) if n > 1

Solving Recurrances

Telescoping Method
• For a sequence ∑𝑛−1

𝑘=0 (𝑎𝑘 − 𝑎𝑘 + 1) =
𝑎0−𝑎1
𝑎1−𝑎2
𝑎𝑛−1−𝑎𝑛

= 𝑎0 − 𝑎𝑛
• E.g. 𝑇 (𝑛) = 2𝑇(𝑛2 ) + 𝑛

• 𝑇(𝑛)
𝑛 = 𝑇(𝑛2 )

𝑛
2
+ 1

• 𝑇(𝑛)
𝑛 = 𝑇(1)

1 + log 𝑛
• 𝑇 (𝑛) = 𝑛 log 𝑛

• General Solution
• 𝑇 (𝑛) = 𝑎𝑇(𝑛𝑏 ) + 𝑓(𝑛)
• 𝑇(𝑛)
𝑔(𝑛) =

𝑇(𝑛𝑏 )
𝑔(𝑛𝑏 )

+ ℎ(𝑛)
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• And then sum up occurances of ℎ(𝑛).

Recursion Tree
• Draw the tree, where each node is the 𝑓(𝑛) value.
• Figure out the height of the tree and number of leaves

Master Theorem
• Put recurrance in the form

𝑇 (𝑛) = 𝑎𝑇(
𝑛
𝑏
) + 𝑓(𝑛)

• 𝑎 ≥ 1, 𝑏 > 1, 𝑓  is asymptotically positive
• Compare 𝑓(𝑛) and 𝑛log𝑏 𝑎

Cases
1. 𝑓(𝑛) = 𝑂(𝑛log𝑏 𝑎−𝜀), 𝜀 > 0 (If 𝜀 = 0, case 2)

• 𝑓(𝑛) grows polynomically slower than 𝑛log𝑏 𝑎
• ∴ 𝑇 (𝑛) = Θ(𝑛log𝑏 𝑎)

2. 𝑓(𝑛) = Θ(𝑛log𝑏 𝑎 log𝑘 𝑛), 𝑘 ≥ 0
• 𝑓(𝑛) and 𝑛log𝑏 𝑎 grow similar rates
• ∴ 𝑇 (𝑛) = Θ(𝑛log𝑏 𝑎 log𝑘+1 𝑛)

3. 𝑓(𝑛) = Ω(𝑛log𝑏 𝑎+𝜀), 𝜀 > 0
• 𝑓(𝑛) satisfies 𝑎𝑓(𝑛𝑏 ) ≤ 𝑐𝑓(𝑛), 𝑐 < 1
• The regularity condition satisifes that sum of subproblems < 𝑓(𝑛)
• 𝑓(𝑛) grows polynomically faster than 𝑛log𝑏 𝑎
• ∴ 𝑇 (𝑛) = Θ(𝑓(𝑛))

Substitution
• For Upper bound: 𝑇 (𝑛) ≤ 𝑐𝑓(𝑛)
• For Tight bound: 𝑇 (𝑛) ≤ 𝑐2𝑛2 − 𝑐1𝑛

Solve 𝑇 (𝑛) = 4𝑇(𝑛2 ) + 𝑛
• Guess 𝑇 (𝑛) = 𝑂(𝑛3)

• Constant 𝑐 s.t. 𝑇 (𝑛) ≤ 𝑐𝑛3, 𝑛 ≥ 𝑛0
• By induction

• 𝑐 = max{2, 𝑞}, 𝑛0 = 1
• Base Case (𝑛 = 1): 𝑇 (1) = 𝑞 ≤ 𝑐(1)3

• Recursive Case (𝑛 > 1):
• Strong induction, assume 𝑇 (𝑘) ≤ 𝑐𝑘3, 𝑛 > 𝑘 ≥ 1
• 𝑇 (𝑛) = 4𝑇(𝑛2 ) + 𝑛 ≤ 4𝑐(

𝑛
2 )
3 + 𝑛 = ( 𝑐2)𝑛

3 + 𝑛 ≤ 𝑐𝑛3

Tutorial 2
Telescoping
• 𝑇 (𝑛) = 4𝑇(𝑛4 ) +

𝑛
log𝑛

• 𝑇(𝑛)
𝑛 − 𝑇(𝑛4 )

𝑛
4
= 1

log𝑛
• Let 𝑎𝑖 =

𝑇(4𝑖)
4𝑖 , 𝑖 = log4 𝑛, 𝑎𝑖 − 𝑎𝑖−1 =

1
2𝑖

• ∑𝑖−1
𝑚=0(𝑎𝑚+1 − 𝑎𝑚) =

1
2𝑖 +

1
2(𝑖−1) +…+

1
2 =

1
2(𝐻𝑖) (𝐻𝑖 is harmonic)

• 𝑎𝑖 − 𝑎0 = 𝑂(log 𝑖)
• 𝑇(4𝑖) = 𝑂(4𝑖 log 𝑖), 𝑇 (𝑛) = 𝑂(𝑛 log log 𝑛)

Lecture 3
Correctness of Iterative Algos using Invariants
• Initialization: Invariant is true before first iteration of loop
• Maintenance: Invariant is true at start of loop iteration, it is true at start of the next iteration (Induction)
• Termination: Algo at the end gives correct answer

Insertion Sort
• Invariant 1: 𝐴[1..𝑖 − 1] are sorted values of 𝐵[1..𝑖 − 1]
• Invariant 2:

Recursive Algorithms
• Usually use mathematical induction on size of problem

Binary Search
• Induction on length 𝑛 = ub − lb + 1
• Base Case

• if n <= 0: return False
• Induction Step: if 𝑛 > 0, ub >= lb

• Assume algo works for all values ub-lb+1 < n
• x == A["mid"]: return True, answer returned correctly
• x > A[mid], then x is in the array iff it is in A[mid + 1..ub], as 𝐴 is sorted. Thus by induction answer must be BinarySearch(A, mid+1, ub, x)
• x < A[mid], then x is in the array iff it is in A[lb..mid-1], as 𝐴 is sorted. Thus by induction answer must be BinarySearch(A, lb, mid-1, x)
• Thus, answer returned is correct

Divide and Conquer
1. Divide problem into smaller subproblems
2. Solve subproblems recursively (conquer)
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3. Combine / Use subproblem to get solution to full problem

• 𝑇 (𝑛) = 𝑎𝑇(𝑛𝑏 ) + 𝑓(𝑛)
• 𝑎 subproblems
• Each subproblem is size of atmost 𝑛𝑏
• 𝑓(𝑛) is time needed to divide problem into subproblems + time to get solution from subproblems (combine)

Merge Sort
1. MergeSort(A[lb..ub])
2. If ub = lb return
3. If ub > lb mid = ub+lb

2  (𝑂(1))
4. MergeSort(A[lb,mid]), MergeSort(A[mid+1,ub]) (2 Subproblems, each ⌈𝑛2 ⌉)
5. Merge 2 sorted list (Combining: Θ(𝑛))

𝑇 (𝑛) = 2𝑇(𝑛2 ) + 𝑂(𝑛) Complexity: Θ(𝑛 ∗ log 𝑛)

Powering
• 𝐹(𝑎, 𝑛) = 𝐹(𝑎, ⌊𝑛2 ⌋)

2 if 𝑛 is even
• 𝐹(𝑎, 𝑛) = 𝐹(𝑎, ⌊𝑛2 ⌋)

2 ∗ 𝐹(𝑎, 1) if 𝑛 is odd

𝑇 (𝑛) = 𝑇(𝑛2 ) + 𝑂(1)

Fibonacci

Tutorial 3

Lecture 4
Lower bound for sorting
• Any comparison based sorting runs in Ω(𝑛 log 𝑛)
• The tree must contain at least 𝑛! leaves for every possible permutation
• Height of binary tree = log(𝑛!) = Ω𝑛 log 𝑛

Tutorial 4

Lecture 5
• Las Vegas Algorithms

• Output always correct
• Monte Carlo

• Answer may be incorrect with small probability

Tutorial 5

Lecture 6
LCS

Brute Force
• Check all possible subsequences of A and check if its a subsequence of B and output longest one
• 2𝑛 possible subsequences, Total Time 𝑂(𝑚2𝑛)

Recursive
Base Case:
• LCS(𝑖, 0) = ∅ (𝑖 is index A, 𝑗 is index B)
• LCS(0, 𝑗) = ∅ (𝑖 is index A, 𝑗 is index B)

If 𝑎𝑛 = 𝑏𝑚, then LCS(𝑛 − 1,𝑚 − 1) :: 𝑎𝑛 Proof by contradiction
• If last symbol in 𝑆 = LCS(𝑛,𝑚) is not same as 𝑎𝑛, then last symbol must be a past of𝑎1,…𝑎𝑛−1, and 𝑏1,…𝑏𝑛−1.
• 𝑆 is subsequence of 𝑎1,…𝑎𝑛−1, and 𝑏1,…𝑏𝑛−1.
• Append 𝑎𝑛 with 𝑆 i.e. 𝑆 :: 𝑎𝑛 and get subsequence of length 1 more
• Thus 𝑆 canont be largest subsequence (Contradiction)
• So far, we only argued 𝑎𝑛 must be last symbol in LCS(𝑛,𝑚)
• It is ifne to match 𝑎𝑛 with 𝑏𝑚 (since 𝑎𝑛 is last symbol)
• Therefore LCS(𝑛,𝑚) = LCS(𝑛 − 1,𝑚 − 1) :: 𝑎𝑛
If 𝑎𝑛 ≠ 𝑏𝑚, LCS(𝑛,𝑚) = max(LCS(𝑛 − 1,𝑚), LCS(𝑛,𝑚 − 1))

Tutorial 6
Greedy vs DP

Lecture 7 Greedy
DP Recap
• Express solutions recursively
• Small number(polynomial) of subproblems
• Huge overlap among subproblems, so recursive may take exponential time
• Compute recursive iteratively in bottom up fashion

Greedy
Recast the problem so that only 1 subproblem needs to be solved at each step.
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Lecture 8 Amortized Analysis

4


	Lecture 1
	Fibonacci
	Notations
	O−notation
	Ω−notation
	Θ−notation
	o-notation
	ω-notation
	Orders of Common Functions
	Limits


	Lecture 2
	Merge Sort
	Solving Recurrances
	Telescoping Method
	Recursion Tree
	Master Theorem
	Substitution


	Tutorial 2
	Telescoping

	Lecture 3
	Correctness of Iterative Algos using Invariants
	Insertion Sort

	Recursive Algorithms
	Binary Search

	Divide and Conquer
	Merge Sort
	Powering
	Fibonacci


	Tutorial 3
	Lecture 4
	Lower bound for sorting

	Tutorial 4
	Lecture 5
	Tutorial 5
	Lecture 6
	LCS
	Brute Force
	Recursive


	Tutorial 6
	Lecture 7 Greedy
	DP Recap
	Greedy

	Lecture 8 Amortized Analysis

