Lab 6: Lazy

 Deadline: 18 October, 2022, Tuesday, 23:59, SST

e Mark: 3%

Prerequisite

o Caught up to Unit 32 of Lecture Notes

e Completed Lab 5

Files
The following functional interfaces are already provided:

e s2030s.fp.Action
e s2030s.fp.Immutator
e s2030s.fp.Constant
e s2030s.fp.Combiner
 This is a new functional interface to combine two values into one.

o If Immutator takes in only one value, Combiner takes in two values.

Additionally, the following interfaces are already provided as well:

e s2030s.fp.Actionable

e s2030s.fp.Immutatorable
Copy your implementation of Actually over before you get started with Lab 6. A skeleton
for Lazy<T> and Memo<T> are provided for your. Additionally, you are given the simple and
non-lazy implementation of Boolean expression:

e Cond.java:an interface abstracting a boolean condition that can be evaluated

e Bool.java:a boolean value

e And.java:a conjunction

e Or.java:a disjunction

e Not.java:anegation

The files Test1.java, Test2.java, etc., as well as CS20308STest. java, are provided for

testing. You can edit them to add your test cases, but they will not be submitted.

Being Lazy and Smarter

Programming languages such as Scala support lazy values, where the expression that
produces a lazy value is not evaluated until the value is needed. Lazy value is useful for
cases where producing the value is expensive, but the value might not eventually be used.

Java, however, does not provide a similar abstraction. So, you are going to build one.

This task is divided into several stages. You are highly encouraged to read through all the

stages to see how the different levels are related.

You are required to design a Lazy and Memo classes as part of the cs2036s.fp package

with one field. You are not allowed to add additional fields to Lazy .

1 public class Lazy<T> /* implements Immutatorable<T> (for later) */ {
2 private Constant<? extends T> init;

3 .

4|

1 public class Memo<T> extends Lazy<T> {

2 private Actually<T> value;

3 .

41 }

The Basics of Being Lazy

The idea of being lazy is that we do not compute unless we really really really need to.

When do we need to compute the value? Simple, that is when we try to get the value.

Define a generic Lazy<T> class to encapsulate a value with the following operations such

that for each ... derive the most flexible type:
e protected constructor protected Lazy(Constant<...> c) that takes in a constant that
produces the value when needed.

e static from(T v) method that instantiate the Lazy object with the given value using

the protected constructor above.

e static from(Constant<...> c¢) method that takes in a constant that produces the value

when needed and instantiate the Lazy object.

e get() method that is called when the value is needed. Compute the value and return.

e toString() : returns the string representation of the value.

1 jshell> import cs2030s.fp.Constant

2 jshell> import c¢s2030s.fp.Lazy

3

4 jshell> Lazy<Integer> modl1 = Lazy.from(2030)

5 jshell> mod1.get()

6 $.. ==> 2030

7

8 jshell> Lazy<String> mod2 = Lazy.from(() -> "CS2038S")
9 jshell> mod2.get()

19 $§.. ==> "CS2030S"

11
12 jshell> Lazy<String> hello = Lazy.from(() -> {

13 ...> System.out.println("world!");

14 o> return "hello";

15 o>)

16 jshell> hello.get()

17 world!

18 §.. ==> "hello"

19 jshell> hello.get() // note "world!" is printed again
20 world!

21 $.. ==> "hello"

You can test your code by running the Test1.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

$ javac cs2030s/fp/*java

$ javac -Xlint:rawtypes Test1.java

$ java Test1

$ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml
Lazy.java

$ javadoc -quiet -private -d docs cs2030s/fp/Lazy.java

a b WON =

Smarter Lazy

The smarter idea of being lazy is that if we have computed the value before (i.e., called
get()) then we do not compute the value again. This is called memoization (the word
comes from memo and not a typo from memorization). Since we already have an
Actually<T>, when we try perform a computation and the current value might still be
uninitialised we treat this like a failure. In order to prevent this failure, we first produce
the value using a Constant to initialise the value. Now, this is no longer a failure but a

success!

Take note of the following constraints:

 Avoid using the Actually::unwrap method and avoid access the classes
Actually.Success<T> oOr Actually.Failure directly.

e Since Actually has internalized try-catch (which kind of mimics if-else) checks for
whether the value is there or not, you must not use any form of conditional
statements and /or try-catch to compare if value has been initialised or not.

e You are not allowed to use any raw types.

* You don't need any @SuppressWarnings for this lab, but if you do, it must be used

responsibly.

Define a generic Memo<T> class to encapsulate a value with the following operations such

that for each ... derive the most flexible type:

e you should not have public constructor.

e static from(T v) method that initializes the Memo object with the given value. In this

case, the Memo is already initialised (i.e., already computed).

e static from(Constant<...> ¢) method that takes in a constant that produces the value

when needed. In this case, the Memo is uninitialised.

e get() method that is called when the value is needed. If the value is already available,
return that value; otherwise, compute the value and return it. The computation should

only be done once for the same value.

toString() :returns "?" if the value is not yet available; returns the string

representation of the value otherwise.

Note that for our class to be immutable and to make the memoization of the value
transparent, toString should call get() and should never return "?" . We break the rules
of immutability and encapsulation here, just so that it is easier to debug and test the

laziness of your implementation.

Hint: You may find the method value0f from the class String useful.

jshell> import cs2030s.fp.Constant
jshell> import ¢s2030s.fp.Memo

1
2

3

4 jshell> Memo<Integer> modl = Memo.from(2030)
5 jshell> mod1

6 modl ==> 2030

7 jshell> mod1.get()

8 $.. ==> 2030

10 jshell> Memo<String> mod2 = Memo.from(() -> "CS2030S")
11 jshell> mod2

12 mod2 ==> ?

13 jshell> mod2.get()

14 §.. ==> "CS20630S"

15

16 jshell> Memo<String> hello = Memo.from(() -> {
17 ...> System.out.println("world!'");

18 R return "hello";

19 o> 1)

20 jshell> hello

21 hello ==> "hello"

22 jshell> hello.get()

23 world!

24 §.. ==> "hello"

25 jshell> hello.get() // note "world!" is NOT printed again
26 $.. ==> "hello"

You can test your code by running the Test2.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style and can
generate the documentation without error.

$ javac cs20830s/fp/*java

$ javac -Xlint:rawtypes Test2.java

$ java Test2

$ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs20830s/bin/cs2030_checks.xml
Memo. java

$ javadoc -quiet -private -d docs c¢s2030s/fp/Memo.java

a b ON =

Implementing Immutatorable and Adding Next

Now let's implement Immutatorable interface to our Lazy and Memo as well as adding
next method. To do this, add the transform and next method to both Lazy and Memo .

First, for Lazy.

Add the transform method to Lazy . Additionally, add the next method (we did not have
an interface for this for simplicity). Remember that Lazy should not evaluate anything until
get() is called, so the function f passedinto Lazy through transform and next should

not be evaluated until get() is called. The result should not be cached (i.e., memoized).

Next, add the transform and next method to Memo . These two methods should override
the methods from Lazy . This should limit the type of the input parameter. But the return
type here should be as specific as method overriding allows. Remember that Memo should
cache the result. In other words, they should only be evaluated once, so that function must

not be called again.

jshell> import cs2030s.fp.Constant
jshell> import c¢s2030s.fp.Immutator
jshell> import cs2030s.fp.Lazy
jshell> import cs2030s.fp.Memo

ool WON =

jshell> Constant<String> password = () -> "123456"

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

jshell> Lazy<String> lazy = Lazy.from(password)

jshell> lazy
lazy ==> 123456

jshell> lazy.transform(str -> str.substring(e, 1))

S.. ==>1

jshell> Memo<String> memo =
jshell> memo.transform(str -> str.substring(0, 1))

S_' ==> 7
jshell> memo
memo ==> ?

Memo . from(password)

jshell> memo.transform(str -> str.substring(@, 1)).get()

$.. ==> "1"
jshell> memo

memo ==> 123456
jshell> memo.get()
§.. ==> "123456"

jshell> Immutator<Integer, String> len = str -> {
..> System.out.println("length");

..> return str.length();

..>)

jshell> Lazy<Integer>
jshell> lazylen
length

lazylen ==> 6

jshell> lazylen.get()
length

S.. ==> 6

jshell> lazylLen.get()
length

§.. ==>6

jshell> Memo<Integer>
jshell> memoLen
memoLen ==> ?

jshell> memolLen.get()
length

§.. ==>6

jshell> memolLen.get()
§.. ==> 6

jshell> Memo<Integer>
stepl ==> 1010

jshell> Memo<Integer>
step2 ==> ?

jshell> Memo<Integer>
step3 ==> ?

jshell> step3.get()
§.. ==> 2030

lazylen

memolLen

step1l

step2

step3

= lazy.transform(len)

= memo.transform(len)

Memo.from(1010)

stepl.transform(i -> i * 2)

step2.next(i -> Memo.from(i + 10))

jshell> step2 // to get() step3 need to get() step2

step2 ==> 2020

jshell> stepl // to get() step2 need to get() step1

step1l ==> 1010

64

65 jshell> Memo<Integer> noErr = Memo.from(0)

66 noErr ==> 0

67 jshell> Memo<Integer> err = noErr.transform(x -> 1/x)

68 err ==> ?

69 jshell> // if you run err.get(), you will get an exception

You can test your code by running the Test3.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

1 $ javac c¢s2030s/fp/*java

2 $ javac -Xlint:rawtypes Test3.java

3 $ java Test3

4§ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml

5 Lazy.java

6 $ javadoc -quiet -private -d docs cs2030s/fp/Lazy.java

7 $§ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml
Memo. java
$ javadoc -quiet -private -d docs c¢s2030s/fp/Memo.java

Combine

From here, we are more interested in Memo because although Lazy is useful, it may

perform unnecessary duplicate computation.

We have provided an interface called Combiner<R, S, T> in cs2030s.fp , with a single

combine method to combine two values, of type S and T respectively, into a result of

type R.

Add a method called combine into Memo.The combine method takes in another Memo
object and a Combiner implementation to lazily combine the two Memo objects (which may

contain values of different types) and return a new Memo object.

1 jshell> import cs2030s.fp.Combiner

2 jshell> import cs2038s.fp.Memo

3

4 jshell> Memo<Integer> twenty, thirty, modInt
5 twenty ==> null

6 thirty ==> null

7 modInt ==> null

8

9 jshell> twenty = Memo.from(() -> 20)
10 twenty ==> ?
11 jshell> thirty = Memo.from(() -> 30)
12 thirty ==> ?
13
14 jshell> Combiner<String, Integer, Integer> concat = (x, y) -> {
15 ..> System.out.println("combine");
16 L> return x.toString() + y.toString();

17 o>)

18

19 jshell> modInt = twenty.combine(thirty, (x, y) -> x * 100 + y)
20 modInt ==> ?

21 jshell> Memo<String> modStr = twenty.combine(thirty, concat)
22 modStr ==> ?

23

24 jshell> modStr.get()

25 combine

26 $§.. ==> "2030"

27 jshell> twenty

28 twenty ==> 20

29 jshell> thirty

30 thirty ==> 30

31

32 jshell> modInt

81 modInt ==> ?

34
35 jshell> Combiner<String, Integer, Double> comb = (x, y) -> x.toString() +
36 " + " + y.toString()

37 jshell> Memo<String> s = modInt.combine(Memo.from(©8.1), comb)
38 s ==> ?

39 jshell> s.get()

40 §.. ==> "2030 + 0.1"

41 jshell> modInt

42 modInt ==> 2030

43

44 jshell> Memo<Integer> x = Memo.from(1)

45 jshell> for (int i =0; i < 10; i ++) {

46 ...> final Memo<Integer> y = x; // final just to ensure it is
47 unchanged
48 > final int j = i;
49 ...> X = Memo.from(() -> { System.out.println(j); return y.get() +
50 y.get(); });
51 ...>)
52 jshell> x.get();
53 9
54 8
55 7
56 6
57 5
58 4
59 3
60 2
1
(%]
$.. ==> 1024

You can test your code by running the Test4.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

1 $ javac ¢s2030s/fp/*java
2 $ javac -Xlint:rawtypes Test4.java
3 S java Test4

N o o A

$ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs20830s/bin/cs2030_checks.xml
Lazy.java

$ javadoc -quiet -private -d docs c¢s2030s/fp/Lazy.java

$ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml
Memo. java

$ javadoc -quiet -private -d docs c¢s2030s/fp/Memo.java

Boolean Algebra

The Memo class can be used to build a function with short-circuit operation.

Consider a boolean expression with 4 classes abstracted into an interface Cond.java:

e Bool.java:stores a boolean value which maybe true or false.

* And.java:conjunction of two boolean expressions, created from And(Cond 1val,

Cond rVal) to mean 1Val && rVal.

e Or.java:disjunction of two boolean expressions, created from Or(Cond 1Val, Cond

rval) tomean 1lvVal || rval.

e Not.java:negation of a boolean expression, created from Not(Cond val) to mean

lval.

Creating an instance of boolean expression above requires us to have fully evaluated the

arguments. As such, when we call the eval method, all the values have actually been

evaluated. But remember that the operation && and || are actually short-circuit

operation. In particular, false & X and true || X should not evaluate the value X since

the result will already be false and true respectively.

But suppose X takes very long to evaluate. Short-circuit operation will simply return the

result without evaluating the value of X and that saves us time. This is exactly what we

want to do. We want to avoid evaluating this X whenever possible. Study the code below

to understand how the classes work. You do not really have to know how negation method

neg works. But if you are interested in it, you can look up De Morgan's Law.

1 jshell>
2 jshell>
3 jshell>
4 jshell>
5 jshell>
6

7 jshell>
8 >
9 >
10 >
11 S
12 jshell>
13 >

/open Cond. java
/open Bool.java
/open And.java
/open Or.java

/open Not.java

Constant<Boolean> t = new Constant<>() {
public Boolean init() {
return true;
}
}

Constant<Boolean> f = new Constant<>() {
public Boolean init() {

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

vV V. V V VvV

L.

L
jshell>
jshell>
Not (new

String res = "";
for (int i=0; i<100000; i++) {
res += i;
}
return false;
}

}
// the following line will take some time to run

Cond cond = new And(new Or(new Bool(t), new Bool(f)), new Not(new
Bool(t))))

cond ==> ((t | f) & '(!'(t)))

jshell>
So0 =B
jshell>
So0 =2
jshell>
SL. ==>
jshell>
S0 ==
jshell>
Soo ==

cond.neg()

((r(t) & 1(F)) | (1))
cond.neg().neg()

((t | f) &1t)
cond.eval()

true

cond.neg().eval()

false
cond.neg().neg().eval()
true

Change the boolean expression implementation above such that a value is only evaluated

when it is truly needed. You should use Memo class in your changes.

Hint: you only need to make minimal changes. Neither a new field nor a new function is

necessary. If done correctly, the following sample run below should run very quickly.

0O NO ok WN =

NN NN NN DNNDNDNAAQAQQAQaQQ@QQ A
NOoO oaoabh ON -2 OO0V oOoONOOGg PP WON-_2 OO

jshell>
jshell>
jshell>
jshell>
jshell>

jshell>

/open Cond. java
/open Bool.java
/open And.java
/open Or.java

/open Not.java

Constant<Boolean> t = new Constant<>() {
public Boolean init() {
return true;

>}
LL>)
jshell> Constant<Boolean> f = new Constant<>() {
.> public Boolean init()
> String res = "";
> for (int i=0; i<100000; i++) {
> res += i;
> }
> return false;
>}
o>)
jshell> // the following line will run very quickly
jshell> Cond cond = new And(new Or(new Bool(t), new Bool(f)), new Not(new
Not(new Bool(t))))
cond ==> ((? | ?) & !'(!1(?)))
jshell> cond.neg()
S.. ==> ((1(?) & 1(?)) | 1(?))

jshell>

cond.neg().neg()

28 $.. ==> ((2] ?) &?)

29 jshell> cond.eval()

30 $.. ==> true

31 jshell> cond.neg()

32 $.. ==> ((1(t) & 1(?)) | (¥))

33 jshell> cond.neg().neg()

$.. ==> ((t | ?) & t)

You can test your code by running the Test5.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style but there

is no need to generate javadoc.

1 $ javac cs2030s/fp/*java
2 S javac -Xlint:rawtypes Test5.java
3 § java Test5

Following CS2030S Style Guide

You should make sure that your code follows the given Java style guide.

Grading

This lab is worth 12 marks and contributes 3% to your final grade. The marking scheme is
as follows:

e Documentation: 2 marks

 Everything Flse: 10 marks
We will deduct 1 mark for each unnecessary use of @SuppressWarnings and each raw type.

@SuppressWarnings should be used appropriately and not abused to remove compilation

warnings.

Note that general style marks are no longer awarded will only be awarded for
documentation. You should know how to follow the prescribed Java style by now. We will
still deduct up to 2 marks if there are serious violations of styles. In other words, if you

have no documentation and serious violation of styles, you will get deducted 4 marks.

Submission

Similar to Lab 5, submit the files inside the directory cs2030s/fp along with the other file
without the need for folder. Your ¢s2030s/fp should only contain the following files:

e Action.java

e Actionable.java

e Actually.java

e Combiner.java

e Constant.java

e Immutator.java

e Immutatorable.java
e |lazy.java

e Memo.java

Additionally, you must submit the file Lab6.h . Otherwise, you CodeCrunch submission

will not run.

