
CS3230 WA2
Yadunand Prem, A0253252M

Question 1
Since there is a favourable seating constraint, and 𝑓𝑖 is distinct set of numbers, we can sort the guests
in a decreasing order of favour score. This can be done in 𝑂(𝑛 log 𝑛) timing

We can think about this problem as picking a guest from the sorted list and adding them to either the
left of the host or the right of the host. Brute forcing this would run in 𝑂(2𝑛) time complexity. We can
reframe this as such, DP(num_left, num_right, last_left, last_right). This keeps track of the
number of people on the left, number of people on the right, and the index of the person last placed on
the left and right. last_left and last_right is used to calculate the hatred when a new person is added
to the corresponding side.

To show that there are overlapping subproblems, we need to show that 2 different paths then result in
solving a similar problem. We can generate them as such: With num_left == num_right, and the last
x moves are the same, and they contain at least one L and one R, they are overlapping. For example, if
the pathing taken was LRLRLR and LLRRLR, both would end up with DP(3, 3, 6, 7). Thus, there are
overlapping subproblems.

At the 𝑘th iteration, the 𝑘th most favourable guest must be added to either the left end or the right end.
Suppose not, that there is a more optimal solution where another guest is added instead. This would
form a contradiction of the favourability constraint. Therefore, the 𝑘th most favourable guest must be
added to either the left end or the right end.

Base Case: dp(n, n, last_left, last_right) = 0

This occurs when this has reached the last node of the recursion tree, when there are 𝑛 guests on both
the left and right.

General Case: Let last_left, last_right, num_left, num_right be 𝑙𝑙, 𝑙𝑟, 𝑛𝑙, 𝑛𝑟, and curr = max(l_l, l_r)
+1

dp = min{hatred[𝑙𝑙][curr]+ dp(𝑛𝑙+1,𝑛𝑟, curr,𝑙𝑟)

hatred[𝑙𝑟][curr]+ dp(𝑛𝑙,𝑛𝑟+1,𝑙𝑙, curr)

The solution is the minimum of going both left and right, and then calculating the min hatred from
that. We can form the memoization by indexing the table by (num_left, num_right, last_left, last_right).
Since each value ranges from 0 − 𝑛, the total number of subproblems is 𝑂(𝑛4). Each subproblem only
has addition and comparsions, all of which run in 𝑂(1) timing. Therefore, this algorithm runs in 𝑂(𝑛4).

We can optimise this by deriving num_right = max(last_left, last_right) - num_left. This re-
duces the number of subproblems to 𝑂(𝑛3), and thus, the total time reduces to 𝑂(𝑛3).

dp(num_left, num_right, last_left, last_right):
 next = max(last_left, last_right) + 1

 if num_left == n and num_right == n:
 return 0

 if num_left != n:
 left = h[last_left][next] + dp(num_left + 1, num_right, next, last_right)
 if num_right != n:
 right = h[last_right][next] + dp(num_left, num_right + 1, last_left, next)
 return min(left, right)

1

Question 2
2bi)
𝑃(any random element from T has T-rank in[𝑘, 𝑘 + 𝑟)) = 𝑟

𝑛
𝑃(any random element from T does not have T-rank in[𝑘, 𝑘 + 𝑟)) = 1 − 𝑟

𝑛 #

2bii)
Show that 𝑃(none of elements in S has T rank in [𝑘, 𝑘 + 𝑟)) is bounded from above by 1

𝑛3

𝑃(none of elements in S has T rank in [𝑘, 𝑘 + 𝑟)) = (1 − 𝑟
𝑛)2𝑛

2
3

= (1 − 5𝑛
1
3 ln(𝑛)
𝑛)

2𝑛
2
3

= (1 − 5 ln(𝑛)

𝑛
2
3

)
2𝑛

2
3

let 𝑥 = 𝑛
2
3

5 ln(𝑛) , it can be seen that ∀𝑛 > 1, 𝑥 > 0.

(1 − 1
𝑥)𝑥 ≤ 1

𝑒(Using Lemma 1b)

(1 − 1
𝑥)

𝑛
2
3

5 ln(𝑛) ≤ 1
𝑒 ≡ (1 − 1

𝑥)𝑛
2
3

≤ (1
𝑒)5 ln(𝑛)

(1 − 1
𝑥)2𝑛

2
3

≤ (1
𝑒)10 ln(𝑛) ≡ (1 − 1

𝑥)2𝑛
2
3

≤ (1
𝑛10)

(1 − 5 ln(𝑛)

𝑛
2
3

)
2𝑛

2
3

≤ (1
𝑛10) ≤ (1

𝑛3)

2c)
Let the interval 𝑟𝑖, 𝑟𝑖+1 be called a range.

Show that the 𝑃(S contains at least 1 element from each range) ≥ 1 − 1
𝑛2 . This is the same as

𝑃(S contains no elements from each range) < 1
𝑛2

𝑃(none from each range) < ∑ 𝑃(none from range i) (Union Bound)

𝑃(none from range i) ≤ 1
𝑛3 , num of ranges = 𝑛

5𝑛
1
3 ln(𝑛)

∑ 𝑃(none from range i) ≤
𝑛

5𝑛
1
3 ln(𝑛)
1

𝑛3
= 1

𝑛2⋅5𝑛
1
3 ln(𝑛)

∀𝑛 > 1, ln(𝑛) > 0

∴, 1
𝑛2⋅5𝑛

1
3 ln(𝑛)

< 1
𝑛2

𝑃(S contains no elements from each range) < 1
𝑛2

𝑃(S contains at least 1 element from each range) ≥ 1 − 1
𝑛2 #

2d)
Let the event where 𝑎 ≤ 𝑀 be 𝐴 and 𝑏 ≥ 𝑀 be 𝐵.

𝑃(𝐴) = 𝑃(𝐵) ≥ 1 − 2
𝑛3

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴 ∪ 𝐵) = 1 − 𝑃(𝐴 ∪ 𝐵)

𝑃(𝐴 ∪ 𝐵) ≤ 𝑃(𝐴) + 𝑃(𝐵) = 4
𝑛3

1 − 𝑃(𝐴 ∪ 𝐵) ≥ 1 − 4
𝑛3

𝑃(𝐴 ∩ 𝐵) ≥ 1 − 4
𝑛3 ≥ 1 − 1

𝑛 #

2

Between 𝑎 and 𝑏, there are 2 ∗ 5𝑛1
3 ln(𝑛) elements in 𝑆. With a 1 − 1

𝑛2 probability, we can
say that each element must at least be from 1 range in 𝑆′. Therefore, there are at most
10𝑛1

3 ln(𝑛) ⋅ 5𝑛1
3 ln(𝑛) = 50𝑛2

3 (ln(𝑛)2) elements between 𝑎 and 𝑏 in 𝑆′.
𝑃(S contains at least 1 element of T rank from each range) =

𝑃(S' contains at most 50𝑛2
3 (ln(𝑛))2) = 1 − 1

𝑛2 < 1 − 1
𝑛 #

2e)
To prove that the algorithm runs in linear time, we need to show that each step of the algorithm runs
in at most 𝑂(𝑛).

1. Randomly selecting 2𝑛2
3 elements take 𝑂(𝑛) timing

2. Sorting 𝑆 of 2𝑛2
3 elements takes 2𝑛2

3 log(2𝑛2
3) = 𝑂(𝑛2

3 log(𝑛)) < 𝑂(𝑛) using a comparison based
sorting algorithm

3. This can be calculated in 𝑂(𝑛) by counting the number of elements lesser than 𝑎 and 𝑏 in 𝑇

4-6. 𝑂(1)

7. This can also be done in 𝑂(𝑛), by iterating through 𝑇 and selecting the valid values that are
𝑎 ≤ 𝑛 ≤ 𝑏

8. 𝑆 can have at most 1000𝑛2
3 (ln 𝑛)2 elements, and sorting them takes

1000𝑛2
3 (ln 𝑛)2 log(1000𝑛2

3 (ln 𝑛)2). 1000𝑛2
3 (ln 𝑛)2 < 𝑂(𝑛). log(1000𝑛2

3 (ln 𝑛)2) < 𝑂(𝑛). ∴. This
runs in at most 𝑂(𝑛)

Step 9: Indexing a sorted array can be done in 𝑂(1)

Therefore, since each operation runs in at most 𝑂(𝑛), this algorithm runs in linear time

From part 𝑑, 𝑃(𝑎 ≤ 𝑀 ≤ 𝑏) ≥ 1 − 1
𝑛 . So With probability of 1 − 1

𝑛 , M lies in 𝑆′. Since 𝑆′ is sorted
and a portion of 𝑇 , the median would be in the center of 𝑇 . It then gets the index of the element at
middle of 𝑇 , the Median, and by subtracting 𝑅𝑎, it gets the index of the median with respect to 𝑆′.
Therefore, the algorithm would return the median with 1 − 1

𝑛 probability.

3

	Question 1
	Question 2
	2bi)
	2bii)
	2c)
	2d)
	2e)

