
Intro
• Monolitic OS

• + Good performance, well understood
• - Coupled, very complex internal structure

• Microkernel OS
• Very small, provides basic functionalities
• - More robust and extendible, better isolation and

protection between kernel and services
• - lower performacne

• Type 1 Hypervisor - Bare Metal
• Hardware –> Hypervisor –> OS1, OS2, OS3

(VMWare ESXi)
• Type 2 Hypervisor - Host OS

• Hardware –> OS –> Hypervisor –> OS1, OS2

Process Abstraction
Every process has PID
States
1. New
2. Ready
3. Running
4. Blocked
5. Terminated

Transitions
1. Create (nil -> New)
2. Admit (New -> Ready)
3. Switch (Ready -> Running)
4. Switch (Running -> Ready)
5. Event Wait (Running -> Blocked)
6. Event occurs (Blocked -> Ready)

Syscall Mechanism
1. User prog invokes library call
2. Library call places syscall No in register
3. Library call exec TRAP to switch to kernel
4. Handler determined by dispatcher using syscall no
5. Syscall executed
6. Syscall ended, restore CPU and return to library,

switch from kernel to user mode
7. Library call return to user program

Exceptions are synchronous and have to execute
exception handler. Arithmetic Error, Memory Access
Error
Interrupts are async external event that can interrupt
exec of program, and have to execute interrupt handler

PA in Unix
fork() is main way to create new process, returns PID
of new process (parent) or 0 for child process.
Differ in PID, PPID, fork() return value
execl(const char *path, const char *arg0..n,
NULL) replaces currently executing process with new one
fork() + exec() is the main way of new process for
new program
init process, PID=1 watches for other processes and
respawns when needed, fork() creates process tree, init
is the root process
exit() to end execution of process, status returned to
parent process, 0 for normal, !0 for others. On exit,
most resources released, some not released (PID, status,
CPU time). Return from main implicitly calls exit

wait(int *status) blocks and cleans up remainder of
child resources. Returns PID of terminated child
process. Stores exit status of terminated child process.
zombie when child finishes but parent does not wait()
orphan when parent terminates before child. init
becomes parent and handles cleanup
Fork Impl
1. Create address space of child
2. Allocate p' = new PID
3. Create entry in process table
4. Copy kernel environment of parent process (Priority

for scheduling)
5. initialize child process ctx, PID=p', PPID=parent
6. Copy mem region from parent (prog, data, stack)
7. Acquire shared resources (files, CWD, etc)
8. Init hardware CTX (copy registers)
9. Add to scheduler queue

Process Scheduling
Concurrent Execution multiple processes progress in
execution at same time. This can be Virual Parallelism
or Physical Parallelism
A typical process goes through phases of CPU Activity
(Computation) and IO Activity (Disk, print to screen)
Criteria for Scheduling

• Fairness - Fair share of CPU time, and no starvation
• Utilization - All parts of computer utilized
When to Perform Scheduling

• Non-Preemptive (Cooperative)- Process stays
scheduled until blocks / gives up CPU

• Preemptive - Given fix time quota to run, at the end,
process suspended

Batch Processing
Criteria

• Turnaround time Total time taken (finish - arrival)
• Waiting time Turnaround - work done
• Throughput - Number of tasks finished per unit time
• CPU Utilization - % of time when CPU working
Algorithms
First Come First Served - FIFO queue based on arrival
time. First task in queue until task blocked or done.

• No Starvation No of tasks infront of task X in FIFO is
always decreasing

• Convoy Effect Long running CPU bound task A
followed by IO bound tasks X. While A running, X is
waiting in ready queue, once A is blocked on IO, X
will execute and go to IO queue, CPU is idling

Shortest Job First - Select Task with shortest CPU
time. Need to know total CPU time for task.

• Minimizes average waiting time
• Starvation possible (Biased towards short jobs, long

jobs might never get a chance)
• Predicting CPU time

Predictedn+1 = αActualn + 1(1− α)Predictedn

Shortest Remaining Time - Select job with shortest
remaining / expected time. New jobs with shorter time
can preempt currently running job

Interactive
Criteria

• Response Time - Time between request and response
• Predictability - Less variation == more predictable

Timer Mechanism
Timer Interrupt goes of periodically, calling the
scheduler
Interval of Timer Interrupt(ITI) Scheduler invoked on
every interrupt, ranging from 1ms to 10ms
Time Quantum Duration given to process. Multiple of
timer interrupt, 5ms to 100ms

Algorithms
Round Robin - FIFO queue, where first taslk run until
time quantum elapsed / gives up CPU / blocks. Placed
at and of queue

• Response Time Guarentee - nth task will run by
(n− 1)q

• Choice of Quantum - Big quantum (better utilization,
longer wait time), Smaller Quantum (worse overhead,
but shorter wait time)

Priority Scheduling - Task with highest priority will be
executed first. Preemptive (Higher priority task can
preempt lower priority), or Non-preemptive (late coming
high priority process has to wait for next round of
scheduling)

• Starvation Low priority tasks can starve. Solution:
• Decrease priority of current running process after

every quantum
• Process not considered in next round of scheduling
• Lower priority task can lock a resource higher

priority needs. Lower preempts higher priority task
Multi-level Feedback Queue - Designed to solve issue
of scheduling without knowledge.

• Adaptive - Learns process behaviour automatically
• Minimises response time for IO bound and turnaround

time for CPU bound
• Rules

• If Priority(A) > Priority B -> A runs
• if Priority(A) == Priority(B) -> A and B run in RR
• New Job -> Highest Priority
• On fully using time quantum -> Priority reduced
• If gives up / blocks before time quantum ->

Priority Maintained
Lottery Scheduling - Give lottery ticket to processes for
system resources. When scheduling needed, lottery
ticket randomly chosen, winner granted resource

• Responsive - New process can participate
• Good level of control - Process can be given Y

tickets, important process can have more tickets, and
each resource can have own set of tickets

Threads
Process is expensive as it Duplicates memory, process
context, and context switching requires saving and
restoring process info. Hard for multiple process to
communicate due to independent memory space. Add
threads so multiple parts of same program execute
concurrently

Thread Model
• Single process can have multiple threads
• Threads share Memory Context (Text, Data, Heap)
• Threads share OS Context (PID, files, etc)
• Each thread needs ThreadID, Register, Stack
Context Switching - Thread switch only requires
changing hardware ctx (register, FP, SP), whereas
Process Switch requires (OS, Hardware, Memory CTX)
Benefits

• Economy - Multiple threads in same process requires
less resource than multiple processes

• Resource Sharing - Share most resources of process,
no need for additional mechanism for passing info

• Responsive - Multithreaded can appear responsive
• Scalable - Can take advantage of multiple CPU
Problems

• System Call Concurrency - Parallel exec of multiple
threads -> parallel sys calls -> Guarentee correctness
and determine correct behavior

• Process Behaviour
• fork() called in thread, only 1 thread is cloned
• If thread calls exit(), all threads exit
• If thread calls exec(), all threads exit and new

executable runs

User Thread
Implemented as user library, runtime system in process
will handle thread related operations. Kernel not aware
of threads
Advantages

• Multithreaded program on ANY OS
• Thread operations are library calls
• More flexible and configurable
Disadvantages

• OS not aware of threads, scheduling done at process
level

• One thread blocked –> Process blocked –> All
threads blocked

• Cannot use multi-CPU

Kernel Thread
Thread implemented in OS, operations handled as
syscalls. Kernel can schedule by threads instead of
process Advantages

• Can schdule on thread level - More than 1 thread in
same process can run on multiple CPUs

Disadvantages
• Thread ops now syscall - Slower and more resources
• Less flexible (If impl with many features, overkill), (If

impl with less features, not flexible enough)

Hybrid Thread
Both Kernel and User thread. OS Schedule Kernel
thread, user thread binds to kernel thread

Posix Theads: pthread
pthread_t : TID, pthread_attr : attribute of thread
pthread_create
pthread_exit
pthread_join



IPC
Hard for cooperating processes to share information as
memory space is independent, and IPC mechanisms is
needed

Shared Memory
1. Process P1 creates shared memory M
2. Process P1 and P2 attach M to its own memory

space
3. P1 and P2 communicate using M

Advantages
• Efficient - Only initial step require OS
• Ease of Use - Behaves similar to normal memory

space, information of any type / size can be written
Disadvantages

• Synchronization - Need to synchronize access
• Implementation is harder

Message Passing
1. Process P1 prepares message M and sends it to P2

2. Process P2 receives message
3. Send / receive provided as syscalls

Direct Communication
• Sender / Receiver explicitly name other party (Domain

Socket)
• 1 link per pair of communicating process
• Need to know identity of other party

Indirect Communication
• Sender / Receiver send to mailbox / port. (Message

Queue)
• 1 mailbox shared among processes

Synchronization Behaviours
• Blocking Primitives - Receive() blocked until message
• Non-Blocking primitives - Receive() will receive

message / indicate message not ready
Advantages

• Portable - Easily impl on diff processing env (WAN,
distributed systems)

• Easier sync - Sender and receiver implicitly
synchronized

Disadvantages
• Inefficient - OS intervention, extra copying

Pipe
Process has 3 different comms channels, stdin,
stdout, stderr
Process P writes n bytes, Q consumes m bytes. FIFO,
must access data in order
Byte buffer with implicit synchronization, Writers wait
when full, Readers wait when empty

Signal
Asynchronous notification regarding event sent to
process/thread. Must be handled by default set of
handlers / user supplied. Common signals: Kill,
Interrupt, Stop, etc.

Synchronization
Race Condition
Problems

• When 2 or more processes execute concurrently and
share modifiable resource -> Can cause sync problems

• Execution of single sync process is deterministic
• Execution concurrent processes non-deterministic

(order in which resource is accessed / modified)
Solution: Designate code segment with race condition
as critical section. At any point in time, only 1 process
can execute in CS. Other processes prevented from
entering CS.

Critical Section
Properties

• Mutual Exclusion - P1 in CS, all other processes
prevented

• Progress - No process in CS, one waiting process
given access

• Bounded Wait - After P1 requests to enter CS, upper
bound on other process in CS before P1

• Independence - Not executing in CS should never
block other process

Incorrect Synchronization
• Deadlock - All processes blocked -> No progress
• Livelock - Deadlock avoidance mechanism -> Process

keeps changing state to avoid deadlock and makes no
progress

• Starvation - never makes progress in execution as its
perpetually denied resources

Implementation of CS
Test and Set
Common machine instruction to aid synchronization
Behavior
1. Load current content at MemLoc to register
2. Store 1 into MemLoc

This is operated as single operation
EnterCS(int *Lock) { while TestAndSet(Lock) ==
1}
ExitCS(int *Lock) { *Lock = 0}
EnterCS will set the value of the lock to 1 and return
its previous value. If teh value is 1, that means that its
still held by another process. If the value is 0, then the
lock has been released, and this process can run. The
value is set to 1 imediately. This detects the ”change”
in Lock.

Observation and Comments
Implementation works, however spinlock wastes
resources (processing power)

Random Notes
To abuse MLFQ, you can spawn a child process and do
work there.
Stack Frame setup / teardown
1. On exec func call

1.1. Caller: Pass args with register and/or stack
1.2. Caller: Save Return PC on Stack

1.3. Callee: Save registers used by callee (Old FP,
SP)

1.4. Callee: Alloc space for local vars on stack
1.5. Callee: Adjust SP to point to new stack, adjust

FP
2. On Return from func call

2.1. Callee: Restore saved registers, FP, SP
2.2. Continue execution in caller


	Criteria for Scheduling
	When to Perform Scheduling
	Batch Processing
	Criteria
	Algorithms

	Interactive
	Criteria
	Timer Mechanism
	Algorithms

	Thread Model
	User Thread
	Kernel Thread
	Hybrid Thread
	Posix Theads: pthread

	Shared Memory
	Message Passing
	Direct Communication
	Indirect Communication
	Synchronization Behaviours

	Pipe
	Signal
	Race Condition
	Critical Section
	Implementation of CS
	Test and Set
	Observation and Comments
	Random Notes


