
Storage
• Parts of disk

‣ Platter has 2 surfaces
‣ Surface has many tracks
‣ Each track is broken up into sectors
‣ Cylinder is the same tracks across all

surfaces
‣ Block comprises of multiple sectors

• Disk Access Time - Seek time +
Rotational Delay + Transfer Time
‣ Seek Time - Move arms to position disk

head
‣ Rotational Delay - 12

60
RPM

‣ Transfer time(for n sectors) - 𝑛 ×
time for 1 revolution

sectors per track
– 𝑛 is requested sectors on track

• Access Order
1. Contiguous Blocks within same track

(same surface)
2. Cylinder track within same cylinder
3. next cylinder

Buffer Manager

• Data stored in block sized pages called frames
• Each frame maintains pin count(PC) and dirty

flag
Replacement Policies
• Decide which unpinned page to replace
• LRU - queue of pointers to frames with PC =

0
• clock - LRU variant

‣ Reference bit - turns on when PC = 0
‣ Replace a page when ref bit off and PC = 0

Files
• Heap File Implementation

‣ Linked List
– 2 linked lists, 1 of free pages, 1 of data

pages
‣ Page Directory Implementation

– Directory structure, 1 entry per page.
– to insert, scan directory to find page with

space to store record

Page Formats
• RID = (page id, slot number)
• Fixed Length records

‣ Packed Organization: Store records in
contiguous slots (requires swapping last
item to deleted location during deletion)

‣ Unpacked organization: Use bit array to
maintain free slots

• Variable Length Records: Slotted page
organization

Record Formats
• Fixed Length Records: Stored consecutively
• Variable length Records

‣ Delimit fields with special symbols (F1, $, F2
$, F3)

‣ Array of field offsets (𝑜1, 𝑜2, 𝑜3, 𝐹1, 𝐹2, 𝐹3)

Data Entry Formats
1. 𝑘 ∗ is an actual data record (with search key

value k)
2. 𝑘 ∗ is of the form (k, rid)
3. 𝑘 ∗ is of the form (k, rid-list) list of rids of

data with key 𝑘

B+ Tree index
• Search key is sequence of 𝑘 data attributes

𝑘 ≥ 1

• Composite search key if 𝑘 > 1
• unique key if search key contains candidate

key of table
• index is stored as file
• Clustered index - Ordering of data is same

as data entries
‣ key is known as clustering key
‣ Format 1 index is clustered index (Assume

format 2 and 3 to be unclustered)
Tree based Index
• root node at level 0
• Height of tree = no of levels of internal node
• Leaf nodes

‣ level h, where h is height of tree
• internal nodes store entries in form

(𝑝0, 𝑘1, 𝑝1, 𝑘2, 𝑝2, …, 𝑝𝑛)
‣ 𝑘1 < 𝑘2 < … < 𝑘𝑛
‣ 𝑝𝑖 = disk page address

• Order of index tree
‣ Each non-root node has 𝑚 ∈ [𝑑, 2𝑑] entries
‣ Root node has 𝑚 ∈ [1, 2𝑑] entries

• Equality search: At each internal node 𝑁 ,
find largest key 𝑘𝑖 in N, such that 𝑘𝑖 ≤ 𝑘
‣ if 𝑘𝑖 exists, go subtree 𝑝𝑖, else 𝑝0

• Range search: First matching record, and
traverse doubly linked list

• Min nodes at level i is 2 × (𝑑 + 1)𝑖−1, 𝑖 ≥ 1
• Max nodes at level i is (2𝑑 + 1)𝑖

Operations (Right sibling first, then
left)
Insertion
1. Leaf node Overflow

• Redistribute and then split
• Split - Create a new leaf 𝑁 with 𝑑 + 1

entries. Create a new index entry (𝑘, ■)
where 𝑘 is smallest key in 𝑁

• Redistribute - If sibling is not full, take
from it. If given right, update right’s parent
pointer, else current node’s parent pointer

2. Internal node Overflow

• Node has 2𝑑 + 1 keys.
• Push middle (𝑑 + 1)-th key up to parent.
Deletion
1. Leaf node

• Redistribute then merge
• Redistribution

‣ Sibling must have > 𝑑 recordsto borrow

‣ Update parent pointers to right sibling’s
smallest key)

• Merge
‣ If sibling has 𝑑 entries, then merge
‣ Combine with sibling, and then remove

parent node
2. Internal Node Underflow

• Let 𝑁 ′ be adjacent sibling node of 𝑁 with
𝑙, 𝑙 > 𝑑 entries

• Insert (𝐾, 𝑁 ′.𝑝𝑖) into 𝑁 , where 𝑖 is the
leftmost(0) or rightmost entry(l)

• Replace 𝐾 in parent node with 𝑁 ′.𝑘𝑖
• Remove (𝑝𝑖, 𝑘𝑖) entry from 𝑁 ′

Bulk Loading
1. Sort entries by search keys.
2. Load leaf pages with 2𝑑 entries
3. For each leaf page, insert index entry to

rightmost parent page
Hash based Index
Static Hashing
Linear Hashing
Extensible Hashing

	Storage
	Buffer Manager
	Replacement Policies

	Files

	B+ Tree index
	Tree based Index
	Operations (Right sibling first, then left)
	Insertion
	Deletion
	Bulk Loading

	Hash based Index
	Static Hashing
	Linear Hashing
	Extensible Hashing

