INSTRUCTIONS

1. This Practical Assessment consists of two questions. Answer ALL questions.

2. The total mark for this assessment is 40. Answer ALL questions.

3. This is an OPEN BOOK assessment. You are only allowed to refer to written/printed notes. No
online resources/digital documents are allowed, except those accessible from the PE nodes
(peXXX.comp.nus.edu.sg) (e.g., man pages are allowed).

4. You should see the following in your home directory.

5. The files Test1.java, Test2.java, Test3.java, Test4.java,and CS2030STest.java for testing
your solution.

6. The skeleton files for Question 1: Either.java which is part of the cs26836s.fp package.

7. The following files to solve Question 1 are provided as part of the cs2030s.fp package:
Transformer.java, and BooleanCondition.java.

8. The skeleton file for Question 2: Query.java

9. An abridged Stream API is provided in the file StreamAPI.md

10. Solve the programming tasks by creating any necessary files and editing them. You can leave the
files in your home directory and log off after the assessment is over. There is no separate step to
submit your code.

11. Only the files directly under your home directory will be graded. Do not put your code under a
subdirectory.

12. Write your student number on top of EVERY FILE you created or edited as part of the @author
tag. Do not write your name.

13. IMPORTANT: Make sure all the code you have written compiles. If one of the Java files you have
written causes any compilation error, you will receive 0 marks for that question.

Important

e Transformer<T, U> is equivalentto Immutator<uU, T>

¢ BooleanCondition<T> is equivalent to Immutator<Boolean, T>

QUESTION 1: Either (25 marks)

Marking Criteria

 functionality and type correctness (15 marks)
e OO design (5 marks)
e style (2 marks)

¢ documentation (3 marks)

Note that you need to write javadoc document for five of the methods identified below. You don't

have to write javadoc for other methods besides those identified below.

Motivation

In languages such as Javascript, we can write functions or methods such as

1 function foo(x) {
2 if (x == 0) {

8 return "zero";
4 ¥

5 return 1;

6)

where the return value can be either a string or an integer. In Java, however, the return value of a method
can only be of a single type. We cannot write the code equivalent to the example above as we are forced to
choose either to return a String orreturn an int.

To get around this limitation, other strongly typed languages such as Scala provides a monad called
Either that can encapsulate a value where the type is one of two possibilities. Java does not provide
this abstraction, so you will build one in this question.

Write an abstract class Either<L, R> that encapsulates two possible results of computation with
possible differing types L and R in the package cs2036s.fp.We refer to these two possibilities as
left and right respectively. One of these possibilities must be true -- i.e., we are guaranteed that
there is always a value encapsulated.

We can now rewrite the code above into Java using Either monad

1 Either<String, Integer> foo(int x) {
2 if (x == 0) {
3 return Either.left("zero");
4 }
5 return Either.right(1);
6 }
Your Task

We break down the tasks you need to do into two sections. We suggest that you read through the
whole question, and plan your solution carefully before starting.

The Basics

First, please implement the following methods:

e the left factory method, which allows us to create a left, i.e., a new Either monad with a left

value.

the right factory method, which allows us to create a right, i.e., a new Either monad with a

right value.

isLeft() , which will return the value true if the Either is a left, false otherwise.

isRight() , which will return the value true if the Either is a right, false otherwise.

getLeft() , which will return the value if it is a left and throw a NoSuchElementException

otherwise.

getRight() , which will return the value if itis a right and throw a NoSuchElementException

otherwise.

and overrides the following methods from Object: - equals(Object o) , which will return the true if
two either are equals; false otherwise. Two Either are equals if (i) either they are both left or both
right; and (ii) the value contained inside are equals. - toString() , which will return a string of the

pattern "Left[...]" if it is a left, or the pattern "Right[...]" if it is a right, with ... replaced with the string

The NoSuchElementException can be found in the package java.util.

Write the javadoc documentation for left and right inthe Either class. Since we do not require
you to write javadoc for every class and methods, checkstyle does not warn about missing javadoc
for your class and methods. If you wrote some javadoc and did not format it properly, however,

checkstyle will warn you to help you write proper javadoc comments.

Study carefully how these methods can be used in the examples below:

1 jshell> import cs2030s.fp.Either;

2 jshell> // Expect error

3 jshell> new Either<>()

4 | Error:

5 | ©s2030s.fp.Either is abstract; cannot be instantiated
6 | new Either<>()

7 | Ao A

8

9 jshell> Either.right("two").isLeft()

18 $.. ==> false

11 jshell> Either.right("two").isRight()
12 §.. ==> true

13 jshell> Either.right("two").getRight()
14 $.. ==> "two"

15 jshell> Either.left(2).isLeft()

16 $.. ==> true

17 jshell> Either.left(2).isRight()

18 $.. ==> false

19 jshell> Either.left(2).getLeft()
20 S.. ==>2
21
22 jshell> // Expect NoSuchElementException
23 jshell> Either.left(2).getRight()
24 | Exception java.util.NoSuchElementException

25 | at EitherSLeft.getRight (Either.java:94)

26 | at (#8:1)

27 jshell> Either.right("two").getLeft()

28 | Exception java.util.NoSuchElementException

29 | at EitherS$Right.getlLeft (Either.java:167)
30 | at (#9:1)

31

32 jshell> // Compilation error due to type mismatch
33 jshell> Either<String, Integer> e = Either.left(2)
34 | Error:

35 | incompatible types: inference variable L has incompatible bounds
36 | equality constraints: java.lang.String

37 | lower bounds: java.lang.Integer

38 | Either<String, Integer> e = Either.left(2);

39 | Roceocccoo=as &

40 jshell> Either<Double, Long> e = Either.right(true)

41 | Error:

42 | incompatible types: inference variable R has incompatible bounds
43 | equality constraints: java.lang.Long

44 | lower bounds: java.lang.Boolean

45 | Either<Double, Long> e = Either.right(true);

46 | Aocomommmomsoocas A

47

48 jshell> String two = new String("two")
49 jshell> Either.right(two).equals(Either.right("two"))

50 $§.. ==> true

51 jshell> Either.right(two).equals(Either.left("two"))
52 §.. ==> false

53 jshell> Either.left(two).equals(Either.right("two"))
54 §.. ==> false

55 jshell> Either.left(two).equals(Either.left("two"))
56 $§.. ==> true

57 jshell> Either.right(two).equals(Either.right(2))

58 §.. ==> false

59 jshell> Either.left(two).equals(Either.left(2))

60 $.. ==> false

61 jshell> Either.left(null).equals(Either.left(null))
62 §.. ==> true

63 jshell> Either.right(null).equals(Either.right(null))
64 §.. ==> true

65

66 jshell> Either.right(20).toString()

67 $.. ==> "Right[20]"

68 jshell> Either.left("thirty").toString()

69 §.. ==> "Left[thirty]"

You can also test your code with Test1.java:

1 $ javac cs2030s/fp/Either.java
2 $§ javac Testl.java
3 $ java Testl
4 $ java -jar checkstyle.jar -c ¢s2030_checks.xml cs2030s/fp/Either.java
5 § javadoc -quiet -private -d docs c¢s2030s/fp/Either.java
map

Implement the map method which takes in two Transformer s so that they can be applied
computation on the content of Either . If map is called on an Either instance thatisa left it will

apply the left Transformer, andifitisa right it will apply the right Transformer .

flatMap

Implement the flatMap method that takes in two Transformer s so that we can compose multiple
methods that produce a Either together. If flatMap is called on a left, it will apply the left

transformer. Otherwise it will apply the right transformer.

fold

Implement the fold method which takes in two Transformer s and folds the two possible types into
a common type. That is, if this is an Either<Integer, Double> and your want to fold it into a String
your left and right Transformer s need to map to String.If fold is called on a left, it will apply the

left transformer. Otherwise it will apply the right transformer.

filterOrElse

The method filterOrElse takes in two arguments, a BooleanCondition and a Transformer . This
method will behave differently dependent on whether the value is a right or a left. Is a value if a right,
it will check if the the given BooleanCondition holds for the right value, if it is, it will return the right
unchanged. It the predicate does not hold it will return a left with the value from applying the given
tranformer to the right value. If it is a left it will only return the left unchanged.

Study carefully how map, flatMap, fold,and filterOrElse can be used in the examples below:

1 jshell> import cs2030s.fp.Either;

2 jshell> import cs2030s.fp.BooleanCondition;

3 jshell> import c¢s2030s.fp.Transformer;

4 jshell> Either.<Integer, String>left(2).map(i -> 1 + 2, s ->s + " +2")

5 $.. ==> Left[4]

6 jshell> Either.<Integer, String>right("2").map(i -> i + 2, s -> s + " + 2")

7 $.. ==> Right[2 + 2]

8

9 jshell> Transformer<Object, Integer> hash = o -> o.hashCode();

10 jshell> Either<Number, Number> enn = Either.left(2).map(hash, hash);

11 jshell> Either<Number, Number> enn = Either.right(2).map(hash, hash);

12

13 jshell> Either.<Integer, String>left(2).flatMap(i -> Either.left(i + 2), s ->

14 Either.right(s + " + 2"));

15 S.. ==> Left[4]

16 jshell> Either.<Integer, String>right("2").flatMap(i -> Either.left(i + 2), s ->

17 Either.right(s + " + 2"));

18 §.. ==> Right[2 + 2]

19
20 jshell> Transformer<Object, Either<String, Integer>> strOrHash;
21 jshell> strOrHash = o -> (o.equals(8) ?
22 L Either.<String, Integer>left(o.toString())
23 o> Either.<String, Integer>right(o.hashCode()));
24 jshell> Either<Object, Number> enn = Either.left(2).flatMap(strOrHash, strOrHash);
25 jshell> Either<Object, Number> enn = Either.left(8).flatMap(strOrHash, strOrHash);
26 jshell> Either<Object, Number> enn = Either.right(2).flatMap(strOrHash, strOrHash);
27 jshell> Either<Object, Number> enn = Either.right(8).flatMap(strOrHash, strOrHash);
28
29 jshell> Either.<List<Integer>, String>left(List.of(1,2,3)).fold(1l -> 1l.size(), s ->
30 s.length());

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

S.. ==> 3

jshell> Either.<List<Integer>, String>right("hello there").fold(l -> 1l.size(), s
s.length());

.. ==> 11

jshell> Either.<List<Integer>, String>left(List.of(1,2,3)).<Number>fold(hash,
hash);

S$.. ==> 30817

jshell> Either.<List<Integer>, String>right("hello there").<Number>fold(hash,
hash);

$.. ==> 1791114646

jshell> Either.<String, Boolean>left("no change").filterOrElse(x -> x == true, X

")

S.. ==> Left[no change]

jshell> Either.<String, Boolean>right(true).filterOrElse(x -> x == true, x -> "is
false");

S.. ==> Right[true]

jshell> Either.<String, Boolean>right(false).filterOrElse(x -> x == true, x -> "i
false");

S.. ==> Left[is false]

jshell> Transformer<Object, Exception> toException = o -> new
IllegalStateException(o + " is illegal");

jshell> BooleanCondition<Number> isPositive = n -> n.intValue() > ©;

jshell> Either.<Throwable, Integer>left(new
IllegalStateException()).filterOrElse(isPositive, toException);

$.. ==> Left[java.lang.IllegalStateException]

jshell> Either.<Throwable, Integer>right(@).filterOrElse(isPositive, toException)
$.. ==> Left[java.lang.IllegalStateException: @ is illegall]

jshell> Either.<Throwable, Integer>right(8).filterOrElse(isPositive, toException)
S.. ==> Right[8]

You can also test your code with Test2.java:

a b WON =

$ javac ¢s2030s/fp/Either.java

$ javac Test2.java

$ java Test2

$ java -jar checkstyle.jar -c ¢s2030_checks.xml cs2030s/fp/Either.java
$ javadoc -quiet -private -d docs cs2030s/fp/Either.java

Write the javadoc documentation for flatMap, fold, and filterOrElse for Either.

->

->

S

’

’

Since we do not require you to write javadoc for every class and methods, checkstyle does not warn

about missing javadoc for your class and methods. If you wrote some javadoc and did not format it

properly, however, checkstyle will still warn you to help you write proper javadoc comments.

QUESTION 2: Streams (15 marks)

Marking Criteria

e correctness (13 marks)

e style (2 marks)

Background

In computing, we commonly organize data into tables for processing. In this question, we would like
to explore how we can process and manipulate data stored in tables using Streams.

Consider the following table of customer records from a store. Each row of the table contains the
name of a customer, and a list of purchases (identified by purchase ids, which are integers).

We will call this table the "Customer Table".

Names Purchase Ids
Michelle 12, 56

Enzio 34,90
Michael 78

Each purchase has a cost. The cost of each purchase is stored in another table called the "Sales
Table". Each row in this table contains a purchase id and the corresponding cost of the purchase.

Purchase Ids Cost
12 12.0
34 6.0
56 7.5
78 9.0
90 17.0

In this question, we will implement these tables using Map . Recall that a Map is an abstraction over a
set of (key, value) pairs. Each pair (key, value) is a Map.Entry stored in the Map.Given a Map.Entry,
we can retrieve the key with the getKey() method and retrieve the value with the getvalue()
method.

Treating each name as a key and the list of purchases as the value, the Customer Table can be

represented as a Map froma String (Names)toa List<Integer> (Purchase Ids).

1 Map<String, List<Integer>> customerTable;
2 customerTable = Map.of(

3 "Michelle", List.of(12, 56),

4 "Enzio", List.of(34, 90),

5 "Michael"”, List.of(78));

We can get the value of a key by using the get method.
1 customerTable.get("Michelle") // returns a List.of(12, 56)
Java Map provides methods to create a stream out of a Map entries, keys, and values.

1 customerTable.entrySet().stream() // returns a stream of “Map.Entry"
2 customerTable.keySet().stream() // returns a stream of the Map keys
3 customerTable.values().stream() // returns a stream of the Map values

Given the customers, list of their purchases, and the costs, we want to be able to build a table that

maps between the name of the customer and the cost, as you can see below.

Customer name Cost
Michelle 12.0
Michelle 75
Enzio 6.0
Enzio 17.0
Michael 9.0

Our final goal is to sum up the total cost of all the purchases made by each customer, as

demonstrated below.
Customer name Cost
Michelle 19.5
Enzio 23.0
Michael 9.0
Your Task

In this question, you are to write five Stream methods to operate on the Customer and Sales tables.
Each method should only contain a single Stream pipeline. Nothing more. No local variables or
classes can be defined.

You may call the methods you create when solving other parts of this questions.

getFilteredByKey

To get started, implement the getFilteredByKey methods. We have provided the skeleton for this
first method in the Query.java file.

The getFilteredByKey takesin a table with type Map<T, S> and a predicate of type Predicate<T>.It
returns a stream of entries (or rows) with the type Stream<Map.Entry<T, S>>, containing only rows in

the original table for which the key passes the predicate.
Note that you do not have to worry about PECS for this question.

Study carefully how this method can be used in the examples below:

1 jshell> /open Query.java

2 jshell> Map<String, List<Integer>> customerTable = Map.of(
3 > "Michelle", List.of(12, 56),

4 L> "Enzio", List.of(34, 990),

5 — "Michael"”, List.of(78));

6 jshell> Query.getFilteredByKey(customerTable, x ->
7 x.equals("Enzio")).forEach(System.out::println)

8 Enzio=[34, 90]

9 jshell> Query.getFilteredByKey(customerTable, x ->
0 x.startsWith("Mic")).forEach(System.out::println)
1 Michelle=[12, 56]

Michael=[78]

jshell> Query.getFilteredByKey(customerTable, x ->
x.startsWith("A")).forEach(System.out::println)

getldsFromName

We now write a method to get all of the purchase ids for a given customer name.

Write the method getIdsFromName which takes in the Customer Table of type Map<String,
List<Integer>> and a customer name (a String). It returns a Stream<Integer> containng all
purchase ids for the given customer name. We can assume that there is at most one customer with

the given name.

1 jshell> /open Query.java

2 jshell> Map<String, List<Integer>> customerTable = Map.of(

3 L> "Michelle", List.of(12, 56),

4 > "Enzio", List.of(34, 90),

5 - "Michael”, List.of(78));

6 jshell> Stream<Integer> purchaseIDs = Query.getIdsFromName(customerTable,
7 "Michelle")

8 jshell> purchaseIDs.collect(Collectors.toList());

9 §.. ==> [12, 56]

0 jshell> Stream<Integer> purchaseIDs = Query.getIdsFromName(customerTable, "Sam")
1 jshell> purchaseIDs.collect(Collectors.toList());

$.. ==>[]

getCostsFromiDs

With the list of purchase IDs, we will now get the cost of each of these purchases. Write the method
getCostsFromIDs that takes a Sales Table (of type Map<Integer, Double>)and a list of purchase ids
(of type Stream<Integer>), and returns the cost of each purchase as a Stream<Double>. The costs

returned must be in the same order as the corresponding purchase IDs.

Study carefully how these methods can be used in the examples below:

1 jshell> /open Query.java

2 jshell> Map<Integer, Double> salesTable = Map.of(

3 > 12, 12.0,

4 > 34, 6.0,

5 > 56, 7.5,

6 > 78, 9.0,

7 Lo 90, 17.0)

8 jshell> Stream<Double> costs = Query.getCostsFromIDs(salesTable, Stream.of(12))

9 jshell> costs.collect(Collectors.toList());

109 $.. ==> [12.0]

11 jshell> Stream<Double> costs = Query.getCostsFromIDs(salesTable, Stream.of(12, 90))
12 jshell> costs.collect(Collectors.toList());

i3 $.. ==> [12.0, 17.0]

14 jshell> Stream<Double> costs = Query.getCostsFromIDs(salesTable, Stream.of(7))

15 jshell> costs.collect(Collectors.toList());

16 $.. ==> []

You can also test your code with Test3.java:

1 $ javac Query.java

2 $§ javac Test3.java

3 $ java Test3

4 $ java -jar ~cs203@s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml Query.java
allCustomerCosts

We will now put the information retrieved from the two tables together, and create a new table

showing, on each row, the name of each customer and the cost of each purchase by the customer.

We will represent the output table as a Stream<String>, where every string in the stream is a row of

the new table.

Write a method allCustomerCosts to do this. The method takes in a "Customer Table" and a "Sales
Table" and returns a Stream<String> representing the new table. The order of the rows in the output

does not matter.

Study carefully how this method can be used in the examples below:

1 jshell> /open Query.java

2 jshell> Map<String, List<Integer>> customerTable = Map.of(
3 L> "Michelle", List.of(12, 56),

4 > "Enzio", List.of(34, 90),

5 > "Michael”, List.of(78));

6 jshell> Map<Integer, Double> salesTable = Map.of(

i/ > 12, 12.9,

8 L 34, 6.0,

9 > 56, 7.5,

10 - 78, 9.0,

11 RS 90, 17.0)

12 jshell> Map<String, List<Integer>> badCustomerTable = Map.of(
13 o> "Bill", List.of(17),

14 R "Sam", List.of(19));

15 jshell> Map<Integer, Double> badSalesTable = Map.of(

16 Lo 99, 3.0,

17 > 98, 2.0);

18 jshell> Query.allCustomerCosts(customerTable,

19 salesTable).forEach(System.out::println);

20 Michelle: 12.0

2il Michelle: 7.5

22 Michael: 9.0

2.3 Enzio: 6.0

24 Enzio: 17.0

25 jshell> Query.allCustomerCosts(customerTable,
badSalesTable).forEach(System.out::println);
jshell> Query.allCustomerCosts(badCustomerTable,
salesTable).forEach(System.out: :println);

totaledCustomerCosts

Finally, we will now create a new table to show the name of each customer and the total cost of the
purchases by the customer.
We will again represent the output table as a Stream<String>, where every string in the stream is a

row of the table.

Write a method totaledCustomerCosts to do this. The method takes in a "Customer Table" and a
"Sales Table" and returns a Stream<String> representing the new table. The order of the rows in the

output does not matter.

Study carefully how this method can be used in the examples below:

1 jshell> /open Query.java

2 jshell> Map<String, List<Integer>> customerTable = Map.of(
3 > "Michelle", List.of(12, 56),

4 Lo "Enzio", List.of(34, 99),

5 - "Michael"”, List.of(78));

6 jshell> Map<Integer, Double> salesTable = Map.of(

i/ > 12, 12.9,

8 > 34, 6.0,

9 > 56, 7.5,
10 > 78, 9.0,

11 S 909, 17.0)
12 jshell> Map<String, List<Integer>> badCustomerTable = Map.of(
13 o> "Bill", List.of(17),
14 — "Sam", List.of(19));
15 jshell> Map<Integer, Double> badSalesTable = Map.of(
16 - 99, 3.0,
17 > 98, 2.0);

18 jshell> Query.totaledCustomerCosts(customerTable,
19 salesTable).forEach(System.out::println);

20 Michelle: 19.5

21 Michael: 9.0

22 Enzio: 23.0

23 jshell> Query.totaledCustomerCosts(customerTable,
24 badSalesTable).forEach(System.out::println);

25 Michelle: 0.0

26 Michael: 6.0

27 Enzio: 0.0

28 jshell> Query.totaledCustomerCosts(badCustomerTable,
badSalesTable).forEach(System.out::println);
Bill: 0.0
Sam: 0.0

You can also test your code with Test4.java:

$ javac Query.java

$ javac Test4.java

S java Test4

$ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs2030s/bin/cs20830_checks.xml Query.java

A WN =

1 END OF PAPER

