
Lab 5: Actually

• Deadline: 11 October, 2022, Tuesday, 23�59, SST

• Mark: 3%

Prerequisite:

• Caught up to Unit 29 of Lecture Notes

• Familiar with CS2030S Java style guide

This is a follow-up from Lab 4. In Lab 4, we have constructed a generic class Probably<T> ,

which is a container for an item of type T . Beyond being an exercise for teaching about

generics, Probably<T> is not a very useful type. We also have several interfaces. An

important interface for us is the Immutator<R,P> interface that abstract away the

behaviour of a method R invoke(P p) . In Lab 5 and 6, we are going to modify

Probably<T> as well as add useful Immutator<R,P> . We are going to build our own Java

packages using these useful classes.

Java ppaacckkaaggee

Java package mechanism allows us to group relevant classes and interfaces under a

namespace. You have seen two packages so far: java.util , where we import List ,

Arrays , and ArrayList from as well as java.lang where we import the Math class from1.

These are provided by Java as standard libraries. We can also create our package and put

the classes and interfaces into the same package. We (and the clients) can then import and

use the classes and interfaces that we provide.

Java package provides a higher-layer of abstraction barrier. We can designate a class to be

used outside a package by pre�xing the keyword class with the access modi�er public .

We can further �ne-tune which �elds and methods are accessible from other classes in

the same package using the protected access modi�er.

You can read more about java packages and the protected modi�er yourself through

Oracle's Java tutorial.

We will create a package named cs2030s.fp to be used for this and the next few labs.

http://localhost:8000/2122-s2/lab5.html#fn:1
http://localhost:8000/2122-s2/lab5.html#fn:1
https://docs.oracle.com/javase/tutorial/java/package/index.html
https://docs.oracle.com/javase/tutorial/java/package/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

First, we need to add the line:

on top of every .java �le that we would like to include in the package.

The package name is typically written in a hierarchical manner using the "." notations. The

name also indicates the location of the .java �les and the .class �les. For this reason,

you can no longer store the .java �les under labX-username directly. Instead, you should

put them in a subdirectory called cs2030s∕fp under labX-username .

To start, our cs2030s.fp package will contain the following interfaces from Lab 4� Action ,

Actionable , Immutator , Immutatorable . For now, we ignore Applicable and Probably .

If you have set up everything correctly, you should be able to run the following in jshell

(remember to always compile your code �rst!) from your labX-username directory:

without error.

More Interfaces

Now, we are going to add one more interface into our package:

• Constant<T> is an interface with a single init method that takes in no parameter and

returns a value of type T .

If you have set up everything correctly, you should be able to run the following in jshell

without errors (remember to always compile your code �rst!)

Actually

1 package cs2030s.fp;

1
2

jshell> import cs2030s.fp.Action;
jshell> import cs2030s.fp.Immutator;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

jshell> import cs2030s.fp.Constant;
jshell> import cs2030s.fp.Action;
jshell> Constant<String> emp;
jshell> emp = new Constant<>() {
 ...> public String init() { return ""; }
 ...> }
jshell> Action<Boolean> pass;
jshell> pass = new Action<>() {
 ...> public void call(Boolean b) { }
 ...> }

Now, we are going implement a type called Actually<T> in the cs2030s.fp package. Our

Actually<T> is also called a result type, a common abstraction in programming languages

(e.g., Either in Haskell and Scala2, enum Result in Rust, and simply a try-catch syntax in

Java) that is a wrapper around the idea that we think maybe the function call is successful

but actually a failure (i.e., throws an exception). In other words, it represents either a

successful computation, or a failure. Here, we represent the failure as an Exception .

Inner Classes and Factory Methods

Write an abstract class called Actually<T> in a �le called Actually.java . Make sure this

class is a public class. This class should have two concrete, static, nested classes, named

Success<T> and Failure .

Later on, this class need to implement Immutatorable<T> . But for now, we can keep it as it

is �rst. The sample run below is before Actually<T> implements Immutatorable<T> .

• Both Success<T> and Failure are declared inside the class Actually<T> .

• Both Success<T> and Failure inherits from Actually<T> . Note that Failure is not a

generic class so you need to specify Object as the type argument to Actually<T> .

• Success<T> and Failure must be immutable.

• The types Success<T> and Failure are internal implementation details of

Actually<T> and must not be used directly. For instance, clients must not be able to

declare a variable of type Actually.Success<T> .

1
2
3
4
5
6
7

jshell> import cs2030s.fp.Actually

jshell> Actually<Object> a = new Actually<>()
| Error:
| cs2030s.fp.Actually is abstract; cannot be instantiated
| Actually<Object> a = new Actually<>();
|

http://localhost:8000/2122-s2/lab5.html#fn:2
http://localhost:8000/2122-s2/lab5.html#fn:2

Actually<T> has two static factory methods:

• ok(T res) returns an instance of Success<T> . The method takes in a value res and

returns an instance of Success<T> wrapped around res . Here, res may be null and

that's �ne, we also had a method that returns null in Lab 1 - 3.

• err(Exception exception) returns an instance of Failure . The method takes in a

value exc and returns an instance of Failure wrapped around exc . Here, exc will

never be null as a failure is always accompanied with an exception.

Implement a Success::toString method that always returns the string representation of

the content between < and > (i.e., similar to Probably<T>). Additionally, implement a

Failure::toString method that always returns the exception class name (i.e., getClass)

between [and] followed by a whitespace and lastly followed by the message in the

exception (i.e., getMessage()).

Here are some examples of how the factory methods might be used (remember to always

compile your code �rst!).

Implement the equal method such that two Success<T> instances are equals if their

contents are equal (is it similar to Probably<T> ?) and two Failure instances are equals if

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

jshell> Actually.Success<Object> s
| Error:
| cs2030s.fp.Actually.Success is not public in cs2030s.fp.Actually;
cannot be accessed from outside package
| Actually.Success<Object> s;
| ^--------------^

jshell> Actually.Failure f
| Error:
| cs2030s.fp.Actually.Failure is not public in cs2030s.fp.Actually;
cannot be accessed from outside package
| Actually.Failure f;
| ^--------------^

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

jshell> Actually<String> success = Actually.ok("success")
success ==> <success>

jshell> Actually<Integer> none = Actually.ok(null)
none ==> <null>

jshell> Actually<Integer> four = Actually.ok(4)
four ==> <4>

jshell> Actually<Object> div0 = Actually.err(new
ArithmeticException("Divide by 0"))
div0 ==> [java.lang.ArithmeticException] Divide by 0

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#getClass()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#getClass()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#getClass()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html#getMessage()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html#getMessage()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html#getMessage()

they have the equal messages (i.e., getMessage()).

You can test your code by running the Test1.java provided. The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style.

So far, what we have done is to create Success<T> and Failure with their methods. What

has this got to do with Actually<T> ? Well, both Success<T> and Failure inherits from

Actually<T> . Also, Actually<T> is an abstract class. So, we can actually add abstract

methods into Actually<T> to ensure that whether the run-time type is Success<T> or

Failure , we can invoke the method. Of course the implementation for any abstract

methods we add into Actually<T> has to be in Success<T> and Failure .

Since Actually<T> is an abstraction of the result of a computation --which may be present

or actually an exception-- we want to be able to get the result in a safe way. That is going

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

jshell> Actually.err(new
ArithmeticException("Err")).equals(Actually.err(new Exception("Err")))
$.. ==> true
jshell> Actually.err(new
ArithmeticException("Err")).equals(Actually.err(new Exception("Error")))
$.. ==> false
jshell> Actually.err(new
ArithmeticException("Err")).equals(Actually.ok(null))
$.. ==> false
jshell> Actually.err(new
ArithmeticException(null)).equals(Actually.ok(null))
$.. ==> false
jshell> Actually.err(new
ArithmeticException("Err")).equals(Actually.ok("Err"))
$.. ==> false

jshell> Actually.ok("Err").equals(Actually.ok("Err"))
$.. ==> true
jshell> Actually.ok("Err").equals(Actually.err(new Exception("Err")))
$.. ==> false
jshell> Actually.ok("Err").equals("Err")
$.. ==> false

jshell> Actually.ok(null).equals(Actually.ok("Err"))
$.. ==> false
jshell> Actually.ok(null).equals(Actually.ok(null))
$.. ==> false
jshell> Actually.ok(null).equals("Err")
$.. ==> false
jshell> Actually.ok(null).equals(null)
$.. ==> false

1
2
3

$ javac -Xlint:rawtypes Test1.java
$ java Test1
$ java -jar ~cs2030s∕bin∕checkstyle.jar -c ~cs2030s∕bin∕cs2030_checks.xml
*.java

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html#getMessage()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html#getMessage()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Throwable.html#getMessage()

to be your �rst set of tasks.

Secondly, you want to be able to perform computations on the value. This can be done

using our Immutator and Action . That will be your second set of tasks, make

Actually<T> implements Immutatorable<T> and Actionable<T> .

Lastly, since our Immutator is quite limited, we want to be able to create more complex

operations from simpler operations. To do that, we need to be able to chain functions

together3. We call this a Transformer . Another special kind of Immutator is an Immutator

that automatically wrap the result in Actually<T> . We call this a constructor.

In all cases, remember to apply PECS in your method signature so that all the methods are

as �exible as possible in the type that it accepts. As usual, the test cases given may not be

complete and there may be other test cases used.

Safe Result

Here we try to get the result safely. The �rst method unwrap is the only unsafe method as

it is guaranteed to throws exception when we try to Unwrap a Failure .

• Add a public abstract method into Actually<T> called unwrap that accepts no

parameter with return type T .

• Implement unwrap in Success<T> such that it returns the value contained inside.

• Implement unwrap in Failure such that it throws the stored exception.

• Add a public abstract method into Actually<T> called except that accepts a single

parameter of type Constant with return type T .

• Implement except in Success<T> such that it returns the value contained inside.

• Implement except in Failure such that it returns a value that is a subtype of T

from the result of invoking init from the Constant .

• Add a public abstract method into Actually<T> called finish that accepts a single

parameter of type Action and does not return anything.

• Implement finish in Success<T> such that it invokes call from Action using

the value contained inside.

• Implement finish in Failure such that it does nothing.

• Add a public abstract method into Actually<T> called unless that accepts a single

parameter of type that is a subtype of T and returns a value that is a subtype of T .

• Implement unless in Success<T> such that it returns the value contained inside.

• Implement unless in Failure such that it returns a given value that is a subtype

http://localhost:8000/2122-s2/lab5.html#fn:3
http://localhost:8000/2122-s2/lab5.html#fn:3

of T .

You can test your code by running the Test2.java provided. The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style.

Immutatorable and Actionable

• Modify Actually<T> to implement Immutatorable<T> .

• Calling transform on Failure should propagate the exception contained as a

new Failure .

• Calling transform on Success<T> should attempt to return a new Success<T>

with the value inside transformed by the Immutator instance. However, if an

exception occurs, then a new Failure wrapping the exception is returned

instead.

• Modify Actually<T> to implement Actionable<T> .

• Calling act on Failure does nothing.

• Calling act on Success<T> should invoke the call from the Action using the

value inside.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

jshell> Actually.<Number>ok(0).unwrap()
$.. ==> 0
jshell> Actually.<Integer>ok(9).finish(print)
$.. ==> 9
jshell> Actually.<Integer>err(new Exception("Err")).finish(print)
$.. ==>
jshell> Actually.<Number>ok(9).except(zero)
$.. ==> 9
jshell> Actually.<Number>err(new ArithmeticException("div by
0")).except(zero)
$.. ==> 0
jshell> Actually.<Number>err(new ArithmeticException("div by
0")).unless(4)
$.. ==> 4
jshell> Actually.<Number>ok(0).unless(4)
$.. ==> 0

1
2
3

$ javac -Xlint:rawtypes Test2.java
$ java Test2
$ java -jar ~cs2030s∕bin∕checkstyle.jar -c ~cs2030s∕bin∕cs2030_checks.xml
*.java

 1
 2
 3
 4

jshell> Actually.<Integer>ok(0).transform(inc)
$.. ==> <1>
jshell> Actually.<Integer>ok(0).transform(inv)
$.. ==> [java.lang.ArithmeticException] ∕ by zero

You can test your code by running the Test3.java provided. The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style.

Transformer

We will now create an abstract class for a special Immutator . This Immutator can be

chained. Since there are two ways to chain an Immutator , we are going to do both.

Mathematically, two functions can be composed, written as (f ∘ g)(x) as either f(g(x))

or g(f(x)) . Here, we are going to do both. We implement

• f(g(x)) as f.after(g).invoke(x)

• g(f(x)) as f.before(g).invoke(x)

How are we going to do this? We had de�ned a class inside another class above. So now,

we are going to do something even crazier, we are going to de�ne a class inside a method!

We call this local class. Here's the deal, if you de�ne a class inside a method, you have

access to the argument. Why do we need access to the argument? Well, consider

f.after(g) . The result of this should also be an Immutator . Which means, the result has

an invoke method. But invoking the result is equivalent to f.invoke(g.invoke(..)) .

If we look at f.after(g) , then the argument is g and we can invoke g.invoke(..) inside

the local class. What we still need is to be able to use the result of g.invoke(..) as

argument to f.invoke . We cannot really invoke f.invoke using this.invoke because we

are in the local class so the keyword this is bound to this local class and not the original

f instance. An easy solution is to create a temporary variable called f assigned to this .

The limitation in Java is that you cannot change the value of f . In other words, it is kind of

like there is a final keyword used on f .

Given the explanation above, we can now create this abstract class for a special

 5
 6
 7
 8
 9
10
11
12
13
14
15
16

jshell> Actually.ok(0).transform(inc)
$.. ==> <1>
jshell> Actually.ok(0).transform(inv)
$.. ==> [java.lang.ArithmeticException] ∕ by zero
jshell> Actually.<Integer>ok(0).transform(incNum)
$.. ==> <1>
jshell> Actually.<Integer>ok(0).transform(invNum)
$.. ==> [java.lang.ArithmeticException] ∕ by zero
jshell> Actually.ok(0).transform(incNum)
$.. ==> <1>
jshell> Actually.ok(0).transform(invNum)
$.. ==> [java.lang.ArithmeticException] ∕ by zero

1
2
3

$ javac -Xlint:rawtypes Test3.java
$ java Test3
$ java -jar ~cs2030s∕bin∕checkstyle.jar -c ~cs2030s∕bin∕cs2030_checks.xml
*.java

Immutator . We call this Transformer<R,P> and it should implement Immutator<R,P> .

Transformer have two non-abstract methods

• The method after such that f.after(g).invoke(x) is equivalent to f(g(x))

• The method accepts an Transformer<P,N> as an argument and returns a

Transfomer<R,N> . In other words, we chain Transformer<R,P> and

Transformer<P,N> to form Transformer<R,N> .

• The method before such that f.before(g).invoke(x) is equivalent to g(f(x))

• The method accepts an Transformer<T,R> as an argument and returns a

Transfomer<T,P> . In other words, we chain Transformer<T,R> and

Transformer<R,P> to form Transformer<T,P> .

You can test your code by running the Test4.java provided. The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style.

Constructor

Let's look at the other kind of special Immutator that automatically wraps the result in

Actually<T> . We call this special Immutator as constructor. This simpli�es our task in

Actually since we do not have to wrap the result in another Actually and can simply let

the constructor do the job for us. But �rst we need to

• Add an abstract method next in Actually<T> that takes in an Immutator<..> as the

parameter. The Immutator object transforms the value of type T into a value of type

Actually<R> , for some type R . In other words, it accepts T and returns Actually<R> .

• Implement next in Success<T> such that it returns Actually<R> (instead of

Actually<Actually<R>>) unless there is an exception. If there is an exception,

then it returns a Failure .

1
2
3
4
5
6
7
8

jshell> sqrPlusOneA.invoke(2)
$.. ==> 5
jshell> sqrPlusOneB.invoke(2)
$.. ==> 5
jshell> plusOneSqrA.invoke(2)
$.. ==> 9
jshell> plusOneSqrB.invoke(2)
$.. ==> 9

1
2
3

$ javac -Xlint:rawtypes Test4.java
$ java Test4
$ java -jar ~cs2030s∕bin∕checkstyle.jar -c ~cs2030s∕bin∕cs2030_checks.xml
*.java

• Implement next in Failure such that it propagates the exception contained as a

new Failure .

The use of constructor allows us to chain easily. We �rst create an Actually using a

constructor and then simply chain using next . At the end, we may unwrap if we believe

there will not be an error or we use except / unless if think there may be an error that

we want to restart with fresh value.

You can test your code by running the Test5.java provided. The following should compile

without errors or warnings. Make sure your code follows the CS2030S Java style.

Using AAccttuuaallllyy

Now that we have our Actually class, let's try to use it to do something more meaningful.

It is a common idiom (although not a good one) for a method to return a value if successful

and return a null otherwise. It is up to the caller to check and make sure that the return

value is not null before using it, to prevent receiving a run-time NullPointerException .

In some cases, it may also be simpler (although still not good) to simply enclose the

NullPointerException in a try-catch so that there is no need to check for any null value.

One example of this is the Map<K,V> implements in Java. The method Map::get returns

null if the key that you are looking for does not exist. This may cause confusion if we are

actually mapping some key to null . In any case, if the result is null , then using this for

subsequent method invocation will result in NullPointerException .

We have given you a program Lab5.java that uses multiple layers of Map to store

information about modules, the students in the module, and their assessment grades.

There is a method getGrade that, given this map, a student, a module, and an assessment,

look up the corresponding grade. There are multiple checks if a returned value is null in

1
2
3
4
5
6
7
8

jshell> make.invoke(0).next(inc).next(inc).next(half)
$.. ==> <1>
jshell> make.invoke(0).next(inc).next(half).next(inc)
$.. ==> [java.lang.Exception] odd number
jshell> make.invoke(0).next(inc).next(inc).next(half).except(zero)
$.. ==> 1
jshell> make.invoke(0).next(inc).next(half).next(inc).except(zero)
$.. ==> 0

1
2
3

$ javac -Xlint:rawtypes Test5.java
$ java Test5
$ java -jar ~cs2030s∕bin∕checkstyle.jar -c ~cs2030s∕bin∕cs2030_checks.xml
*.java

this method.

Our new Actually<T> class provides a good abstraction for the chained operation

involving the return value from Map::get since if there is an error, our Actually<T> will

simply propagate the error. As such, there is no need to check if the return value is null

or to put the code inside try-catch block. If the return value is indeed null , then we will

simply propagate the exception until the end.

Your �nal task is to modify getGrade so that it uses Actually<T> instead:

• Declare and initialize two Constant instances using anonymous classes.

a��One to wrap the db in Actually<T> .

b��One to produce the string "No such entry" .

• Declare and initialize three Immutator instances using anonymous classes.

a��One for the map from get(student) .

b��One for the map from get(module) .

c��One for the string representation of get(assessment) .

• Use the two Constant , three Immutator as well as Constant::init , Actually::next ,

and Actually::except to achieve the same functionality as the given getGrade in a

single return statement. In other words, your getGrade should consists of six Java

statements: two to create two Constant , three to create three Immutator , and one

return statement. The skeleton has been given.

• Your code should not have any more conditional statements or references to null or

using any try-catch.

Files

A set of empty �les have been given to you. You should only edit these �les. You must not

add any additional �les. Your folder structure should look like the following:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

<your-lab5-root>
\--- cs2030s
| \--- fp
| \--- Action.java
| +--- Actionable.java
| +--- Actually.java
| +--- Constant.java
| +--- Immutator.java
| +--- Immutatorable.java
| +--- Transformer.java
+--- CS2030STest.java
+--- Lab5.h

The �les Test1.java , Test2.java , etc., as well as CS2030STest.java and Lab5.h , are

provided for testing. You can edit them to add your test cases, but they will not be

submitted. You must also submit the �le Lab5.h (in reality, this is a bash �le but

CodeCrunch does not allow submission of bash �le) along with your �les.

Since CodeCrunch does not allow submission of folder or zip �le, you are to submit the

�les inside the directory cs2030s/fp along with the other �le without the need for folder.

Following CS2030S Style Guide

You should make sure that your code follows the given Java style guide. You are not

required to correct the styling error for the Test1.java , Test2.java , etc., as well as

CS2030STest.java .

Grading

This lab is worth 12 marks and contributes 3% to your �nal grade. The marking scheme is

as follows:

• Style: 2 marks

• Everything Else: 10 marks

We will deduct 1 mark for each unnecessary use of @SuppressWarnings and each raw type.

@SuppressWarnings should be used appropriately and not abused to remove compilation

warnings. Furthermore, there should not be any warnings when compiled with

-Xlint:unchecked and/or -Xlint:rawtypes .

Note that the style marks are conditioned on the evidence of efforts in solving Lab 5.

WARNING ��

We would like to remind you of the following:

• We will take the latest submission only. If you have submitted your work and you

13
14
15
16
17
18
19

+--- Lab5.java
+--- Lab5.pdf
+--- Test1.java
+--- Test2.java
+--- Test3.java
+--- Test4.java
+--- Test5.java

https://www.comp.nus.edu.sg/~cs2030s/style.html
https://www.comp.nus.edu.sg/~cs2030s/style.html

resubmit the same work after the deadline, late submission penalty will apply.

• We will no longer accept submission two days after the deadline.

• This also applies to all previous labs to ease grading of really late submission and

let the TA focus on their assessments.

���In fact, java.lang is automatically imported by JVM.

���Can be implemented using this but not actually this.

���The more proper term is function composition where (f ∘ g)(x) is de�ned as either

f(g(x)) or g(f(x)) depending on mathematicians/programmers you are talking to.

