(* week-05_eqn-and-remember.v *) (* LPP 2024 - CS3234 2023-2024, Sem2 *) (* Olivier Danvy *) (* Version of 16 Feb 2024 *) (* ********** *) Lemma O_or_S : forall n : nat, n = 0 \/ exists n' : nat, n = S n'. Proof. intro n. case n as [ | n'] eqn:H_n. - left. reflexivity. - right. exists n'. reflexivity. Qed. (* ********** *) Lemma add_1_r : forall n : nat, n + 1 = S n. Proof. intro n. remember (n + 1) as n_plus_1 eqn:H_n_plus_1. remember (S n) as Sn eqn:H_Sn. remember (n_plus_1 = Sn) as prove_me eqn:goal. Abort. (* ********** *) (* end of week-05_eqn-and-remember.v *)