Storage

Parts of disk
» Platter has 2 surfaces

» Surface has many tracks

» Each track is broken up into sectors

» Cylinder is the same tracks across all
surfaces

» Block comprises of multiple sectors

Disk Access Time - Seek time +

Rotational Delay + Transfer Time

» Seek Time - Move arms to position disk
head

» Rotational Delay -

1_60
2 RPM
» Transfer time(for n sectors) - n x

time for 1 revolution
sectors per track

- n is requested sectors on track

Access Order

1. Contiguous Blocks within same track
(same surface)

2. Cylinder track within same cylinder

3. next cylinder

Buffer Manager

Yes -
- Increment the pin count of £
Is p in some frame {?
Return address of frame f
No
Move some frame f' from free list to

Is free list empty? _ No | buffer pool. Set pin count of f'to 1
Read p into f'.

Return address of frame f'

Yes
Choose a frame f' (with pin count of

0) for replacement
Set the pin count of f'to 1

Is dirty flag of £ = true?

- Read p into .
Return address of frame f'
No T

23: Sem 1, 2025126 Buffer Manager 12

« Data stored in block sized pages called frames

« Each frame maintains pin count(PC) and dirty
flag

Replacement Policies

« Decide which unpinned page to replace

« LRU - queue of pointers to frames with PC =
0

« clock - LRU variant
» Reference bit - turns on when PC = 0
» Replace a page when ref bit off and PC = 0

Let f be the frame pointed by current

Is f.pinCount =0? \
Yes
Is f.referencedBit =off?
Yes
f.pinCount = 1
return address of f

f.referencedBit = off

current = current + 1 (mod N)

Files
« Heap File Implementation
» Linked List
— 2 linked lists, 1 of free pages, 1 of data
pages
» Page Directory Implementation
- Directory structure, 1 entry per page.
- to insert, scan directory to find page with
space to store record

Page Formats
« RID = (page id, slot number)
« Fixed Length records
» Packed Organization: Store records in
contiguous slots (requires swapping last
item to deleted location during deletion)
» Unpacked organization: Use bit array to
maintain free slots
+ Variable Length Records: Slotted page
organization

Record Formats
« Fixed Length Records: Stored consecutively
« Variable length Records
» Delimit fields with special symbols (F1, $, F2
$, F3)
» Array of field offsets (04, 04, 05, F'1, F'2, F'3)

Data Entry Formats

1. k = is an actual data record (with search key
value k)

2. k « is of the form (k, rid)

3. k x is of the form (k, rid-list) list of rids of
data with key &

B+ Tree index

+ Search key is sequence of k data attributes
k>1

» Composite search key if & > 1
- unique Kkey if search key contains candidate
key of table
« index is stored as file
+ Clustered index - Ordering of data is same
as data entries
» key is known as clustering key
» Format 1 index is clustered index (Assume
format 2 and 3 to be unclustered)
Tree based Index
« root node at level 0
« Height of tree = no of levels of internal node
« Leaf nodes
» level h, where h is height of tree
- internal nodes store entries in form
(Pos k15 P1, ko, Doy s D)
r ki <ky<. <k,
» p,; = disk page address
« Order of index tree
» Each non-root node has m € [d, 2d] entries
» Root node has m € [1, 2d] entries
» Equality search: At each internal node N,
find largest key k; in N, such that k; < k
» if k; exists, go subtree p;, else p,
« Range search: First matching record, and
traverse doubly linked list
« Min nodes at level iis 2 x (d + 1)1, > 1
« Max nodes at level i is (2d + 1)*
Operations (Right sibling first, then

left)
Insertion
1. Leaf node Overflow
+ Redistribute and then split
+ Split - Create a new leaf NV with d + 1
entries. Create a new index entry (k, H)
where k is smallest key in N
+ Redistribute - If sibling is not full, take
from it. If given right, update right’s parent
pointer, else current node’s parent pointer
2. Internal node Overflow

» Node has 2d + 1 keys.
+ Push middle (d + 1)-th key up to parent.
Deletion
1. Leaf node
« Redistribute then merge
« Redistribution
» Sibling must have > d recordsto borrow

» Update parent pointers to right sibling’s
smallest key)
+ Merge
» If sibling has d entries, then merge
» Combine with sibling, and then remove
parent node
2. Internal Node Underflow
+ Let N’ be adjacent sibling node of N with
l,1 > d entries
« Insert (K, N’.p;) into N, where i is the
leftmost(0) or rightmost entry(l)
+ Replace K in parent node with N’ .k,
« Remove (p,, k;) entry from N’
Bulk Loading
1. Sort entries by search keys.
2. Load leaf pages with 2d entries
3. For each leaf page, insert index entry to
rightmost parent page
Hash based Index
Static Hashing
Linear Hashing
Extensible Hashing



	Storage
	Buffer Manager
	Replacement Policies

	Files

	B+ Tree index
	Tree based Index
	Operations (Right sibling first, then left)
	Insertion
	Deletion
	Bulk Loading

	Hash based Index
	Static Hashing
	Linear Hashing
	Extensible Hashing



