Lab 7: Memo List

 Deadline: 25 October, 2022, Tuesday, 23:59, SST

e Mark: 4%

Prerequisite

o Caught up to Unit 32 of Lecture Notes

Important Concepts Tested

e Memo: Compute only when needed & do not repeat yourself

e PECS: Make your method signature as flexible as possible

e JavaDoc: Documenting your code and generating the documentation

Files

You are given the following implementation for your Lab 7:

e (s2030s.

e (s2030s

® Cs2030s.

e (s2030s.

e Cs2030s.

e (©s2030s.

e Cs2030s.

e (©s2030s.

fp

.fp.

fp
fp

fp

fp.

fp

fp

.Action
Immutator
.Constant
.Combiner
.Actionable
Immutatorable
.Actually

.Memo

The files Test1.java, Test2.java, etc., as well as CS20308STest . java, are provided for

testing. You can edit them to add your test cases, but they will not be submitted.

You are given a badly implemented MemoList (which is just EagerList copied into a new

class). Further note that the EagerList is different from our lecture note EagerList . This

current EagerList is simply a wrapper for Java List.The EagerList and InfinitelList

in lecture note will form the basis for Lab 8.

Furthermore, as a checkpoint in case you could not complete Actually and Memo on time
or you are still facing many errors in its implementation, we provide an implementation of
Actually and Memo . These implementations will not satisfy many of the requirements for
Lab 5 and 6.

You may familiarise yourself with this implementation of you may choose to use your own
implementation. If you choose to use your own implementation of Memo , please make sure
that you include the implementation of the Lazy class inside the file Memo.java.
Otherwise, your submission will not work on CodeCrunch and you will get O mark for this
lab.

Additionally, from here onwards, you will get O mark for your lab if you are using the

unwrap method inside Actually.Our implementation of Actually no longer has unwrap.

IMPORTANT]

1. If you are using your own implementation of Memo , you MUST include the
implementation of the Lazy class inside the file Memo.java . In other words, vour

Memo.java must include two classes: Lazy and Memo .

2. You are NOT allowed to use unwrap method from Actually.

Preliminary

Actually

The class Actually<T> is simplified by not using inner/nested class. This is achieved by

simply using a convention:

o If err isnot null, then it is a Failure and we should not use the value of val.
o If err is null, then itis a Success and we can use the value of val including when

val is null.
We no longer use a monospace font Failure and Success as they are no longer a class.

Another simplification is that we just have added a notion of a "common error" that can be
created using the static method err() that takes in no argument. This common error can
be used to indicate the most general kind of error you can think of. We also modified the

equals method such that all Failure (i.e., the case when err isnot null) are considered to

be the equal to each other.

Furthermore, note that we added a method check that takes in an Immutator<Boolean, ?
super T>. This can be used to convert a Success to a Failure when the immutator

predicate is not satisfied. Otherwise, this method returns itself.

Lastly, we simplify the toString() method to simply print "<>" when we are having a

Failure. This is just a simplification as we no longer need to know the error inside.

Please familiarise yourself with this implementation. The behaviour should be similar to

what you expect. You may also replace Actually with your implementation.

Memo

The class Memo is simplified by not inheriting from Lazy . In fact, we remove Lazy
completely and merge the field Constant<? extends T> into Memo.We will be using the

following convention:

e If com is null, then we have evaluated the value and we can use the value of val

including when val actually stores null .

e If com is not null, then we have not evaluated the value and we cannot use the value

of val unless we evaluate it first using the private method eval.

The private method eval is used to force an evaluation of com into the value val. This
will then set the value of com to null to prevent another evaluation as we have now

memoized the value produced into val.

Please familiarise yourself with this implementation. The behaviour should be similar to
what you expect. You may also replace Memo with your implementation. If you do so,

please include the implementation of Lazy within your Memo.java .

Memo List
The Memo class can be used to build a lazy-evaluated-and-memoized list.

Consider the class EagerList below. Given n, the size of the list, seed, the initial value,
and f,an operation, we can generate an EagerList as [seed, f(seed), f(f(seed)),

f(f(f(seed))), ...],upto n elements.

We can then use the method get(i) to find the i-th element in this list, or index0f(obj)
to find the index of obj in the list. (Hint: for index0f to work properly, you need to provide
equals method in Memo where two Memo are equal if the elements are of the same type and

equal based on their respective equals method.)

T

class EagerList<T> {

2 private List<T> list;
3 private EagerList(List<T> list) {
4 this.list = list;
5 }
6
7 public static <T> EagerlList<T> generate(int n, T seed, Immutator<T, T>
8 f) A
9 EagerList<T> eagerlList = new EagerList<>{(new ArraylList<>());
10 T curr = seed;
11 for (int 1 = ©; i < n; i++) {
12 eagerlList.list.add(curr);
13 curr = f.invoke(curr);
14 }
15 return eagerlList;
16 }
17
18 public T get(int i) {
19 return this.list.get(i);
20 }
21
2.2 public int indexOf(T v) {
23 return this.list.indexOf(v);
24 }
25
26 @0verride
27/ public String toString() {
28 return this.list.toString();
29 }

}

But suppose f() is an expensive computation, and we ended up just needing to get(k)
where k is much smaller than N, then, we would have wasted our time computing all the
remaining elements in the list! Similarly, if the obj that we want to find using index0f is
near the beginning of the list, there is no need to compute the remaining elements of the
list.

We want to change this EagerList intoa MemoList that make use of the Memo class such
that get() and index0f() causes evaluation of f() only as many times as necessary. The
first step is already done for you, we have made a copy of EagerList into MemoList but it

has not used Memo vet. Chanoe this imnlementation to use Memo . (Hint: vou onlv need to

VOL. LiiallygC LIS DT INITIIaliil L Uus ST Y v UL

J o I

make minimal changes. Neither a new field nor a new loop is necessary.)

Important: You need to change the method signature of generate to be as flexible as

possible following PECS.

1 jshell> /open MemolList.java

2 jshell> Immutator<Integer, Integer> incr = x -> {
3 ...> System.out.println(x + " + 1");

4 ...> return x + 1;

5

..>)

6 jshell> MemoList<Integer> 1 = MemolList.generate(1000000, 0, incr)
7 l==>10, 7, 2,72, 2,72, 2,°?2,?2,?2,7?,72,7?,7?,7?,7,
8 jshell> 1.index0f(4)

9 0+ 1

10 1+ 1

11 2 + 1

12 3 + 1

13| S.. ==> 4

14 jshell> 1

18 l==>100,1,2,3,4,72, ?2,?2,?,?,?2,?2,7?,7?,72,7?
16 jshell> 1.get(8)

17 4 + 1

18 5+ 1

19 6 + 1

20 7 + 1

21 $.. ==>8

22 jshell> 1

23 1==>1[0,1, 2,3, 45,6,7,8 7?2, 72,72, 2,°?2,7?,7
24 jshell> 1.get(2)

25 | Soo 2 2

26 jshell> 1

27 l==>100,1, 2,3, 4,5,6, 7,8, 7?2, 2, ?2,?2,7?2,2?,7?
28 jshell> 1.index0f(6);

29| §.. ==>6

30 jshell> 1

3il l==>100,1, 2,3, 4,5,6,7,8,7?, 72, °?,2,7?, 72,7

You can test your code by running the Test1.java provided.

The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

1 $ javac cs2030s/fp/*java
2 $ javac -Xlint:rawtypes Test1.java
3 § java Test1
4§ java -jar ~cs2030s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml
5 MemolList.java
$ javadoc -quiet -private -d docs MemolList.java
FiboLazy

The way we generate the MemoList using an Immutator does not allow us to easily

generate Fibonacci sequence:

[@l 11 11 2, 3, 5, 8, ...]

where each element is the sum of the previous two elements.

need an overloaded generate method as follows:

« takes in 4 parameters:

e int n:the number of elements in the list

To accommodate this, we

o T fst:the first element in the list
e T snd:ihe second element in the list

e Combiner< > f:acombiner

=) =0 =

o —— e e

e returns a new MemolList<T> generated as:
o let fst = x and snd = y

e theresultis [x, y, f(x, y), f(y, f(x, y)), f(f(x, y), f(y, f(x, y))), ...]

Add the overloaded generate method to the MemoList class.

1 jshell> /open MemoList.java

2 jshell> Combiner<Integer, Integer, Integer> fib = (x, y) -> {
3 ..> System.out.println(x + " + " +vy);

4 00 return x + vy;

5 ..>)

6 jshell> MemolList<Integer> fibL = MemolList.generate(1000000, 6, 1, fib)
7 fibL ==> [0, 1, 2, 2, 2, 2, 2, 2, 2,2, 2,2, 72,72, 72,7,

8 jshell> fibL.indexOf(8)

9 0+ 1

10 1+ 1

11 1+ 2

12 | 2 + 3

13| 3 + 5

14 §.. ==>6

15 jshell> fibL

16 fibL ==> [0, 1, 1, 2, 3, 5, 8, 2, ?, ?, 2, ?, 2, 2,7, 72,

17 jshell> fiblL.get(8)

18 5+ 8

19| 8 + 13
20 S.. ==> 21
24 jshell> fibL
22 fibL ==> [0, 1, 1, 2, 3, 5, 8, 13, 21, 2, 2, ?, 2, 2, 2, 2, ...
23 jshell> MemoList<Integer> 1 = MemoList.generate(1000000, 0, 1, (x, y) ->
24y + 1)
25 l==>100,1,72,2,2,72,?,?,?2,?2,?2,7?2,72,72,72,7?,7?,7?, 72,
26 jshell> 1.indexOf(4)
27 S.. ==> 4
28 jshell> 1
29 1==>1[0,1,2,3,4, 2,72, 2?2, 72,7, 2,°?2,?2,?2,7?,?2,7?,72,7,
30 jshell> 1l.get(8)
31| $.. ==> 8
32 jshell> 1

1==>100,1,2,3, 4,56, 7,8 2,2, 2, 2,2, 2,2, 2, 2, 2,

You can test your code by running the Test2.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

1 $ javac cs2030s/fp/*java
2 $ javac -Xlint:rawtypes Test2.java
3 § java Test2
4 $ java -jar ~cs203@s/bin/checkstyle.jar -c ~cs2030s/bin/cs2030_checks.xml
5 MemolList.java
$ javadoc -quiet -private -d docs cs2030s/fp/MemolList.java
map

Now let's add a map method. The map method (lazily) applies the given Immutator on
each element in the list and returns the resulting MemoList . If the element is not yet
evaluated, the map method should not evaluate the element. This can be visualised as

follows where f isthe Immutator:

list | =

h 4

g aq as as ay as Qg a-

T T T T
| | I |
' ' I '
| | ' |
' ' ' '
| | 1 |
i i i
| | [|
I | [l |
| | | |
| | | |

A 4 A 4 A 4 A 4

flao) |flar) |f(az) |f(as) |f(ay) |f(as) |f(ae) |f(a7)

This is, in fact, something similar to transform from Immutatorable but operated on each

element of the list. The common name for this is map .

Note: The Immutator for map takesin an element of type T and returns an element of
type R. This may need to be changed to make the method signature as flexible as possible
following PECS.

1 jshell> /open MemolList.java

2 jshell> import cs2030s.fp.Immutator

3 jshell> Immutator<Integer, Integer> incr = x -> {

4 ..> System.out.println(x + " + 1");

L ..> return x + 1;

6 o>)

7 jshell> Immutator<Integer, Integer> dbl = x -> {

8 ..> System.out.println(x + " + " + Xx);

9 > return x + Xx;
10 >}
11
12 jshell> MemolList<Integer> nat = MemolList.generate(1000000, 0, incr)
13 nat ==> [0, ?, ?, 2, 2, 2,2, 2,72, 72,72, 7?,7?,°?,7?, 72,
14 jshell> MemolList<Integer> even = nat.map(dbl)
15 even ==> [?, 2, ?, 2,2, 7?2, 2,72, 7, ?,7?,7?,°?,72, 7, 7,
16 jshell> nat.indexOf(3)
17 0+ 1
18 1T+ 1

19 2 + 1

20 $.. ==>3

21 jshell> nat

22 nat ==> [0, 1, 2, 3, ?, ?, 2, 2, 2, 2,2, 2,72, 72, 72,7
23 jshell> even

24 even ==> [?, ?, ?, 2,2, 2,2, 2,72, °?,°?,°?,?,°?,7?,7,
25 jshell> // Note the 3 + 1 and 4 + 1 comes from

26 jshell> // evaluation of nat

27 jshell> even.index0f(19)

28 0+ 0
29 1 + 1
30 2 + 2
3 3 +3
32 3+ 1
33 4 + 4
34 4 + 1
35 B ¢ &
36 S.. ==>5

37 jshell> nat

38 nat ==> 1[0, 1, 2, 3, 4, 5, 2, ?, 7,72, 2,2, 72,72, 72,72,
39 jshell> even

40 even ==> [0, 2, 4, 6, 8, 10, ?, ?, ?, 2, ?, ?, 7?2, 2,72, 7,
41 jshell> MemoList<Integer> odd = even.map(incr)

42 odd ==> [?, 2, ?, 2, ?, 0?2, 2,7, 2,7, 2, 2,72, 72,7, 72

43 jshell> // Note only forces evaluation of
44 jshell> // nat and even that are needed

45 jshell> odd.get(10)

46 5+ 1

47 6 + 1

48 7 + 1

49 8 + 1

50 9 + 1

o1l 10 + 10
52 20 + 1

58 S.. ==> 21

54 jshell> nat

55 nat ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 2, 2, 2, ?,
56 jshell> even

57, even ==> [0, 2, 4, 6, 8, 10, ?, ?, ?, ?, 20, ?, ?, ?, ?, ?,
58 jshell> odd

59 odd ==> [?, ?, ?, 2, ?, 2,2, 72,2, 72,21, 7?,7?,7?,7?,7?

L L N N) P S]

You can test your code by running the Test3.java provided. The following should compile
without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

$ javac cs2030s/fp/*java

$ javac -Xlint:rawtypes Test3.java

$ java Test3

$ java -jar ~cs203@s/bin/checkstyle.jar -c ~cs2030s/bin/cs2036_checks.xml
MemolList. java

$ javadoc -quiet -private -d docs c¢s2030s/fp/MemolList.java

a b WN =

flatMap

Now let's add a flatMap method. While the Immutator in the map method returns an
element of type R, the Immutator inthe flatMap method returns an element of type

MemoList<R> . So first, recap that map applies the Immutator on each element. But if the
1ested list. O

I 2 2 4,

flapMap will flatten this nested list.

Recap the image below from recitation illustrating the behaviour of flatMap .

list | =# > ag a; a,
J S B "
f(a0) f(ay) e
v : ‘:(
ag 5 iy aj = &
no longer nested

You still need to ensure that the method signature for flatMap is as flexible as possible.
However, to simplify this, you are guaranteed that the MemoList generated by the
Immutator passedto flatMap will always be of type MemoList<R>.In other words, you do

not need to take care of cases where we may want to return MemoList<? extends R>.

1 jshell> /open MemolList.java

2 jshell> import cs2030s.fp.Immutator

3 jshell> import cs2030s.fp.Memo

4 jshell> Immutator<MemoList<Integer>, Integer> dupl = x -> {
5 ..> System.out.println("Duplicating " + x + " for " + x +
6 "-times");

7 ..> return MemoList.generate(x, X, n -> Xx);

8 ..>)

9 jshell> MemoList<Integer> nat = MemolList.generate(5, 1, x -> x + 1);
10 nat ==> [1, ?, 2?2, ?, ?

11 jshell> MemoList<Integer> superNat = nat.flatMap(dupl)

12 Duplicating 1 for 1-times

13 Duplicating 2 for 2-times

14 Duplicating 3 for 3-times

15 Duplicating 4 for 4-times

16 Duplicating 5 for 5-times

17 superNat ==> [1, 2, ?, 3, ?, ?, 4, 2, ?,?,5, 72,7, 7?2, 7]
18

19 jshell> MemoList<Integer> superEven = superNat.map(x -> {
20 ..> System.out.println(" 2" + x + " =" + (2 * x));
211 > return x * 2;
2.2 ..> 1)
23 superEven ==> [?, ?, ?, ?, 2, 2, 2,2, 7?2, 7?2, 72,7, 7,7, 7]
24 jshell> superEven.get(12)
25 2*5 = 10
26 S.. ==> 10

b7
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

jshell> superEven

superEven ==> [?, 2?2, 2, ?, 2, 2, ?, 2, 72,7, 7,7, 10, ?, ?]
jshell> superNat

superNat ==> [1, 2, ?, 3, ?, ?, 4, ?, ?, ?, 5, 5,5, 7, 7]
jshell> nat

nat ==> [1, 2, 3, 4, 5]

jshell> // we will show the difference with map

jshell> MemoList<Integer> nat2 = MemolList.generate(5, 1, x -> x + 1)
nat2 ==> [1, 2, ?, ?, ?]

jshell> MemoList<MemolList<Integer>> nestNat2 = nat2.map(dupl)
nestNat2 ==> [?, ?, ?, ?, ?]

jshell> nestNat2.get(2)

Duplicating 3 for 3-times

S.. ==> [3, ?, ?]

jshell> nestNat2

nestNat2 ==> [?, ?, [3, ?, ?], 2, ?]

jshell> for (int i=0; i<5; i++) {
...> nestNat2.get(i);
..>)
Duplicating 1 for 1-times
Duplicating 2 for 2-times
Duplicating 4 for 4-times
Duplicating 5 for 5-times
jshell> nestNat2
nestNat2 ==> [[1], [2, ?], [3, 2, ?], [4, 2, 2, 2], [5, 2, 2, 2, ?]]

jshell> for (int i=0; i<5; i++) {
..> for (int j=0; j<=i; j++) {
L nestNat2.get(i).get(j);
o> }
..>)
jshell> nestNat2
nestNat2 ==> [[1], [2, 2], [3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5, 5]]

You can test your code by running the Test4.java provided. The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style and can

generate the documentation without error.

a b WON =

$ javac ¢s2030s/fp/*java

$ javac -Xlint:rawtypes Test4.java

$ java Test4

$ java -jar ~cs203@s/bin/checkstyle.jar -c ~cs20830s/bin/cs2030_checks.xml
MemolList.java

$ javadoc -quiet -private -d docs c¢s2030s/fp/MemolList.java

PECS

If you have not done so, you can do a simple test on PECS by running the Test5.java

provided. The following should compile without errors or warnings. Make sure your code

follows the CS2030S Java style but there is no need to generate javadoc.

1 $ javac c¢s2030s/fp/*java
2 $ javac -Xlint:rawtypes Test5.java
3 $ java Test5

Following CS2030S Style Guide

You should make sure that your code follows the given Java style guide.

Grading

This lab is worth 16 marks and contributes 4% to your final grade. The marking scheme is

as follows:

e Documentation: 2 marks
 Everything Else: 14 marks
We will deduct 1 mark for each unnecessary use of @SuppressWarnings and each raw type.

@SuppressWarnings should be used appropriately and not abused to remove compilation

warnings.

Note that general style marks are no longer awarded will only be awarded for
documentation. You should know how to follow the prescribed Java style by now. We will
still deduct up to 2 marks if there are serious violations of styles. In other words, if you

have no documentation and serious violation of styles, you will get deducted 4 marks.

Submission

Similar to Lab 6, submit the files inside the directory cs2030s/fp along with the other file
without the need for folder. Your cs2030s/fp should only contain the following files:

e Action.java

e Actionable.java

e Actually.java

e Combiner.java

e Constant.java

e Immutator.java

e Immutatorable.java

e Memo.java

Additionally, you must submit the file Lab7.h and Lab7.java. Otherwise, you CodeCrunch

submission will not run.

