INSTRUCTIONS

1. This Mock Practical Assessment consists of two question.

2. This is an OPEN BOOK assessment. You are only allowed to refer to written /printed notes. No
online resources/digital documents are allowed, except those accessible from the PE nodes
(peXXX.comp.nus.edu.sg) (e.g., man pages are allowed).

3. You should see the following in your home directory.

he files Test1.java, Test2.java, .., and CS2838STest.java for testing your solution.

=

=

he files Test1.jsh, Test2.jsh, ... for additional testing on jshell.

e The skeleton files for Question 1. ¢s2030s.fp.Reader.java.

the cs2030s.fp package:
Immutator.java.

¢ The skeleton files for Question 2: Main.java.

r.

1 11 Lo L DI IS TSP S R B I Do) s 3
ne 1(,)||(,)ng 11ES LO Solve Quesuion £ 18 I,)T(,)V](Je(] 1or y(,)l]: Utilities. Java .

T
4. Solve the programming tasks by editing the given file. You can leave the files in your home
directory and log off after the assessment is over. There is no separate step to submit your code.

5. Only the files directly under your home directory will be graded. Do not put your code under a
subdirectory.

6. Write your student number on top of EVERY FILE you created or edited as part of the @author

tag. Do not write your name.

7. Important: Make sure all the code you have written compiles. If one of the Java files you have

written causes any compilation error, you will receive 0 marks for that question.

API Reference

List and ArrayList

You may need to use the interface List<T> and its implementation ArraylList<T> for both Question
1 and Question 2. Some useful methods are:
e boolean add(T item) :append the item to the end of the list

e boolean addAll(T item) :inserts all of the elements in the specified collection into this list at the

specified position
e boolean contains(T item) :returns if an item is in the list

e T get(int index) :retrieve the item at the specified index without removing the item. The first

element has an index of 0.

o T remove(int index) :retrieve the item at the specified index and remove the item from the list.

The first element has an index of 0.

e boolean remove(Object item) : removes the passed item from the list.

e int size() :return the number of elements in the list.

You can create a new empty ArrayList with new ArrayList<T>() .You can import List using

import

java.util.ArraylList; and Arraylist using import java.util.Arraylist; .

Stream

You need to use the interface Stream<T> and its implementation IntStream<T> or LongStream<T>

for Question 2. Some useful methods are:

e Data Source:

e Interr

static <T> Stream<T> of (T t):returnsa sequential Stream containing a single element

static <T> Stream<T> of (T... values) :returns a sequential ordered Stream whose

elements are the specified values

static <T> generate(Supplier<? extends T> s):returns an infinite sequential unordered

Stream where each element is generated by the provided Supplier

static <T> iterate(T seed, UnaryOperator<T> f) :returns an infinite sequential ordered
Stream produced by iterative application of a function f to an initial element seed,

producing a Stream consisting of seed, f(seed), f(f(seed)), etc

static <T> iterate(T seed, Predicate<? super T> hasNext, UnaryOperator<T> next) :
returns a sequential ordered Stream produced by iterative application of the given next

function to an initial element seed, conditioned on satisfying the given hasNext predicate

_ J CORR

neaiate:

<R> Stream<R> map(Function<? super T,? extends R> mapper) :returns a stream consisting

of the results of applying the given function to the elements of this stream

<R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper) :
returns a stream consisting of the results of replacing each element of this stream with the
contents of a mapped stream produced by applying the provided mapping function to each

element

Stream<T> filter(Predicate<? super T> predicate) : returns a stream consisting of the
elements of this stream that match the given predicate

Stream<T> limit(long maxSize) :returns a stream consisting of the elements of this stream,
truncated to be no longer than maxSize in length

Stream<T> takeWhile(Predicate<? super T> predicate) :returns, if this stream is ordered, a
stream consisting of the longest prefix of elements taken from this stream that match the
given predicate

e Stream<T> dropWhile(Predicate<? super T> predicate) :returns, if this stream is ordered, a
stream consisting of the remaining elements of this stream after dropping the longest prefix
of elements that match the given predicate

e Terminal:

e void forEach(Consumer<? super T> action) : performs an action for each element of this

stream

e boolean allMatch(Predicate<? super T> predicate) : returns whether all elements of this

stream match the provided predicate

e boolean anyMatch(Predicate<? super T> predicate) :returns whether any elements of this

stream match the provided predicate

e boolean noneMatch(Predicate<? super T> predicate) : returns whether no elements of this

stream match the provided predicate
e long count() :returns the count of elements in this stream

e <R, A> R collect(Collector<? super T,A,R> collector) : performs a mutable reduction

operation on the elements of this stream using a Collector
¢ In particular, Collectors.tolList() will be useful
¢ Touse Collectors, you need toimport java.util.stream.Collectors

e T reduce(T identity, BinaryOperator<T> accumulator) : performs a reduction on the
elements of this stream, using the provided identity value and an associative accumulation
function, and returns the reduced value

e <U> U reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator<U>
combiner) : performs a reduction on the elements of this stream, using the provided identity,

accumulation and combining functions

Question 1: Reader

We implemented a Loggable class in lecture before. Loggable is actually classified as a writer
monad since it writes into the log. Now, we are going to make a reader monad. In fact, if you combine
both reader and writer monads, you get the IO monad of Haskell.

In this question, we simply require Reader<T> to be immutable. Since Reader<T> may contain a field

of type T, we do not require the type T to be immutable as well.

The Basic

Create an immutable Reader<T> class that encapsulates a sequence of "inputs” to be read as part of

the cs2030s.fp package. We put quotes around inputs as it is not a real user input. But you can

imagine that we can wrap a Scanner class (out of syllabus) to do this instead.

We want to differentiate between an "empty" reader and a "non-empty" reader. An empty reader has

no inputs while non-empty reader has some inputs that can be read.

e A Reader<T> object can be created using the static factory of method, passing in a sequence of

inputs as a variable number of arguments. We always read the inputs from the leftmost

arguments first.

¢ If the of method has an input argument, a non-empty reader will be created.

¢ If the of method has no input argument, an empty reader will be created.

¢ Implement a read() method to retrieve the first value to be read. If there is no such value, the

method should throw java.util.NoSuchElementException.

e Implement a hasNext() method that returns true if it is a non-empty reader and false ifitis

an empty reader.

e Implement a toString() method that returns a String "Reader” if it is a non-empty reader and

"EOF" if it is an empty reader.

o NOY ok WN =

N NN N NN DNDNDNONN 2 A e em e e e o
NOoO o, WN=2 O©OWONOUOaPr~WN= OO

jshell> import cs2030s.fp.Immutator
jshell> import cs2030s.fp.Reader

jshell> Reader<Integer> intInput = Reader.of(2, 0, 3, 0)
intInput ==> Reader

jshell> intInput.read()

.. ==>2

jshell> intInput.read() // always the same

§.. ==>2

jshell> intInput.hasNext()

§.. ==> true

jshell> Reader<Object> noInput = Reader.of()
nolnput ==> EOF

jshell> noInput.read()

| Exception java.util.NoSuchElementException
jshell> noInput.hasNext()

$.. ==> false

jshell> Reader<String> strInput = Reader.of("CS", "2030",
strInput ==> Reader

jshell> strInput.read()

S.. ==> "CS"

jshell> strInput.read() // always the same

S$.. ==> "CS"

jshell> strInput.hasNext()

S.. ==> true

usu)

You will need to make of accepts a variable number of arguments (commonly known as varargs).

Recall that using generic type with varargs will lead to a compiler warning about heap pollution. If

you are sure that you are handling the generic type correctly, you can suppress this warning with

@SafeVarargs annotation.

You can also test your code with Test1.java:

a b WwN =

$ javac Reader.java

$ javac Testl.java

S java Testl

$ java -jar ~cs2083@8s/bin/checkstyle.jar -c ~cs20830s/bin/cs20830_checks.xml
Reader.java

$ javadoc -quiet -private -d docs Reader.java

Consuming Input

Now we want to be able to consume the input.

¢ Implement a consume() method to read past the first value. This method should return a new

Reader<T> with the inputs starting from the next input while keeping the current instance

unchanged. If there is no such value, the method should throw

java.util.NoSuchElementException .

e Add an equals method to compare if two Reader objects are equals. Two non-empty Reader s

are always equal and two empty Reader s are always equal. On the other hand, a non-empty

reader is not equal to an empty reader.

o NOoOY ok WN =

NN NN NN N RN =R
O O NO O WN= O©OVWOoONOUPNWN= OO

jshell> import cs2030s.fp.Immutator
jshell> import cs2030s.fp.Reader

jshell> Reader<Integer> intInput = Reader.of(2, 0, 3, 9)
intInput ==> Reader

jshell> intInput.consume().read()

$.. ==>0

jshell> intInput.consume().consume().read()

$§.. ==>3

jshell> intInput.consume().consume().consume().read()

$.. ==>0

jshell> intInput.consume().consume().consume().consume().read()
| Exception java.util.NoSuchElementException

jshell> intInput.consume().consume().consume().consume().consume()
| Exception java.util.NoSuchElementException

jshell> Reader<Object> noInput = Reader.of()
noInput ==> EOF

jshell> noInput.consume()

| Exception java.util.NoSuchElementException

jshell> Reader.of("CS", "2030", "S").equals(Reader.of(2, 0, 3, 9))
S.. ==> true

jshell> Reader.of("CS", "2030", "S").equals(Reader.of())

S.. ==> false

jshell> Reader.of().equals(Reader.of(2, 0, 3, 0))

S.. ==> false

jshell> Reader.of().equals(Reader.of())

S.. ==> true

You can also test your code with Test2.java:

1
2

$ javac Reader.java
$ javac Test2.java

3
4
5

Map

S java Test2

$ java -jar ~cs2083@s/bin/checkstyle.jar -c ~cs20830s/bin/cs2030_checks.xml
Reader.java

$ javadoc -quiet -private -d docs Reader.java

Now that we have a reader and its inputs (or empty) encapsulated within Reader class, let's add the

ability to manipulate the value that we can read. Add a map method that takes in an Immutator to

update all its input read.

o NOY ok WN =

O

10
11
122
13
14
5!
16

jshell> import cs2030s.fp.Immutator
jshell> import cs2030s.fp.Reader

jshell> Reader<String> strInput = Reader.of("CS", "2030", "S")
strInput ==> Reader

jshell> Reader<Integer> intInput = strInput.map(s -> s.length())
intInput ==> Reader

jshell> intInput.read()

$.. ==> 2

jshell> intInput.consume().read()

S.. ==> 4

jshell> intInput.consume().consume().read()

S.. ==> 1

jshell> intInput.consume().consume().consume().read()
| Exception java.util.NoSuchElementException

Now make sure your map method is flexible enough to handle functions other than those that take in

T and returns T.

You can also test your code with Test3.java:

1§ javac Reader.java
2 $ javac Test3.java
3 $ java Test3
4§ java -jar ~cs203@s/bin/checkstyle.jar -c ~cs20830s/bin/cs20830_checks.xml
5 Reader.java
$ javadoc -quiet -private -d docs Reader.java
flatMap

Now that we have a rather useful Reader class, we can write a method that builds up its own Reader

object. We want to use the front of the current input as an input argument to the Immutator . This

will then create a new Reader object with some additional input. We use this additional input

returned by the Immutator to replace the front of the current input with this additional input.

However, we will flatten it and not have a nested input.

For instance, if the current inputis [1, 2, 3, 4] .Weuse 1 asan input argument to the Immutator .

If this creates something like [10, 20, 30], then the final result should have [10, 20, 30, 2, 3,

4] asinputs.

Note in the sample run below what happens when the function taken in by flatMap returns an

empty input.

jshell> import cs2030s.fp.Immutator
jshell> import cs2030s.fp.Reader

1

2

3

4 jshell> Reader<Integer> intInput = Reader.of(1, 2)

5 intInput ==> Reader

6 jshell> intInput = intInput.flatMap(x -> Reader.of(x * 10, x * 20, x * 30))
7 intInput ==> Reader

8

9 jshell> intInput.read()

19 $.. ==> 180

11 jshell> intInput.consume().read()

12 S.. ==> 20

13 jshell> intInput.consume().consume().read()

14 S.. ==> 30

15 jshell> intInput.consume().consume().consume().read()

16 $.. ==> 2

17 jshell> intInput.consume().consume().consume().consume().read()
18 | Exception java.util.NoSuchElementException

19 jshell> intInput.consume().consume().consume().consume().consume()
20 | Exception java.util.NoSuchElementException

Your flatMap method only need to handle those functions that take in T and returns Reader<T>.
However, it should be flexible enough to handle functions that returns Reader<U> where U is a

subtype of T.Otherwise, we cannot merge the inputs.

You can also test your code with Test4.java:

$ javac Reader.java

$ javac Test4.java

$ java Test4

$ java -jar ~cs203@8s/bin/checkstyle.jar -c ~cs2030s/bin/cs20630_checks.xml
Reader.java

$ javadoc -quiet -private -d docs Reader.java

a b wWwN =

Question 2: Stream

Your Task

In this question, you are to write two Stream methods. Each method should only contain a single
return statement involving Stream pipeline. Nothing more. No local variables or classes can be
defined.

You may call the methods you create when solving other parts of this questions.

Palindrome

A palindrome is defined as a string that reads the same forward and backward. For instance, "anna",

"eve" ,and "racecar” are palindromes but "adam” and "adi" are not. In this question, you may
assume that we only use lowercase alphabets. There will be no punctuations or other characters
besides those listed below:

1 abcdefghijklmnopqrstuvwxyz

You are given a static method split(String s) to split the string s into its individual characters
and return a Stream containing each individual characters. This method is inside the class

Utilities in the file Utilities.java. You are not allowed to modify this method.
Write two static methods using only streams:

e public static String reverse(String s) :returns a reverse of the string s

¢ You must use the method split(String s) to transform the string s into a

Stream<Character>

e public static Stream<String> palindrome(Stream<String> stream) : returns a stream

containing only palindromes

Study carefully how this method can be used in the examples below:

1 jshell> /open Utilities.java

2 jshell> /open Main.java

3

4 jshell> Main.reverse('"adam")

5 $.. ==> "mada"

6 jshell> Main.reverse("eve")

7 S.. ==> "eve"

8 jshell> Main.reverse("adi")

9 §.. ==> "ida"
10 jshell> Main.reverse("racecar")

11 S.. ==> "racecar"

12

13 jshell> List<String> words = List.of("adam", "eve", "adi", "racecar", "madam",
14 "anna")

15 words ==> [adam, eve, adi, racecar, madam, anna]

16 jshell> Main.palindrome(words.stream()).forEach(System.out::println)
i1/ eve

18 racecar

19 madam

anna

You can also test your code with Test5.java:

$ javac Main.java

$ javac Test5.java

$ java Test5

$ java -jar ~cs203@8s/bin/checkstyle.jar -c ~cs2030s/bin/cs20308_checks.xml Main.java

A WN =

