
Lab 4: Box

• Deadline: 1 March, 2022, Tuesday, 23�59, SST

• Mark: 4%

Prerequisite:

• Caught up to Unit 26 of Lecture Notes

• Familiar with CS2030S Java style guide

Probably Just a Value but Maybe Nothing?

In this lab, you are given our own generic wrapper class, a Probably<T> . This is a wrapper

class that can be used to store a value of any reference type. For now, our Probably<T> is

not going to be a very useful abstraction. Not to worry. we will slowly add more

functionalities to it.

Please read the following explanation on what the class Probably<T> is.

The Basics

The class Probably<T> :

• contains a private final �eld of type T to store the value stored inside.

• overrides the equals method from Object to compare if the two values inside are the

same. Two values are the same according to their respective equals method.

• overrides the toString method so it returns the string representation of its values,

between < and > .

• provides a class method in Probably<T> called none() that returns nothing. This

nothing is a common nothing and there is exactly one nothing in the program.

• provides a class method in Probably<T> called just(T value) that returns something

that contains just the value unless the value is null then this returns the shared

nothing.

The method none and just are called a factory method. A factory method is a method

provided by a class for the creation of an instance of the class. Using a public constructor

to create an instance necessitates calling new and allocating a new object on the heap

every time. A factory method, on the other hand, allows the �exibility of reusing the same

instance.

With the availability of the factory methods, Probably<T> should keep the constructor

private.

The sequence below shows how we can use a Probably using the methods above.

You can check that our Probably<T> is correct by running:

There shouldn't be any compilation warning or error when you compile

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

jshell> Probably.just(4)
$.. ==> <4>
jshell> Probably.just(Probably.just(0))
$.. ==> <<0>>
jshell> Probably.just(Probably.just(Probably.just("null")))
$.. ==> <<<null>>>
jshell> Probably.just(Probably.just(Probably.none()))
$.. ==> <<<>>>
jshell> Probably.just(Probably.just(null))
$.. ==> <<>>
jshell> Probably.just(4).equals(Probably.just(4))
$.. ==> true
jshell> Probably.just(4).equals(4)
$.. ==> false
jshell> Probably.just(Probably.just(0)).equals(Probably.just(0))
$.. ==> false
jshell>
Probably.just(Probably.just(0)).equals(Probably.just(Probably.just(0)))
$.. ==> true
jshell> Probably.just("string")
$.. ==> <string>
jshell> Probably.just("string").equals(Probably.just(4))
$.. ==> false
jshell> Probably.just("string").equals(Probably.just("null"))
$.. ==> false
jshell> Probably.just(null)
$.. ==> <>
jshell> Probably.none()
$.. ==> <>
jshell> Probably.none().equals(Probably.just(null))
$.. ==> true
jshell> Probably.none() == Probably.just(null)
$.. ==> true

1
2

javac -Xlint:rawtypes TestProbably.java
java TestProbably

TestProbably.java and all tests should prints ok .

Acting on the Value

The given class Probably<T> currently is what we call an immutable object because we can

create it but we can not mutate the value. Note that we make sure that this is the case by

making the value final . Also, to avoid any complications, we disallow retrieving the value

too.

So what is it good for? How can we do something on it? This is where you come in. You

will be writing a few interfaces and classes to act on something that is probably a value but

maybe it is also nothing.

Since we cannot access the value directly, we need to be able to give the class the

function. Unfortunately, we cannot just put methods as arguments. We need to do

something else.

Action

An action is simply a method that accept just some value but does not return anything.

First, we create an interface called Action<T> with an abstract method called call that

takes in an argument of generic type T and does not return anything.

Second, create an interface called Actionable<T> with an abstract method called act that

takes in an Action and does not return anything. Since you cannot use rawtype, what

generic type should be added for Action in Actionable ? In particular, do you have to use

any bounds?

Now that we have the two interfaces, we will now use this interface. First, we will create

the simplest of the action which is to print any value that is given to it. Call this class

Print and this class should just simply print the string representation of the value

contained.

Next, have Probably<T> implements the interface Actionable<T> . This will allow us to act

on the value directly without actually getting the value ourselves. Since the value

contained inside Probably<T> can be just a value but maybe also nothing, when it is

actually nothing, we should not even do anything! Thus, we have prevent null value from

escaping (In this case, null does not escape from Probably<T> to the parameter of the input

argument).

1
2

jshell> Probably.just(4).act(new Print())
$.. ==> 4

You can test the additions to Probably<T> above more comprehensively by running:

There shouldn't be any compilation warning or error when you compile Test1.java and all

tests should prints ok .

Immutator

Now, we are going to write two other interfaces (along with their implementations) to

allow us to mutate the value that is contained inside. However, since we need to make sure

that the value is still immutable, we cannot really mutate the value. Instead, we will create

a new Probably<T> whenever we mutate the value. So, any mutation not only change the

value but also change Probably<T> . In particular, the type may also be mutated!

Since we are trying to mutate the value while keeping it immutable, we simply call this

interface Immutator<T2, T1> with an abstract method called invoke that takes in an

argument of generic type T1 and returns a value of generic type T2 . In fact, what we are

trying to abstract out is exactly the method with the following method signature:

First, have Probably<T> also implements Immutatorable<T> . This will allow us to change

the value but at the expense of keep on getting a new class whenever something changed.

Since the value contained inside Probably<T> can be just a value but maybe also nothing,

when it is actually nothing, we need to return the equivalent of nothing. So, nothing in

means nothing out.

Before you embark on this quest, think very carefully about what the return type of func

method should be. In particular, is it �xed or can we change this? (Hint: didn't we have a

recitation about this?).

Next, create your own special Immutator . This Immutator is special because when

invoked, it accepts a Probably<T1> and returns Probably<T2> . What would the method

signature of the invoke be? Given the method signature for invoke , you should then

derive the generic type parameter as well as how it will implement Immutator (i.e., what

type arguments should be given to Immutator).

3
4
5
6

jshell> Probably.just("string").act(new Print())
$.. ==> string
jshell> Probably.none().act(new Print())
$.. ==>

1
2

javac -Xlint:rawtypes Test1.java
java Test1

1 T2 invoke(T1 t1); ∕∕ T1 change to T2

Once you have �gured that out, you can then create this special Immutator called

Improbable<T2, T1> in the following way:

• adds a private �nal Immutator<T2, T1> �eld.

• adds a constructor that accepts and initialise this Immutator<T2, T1> .

• implements the method invoke inherited from Immutator .

You can check the usage in the sample run below.

You can test your additions to Probably<T> more comprehensively by running:

There shouldn't be any compilation warning or error when you compile Test2.java and all

tests should prints ok .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

jshell> class Incr implements Immutator<Integer,Integer> {
 ...> public Integer invoke(Integer t1) {
 ...> return t1 + 1;
 ...> }
jshell> class Length implements Immutator<Integer,String> {
 ...> public Integer invoke(String t1) {
 ...> return t1.length();
 ...> }
jshell> Probably.just(4).func(new Incr())
$.. ==> <5>
jshell> Probably.just(4).func(new Incr()).func(new Incr())
$.. ==> <6>
jshell> Probably.just("string").func(new Length())
$.. ==> <6>
jshell> Probably.just("string").func(new Length()).func(new Incr())
$.. ==> <7>
jshell> Probably.<Integer>none().func(new Incr())
$.. ==> <>
jshell> Probably.<String>none().func(new Length())
$.. ==> <>
jshell> Probably.<String>just(null).func(new Length()).func(new Incr())
$.. ==> <>
jshell> new Improbable<Integer,Integer>(new
Incr()).invoke(Probably.just(4))
$.. ==> <5>
jshell> new Improbable<Integer,String>(new
Length()).invoke(Probably.just("null"))
$.. ==> <4>
jshell> new Improbable<Integer,String>(new
Length()).invoke(Probably.just(null))
$.. ==> <>

1
2

javac -Xlint:rawtypes Test2.java
java Test2

Question

Now, we are going to add a method to allow us to check some properties about the value

that is contained inside Probably<T> . We only need to know about yes/no result of this

property. However, we do not want to just create another interface like the Immutator to

capture this operation. Instead, we will only be using a special case of Immutator .

This new method to add into Probably<T> should accept an Immutator that returns

boolean values (since it is yes/no) and it should accept a type T . We will call this method

as check . Once you �gure out the method descriptor, you can then write its behaviour as

follows:

• if the value inside Probably<T> is null , then simply return the NONE .

• if the value is not null , then we can invoke the argument of type Immutator . This will

return either true or false.

• if true, then we simply return the current object.

• if false, then we simply return NONE .

Write a simple example of an Immutator (i.e., implements Immutator) called IsModEq that

can be given as arguments to check method.

• The constructor for IsModEq accepts two positive integers div and mod .

• The invoke method inherited from Immutator accepts an integer val and returns

true if the remainder when val is divided by div is equal to mod .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

jshell> class Incr implements Immutator<Integer,Integer> {
 ...> public Integer invoke(Integer t1) {
 ...> return t1 + 1;
 ...> }
jshell> class Length implements Immutator<Integer,String> {
 ...> public Integer invoke(String t1) {
 ...> return t1.length();
 ...> }
jshell> Probably.just(17).check(new IsModEq(3,2)) ∕∕ 17 % 3 is equal to 2
$.. ==> <17>
jshell> Probably.just(18).check(new IsModEq(3,2)) ∕∕ 18 % 3 is not equal
to 2
$.. ==> <>
jshell> Probably.just(16).func(new Incr()).check(new IsModEq(3,2)) ∕∕ 17
% 3 is not equal to 2
$.. ==> <17>
jshell> Probably.just("string").func(new Length()).check(new
IsModEq(3,2))
$.. ==> <8>

You can test your additions to Probably<T> more comprehensively by running:

There shouldn't be any compilation warning or error when you compile Test3.java and all

tests should prints ok .

Applicable

Our Probably<T> is actually quite powerful in that it could probably just store an

Immutator (or it maybe nothing like usual)! Our Probably<T> can already perform an

action depending on whether the value it contains is null or not. But it must be supplied

with an Immutator that match the generic type T .

To put it more formally, if we are given a method T1 -> T2 and we are given

Probably<T1> then we can produce Probably<T2> . As a summary, this is often written as

a rectangle:

Our current extension is to put this Immutator into Probably<T> to form

Probably<Immutator<T2, T1>> . Note that this cannot be supplied to the framework above

because we need Immutator<T2, T1> to really be present. However, in

Probably<Immutator<T2, T1>> , the Immutator itself may probably be nothing! If there is

nothing that can be used to operate, then we cannot perform any operation so we just

return the ever present NONE .

Luckily, this is where the Applicable<T> interface will be useful. You should �rst create

this Applicable<T> interface as follows:

• it contains a single abstract method called apply

• the method apply takes in a single parameter called p of the type

Probably<Immutator<T2, T>>

• the method apply returns the value of the type Probably<T2>

You are advised to really think hard about the type �rst. The code itself is rather short for

all of these questions.

1
2

javac -Xlint:rawtypes Test3.java
java Test3

1
2
3
4
5

 T1 -------------> T2
 ^ |
 | |
 | v
Probably<T1> ---> Probably<T2>

You can test your additions to Probably<T> more comprehensively by running:

There shouldn't be any compilation warning or error when you compile Test4.java and all

tests should prints ok .

Files

A set of empty �les have been given to you. You should only edit these �les. You must not

add any additional �les.

The �les Test1.java , Test2.java , etc., as well as CS2030STest.java , are provided for

testing. You can edit them to add your own test cases, but they will not be submitted.

Following CS2030S Style Guide

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

jshell> class Incr implements Immutator<Integer,Integer> {
 ...> public Integer invoke(Integer t1) {
 ...> return t1 + 1;
 ...> }
jshell> class Length implements Immutator<Integer,String> {
 ...> public Integer invoke(String t1) {
 ...> return t1.length();
 ...> }
jshell> Probably<Immutator<Integer,Integer>> justIncr = Probably.just(new
Incr());
jshell> Probably<Immutator<Integer,String>> justLength =
Probably.just(new Length());
jshell> Probably<Immutator<Integer,Integer>> noIncr = Probably.none();
jshell> Probably<Immutator<Integer,String>> noLength = Probably.none();
jshell> Probably.just(17).<Integer>apply(justIncr)
$.. ==> <18>
jshell> Probably.<Integer>none().<Integer>apply(justIncr)
$.. ==> <>
jshell> Probably.just(17).<Integer>apply(noIncr)
$.. ==> <>
jshell> Probably.<Integer>none().<Integer>apply(noIncr)
$.. ==> <>
jshell> Probably.just("string").<Integer>apply(justLength)
$.. ==> <6>
jshell> Probably.<String>none().<Integer>apply(justLength)
$.. ==> <>
jshell> Probably.just("string").<Integer>apply(noLength)
$.. ==> <>
jshell> Probably.<String>none().<Integer>apply(noLength)
$.. ==> <>

1
2

javac -Xlint:rawtypes Test4.java
java Test4

You should make sure that your code follows the given Java style guide

Grading

This lab is worth 16 marks and contributes 4% to your �nal grade. The marking scheme is

as follows:

• Style: 2 marks

• Correctness: 14 marks

We will deduct 1 mark for each abuse or unnecessary use of @SuppressWarnings and for

each raw type.

Note that the style marks are conditioned on the evidence of efforts in solving Lab 4.

https://nus-cs2030s.github.io/2021-s2/style.html
https://nus-cs2030s.github.io/2021-s2/style.html

