Lab 9a: Matrix Multiplication

 Deadline: 15 November, 2022, Tuesday, 23:59, SST

e Mark: 2%

Files
You are given the following files:

e Lab9a.java: The main function.
e Matrix.java:A matrix containing the following useful methods:

» nonRecursiveMultiply : The typical matrix multiplication algorithm

e recursiveMultiply : A recursive but non-parallel matrix multiplication algorithm
e MatrixMultiplication.java: The template for your solution

There are test cases inside input and output folder. You are not allowed to change

Lab9a.java and Matrix.java.Any modification will nullify your mark immediately.

Problem Description

Matrix multiplication is a fundamental operation with many applications in physics,

engineering, mathematics, and computer science.

Cij = X Mk=1 Mk = ajk bk;

We are interested in parallelizing the following divide-and-conquer algorithm for matrix

multiplication. Let:

1T A=[A1 | A2]
2 [A21 | A22]
3

4 B =[B_11 | B_12]
5 [B_21 | B_22]
6

7 C=1[cC.11|c.12]
8 [C_21 | C_22]

~ A

where Aqy, App, etc. are block partitioned matrices of equal sizes. If C = AB, then:

17 Cc=1[cC.11] C12]

2 C_21 | C_22]

3

4 = [A11 | A_12] [B_11 | B_12]

5 A_21 | A_22] [B_21 | B_22]

6

7 = [A_11 B_11 + A_12 B_21 | A_11 B_12 + A_12 B_22]
8 [A_21 B_11 + A_22 B_21 | A_21 B_12 + A_22 B_22 |

Note that Ayy Byy is a matrix multiplication. In particular, (A1 Byy) + (A12 Boy) is a matrix

multiplication followed by matrix addition.

You may want to study the recursiveMultiply to understand this algorithm better.

The Task

You are to implement the above divide-and-conquer algorithm as a RecursiveTask and
submit it to ForkJoinPool for execution. For simplicity, we only need to handle square
matrices of size 2™ for n up to 11. For this large number, the execution will not be on
CodeCrunch but will be run on stu.comp.nus.edu.sg. You do not need to do anything for

this large input as it will be based on your CodeCrunch submission.

A skeleton file MatrixMultiplication.java has been provided for you. The class
MatrixMultiplication inherits from RecursiveTask<Matrix>, with the necessary fields

and constructor. Your task is to complete the compute method.

The file Matrix.java is also provided for you. It implements a matrix with double values,
and stores the values of the matrix in a 2D double array called m. It also stores the
dimensions of the matrix in the field dimension . It includes two methods to multiply two
matrices, one sequentially with triple for loops, and another (also sequentially) with the
recursive divide-and-conquer algorithms. There is a method to compare if two matrices

are equal.

In addition, the method parallelMultiply invokes the parallel version of matrix

multiplication. At this moment, the method simply calls the non-parallel version of
recursiveMultiply . You are to modify the method to implement the parallel version of

recursive matrix multiplication.

The driver class called Lab9a.java is also provided for you which reads the input matrix,
cail the parallelMultiply and prints the resuiting matrix. Due to the use of double, we

only care about precision up to 3 decimal places.

Points to note:

& - A 3 " -

e Find a suitable FORK_THRESHOLD for MatrixMultiplication Siich that anyi

dimension smaller than this threshold would be better off using sequential matrix
multiplication.

» Try with small matrices first. Make sure the code is correct before you go for larger

matrices.

 You should not spawn too many tasks that block, which will in turn lead to too many
compensation threads being created in ForkJoinPool, and a

RejectedExecutionException being thrown.

 You should not let muitiple tasks update the same matrix in place. Such side effects
may lead to incorrect results. For matrices of dimensions 210 and 21! | you need to run

java with the argument -Xmx[size] to increase the heap memory size. For example,
-Xmx1g increases the heap memory up to 1GB, and should work well for both cases.

That said, you should still not create too many unnecessary copies of the matrices.

 You do not have to worry too much about this unless you want to ensure that your

code can achieve a good speedup.

¢ The test on CodeCrunch only goes up to 29 due to the memory limitation on
CodeCrunch.

e If you grow impatier

while waiting and want t

()
195}
=
-
C

—_—
=
—
-
—
—
ja
=
=
=
=
=

ac

——
=
=,
(]
(@)
72}
|72]
o

5
(@)

t e
Control-C in your ssh window. You may have to wait up to a few seconds for the
process to stop.

Submission
Submit only the following files:

e Lab9a.java
e Matrix.java

e MatrixMultiplication.java

