1 Introduction

Agent percepts the environment using sensors, when then
go into functions, which map into actions and actuators
perform actions that modify the environment. A rational
agent will choose the action that maximises its perfor-
mance measure.

1.1 Environment

Fully Observable vs Partially Observable Agent sen-
sors has access to the complete state of the environment
Deterministic vs Stochastic Next state is determined
by current state and action. If deterministic but there is
another agent, then strategic

Episodic vs Sequential Each episode consists of agent
perceiving and performing action, and choice of action
depends only on episode. In sequential, current action
affects all future actions

Static vs Dynamic Environment doesn’t change while
agent is delibertaing. Semi dynamic if performance score
changes with time

Discrete vs Continuous Limited no of distinct, defined
percepts and actions

Single Agent vs Multi Agent Agent operating by itself.

1.2 Structure of Agents

Reflex Agents Select actions on current percept, condi-
tion to action mapping

Model Based Tracks world it can’t see and updated
through transitions

Goal Based Tracks goals and picks action that brings it
closer to goal

Utility Based Score the next state, and pick the most
optimal score

Agent must choose between

» Exploitation Maximising utility according to knowl-
edge of the world

» Explore Learn more about the world

2 Solving Problems by Searching
Problem Solving Agents Plan ahead to consider sequence
of actions that form a path to a goal, through search

2.1 Problem Formulation

States Set of possible states for the environment to be in
Initial State Starting State

Goal State End State

Actions Given State s, actions(s) returns finite set of
actions that can be executed in s.

Transition Model transition(s, a) returns the next
state when the action has been applied on state

« Action cost function cost(s, a, s') gives the cost of
applying action a to state s to reach state s'

2.2 Search Algorithms

Evaluation Criteria

« Time Complexity No of nodes expanded

« Space Complexity Max no of nodes in memory

« Completeness Does it always return a solution?

« Optimality Does it always find least cost solution?

Measure the above using: branching factor b, depth d, max
depth m

f(n) f is the evaluation function, n is the node.

2.2.1 Uninformed Search / Tree Search
« Breadth First Search
» Frontier: Queue
» f(n): d (depth of next node)
» Time: O(bd)
» Space: O(bd)
» Completeness: Yes if B is finite
» Optimality: Yes, if step cost is same
« Uniform Cost Search (Dijkstra)
Frontier: Priority Queue(cost from root to state)
f(n):tc + c(s, a, s') (total cost + cost to next node)
Time: O(bc*/e), C x is the optimal cost, e is the min
edge cost
Space: O(bc*/e), C *
Completeness: Yes if e > 0 and C' * is finite
Optimality: Yes, if e > 0
« Depth First Search
» Frontier: Stack
» Time: O(b™)
» Space: O(bm)
» Completeness: No, if depth is incomplete / loops
» Optimality: No
« Depth Limited Search
» Frontier: Stack, backtrack when depth limit 1 is
reached
» Time: O(bl)
» Space: O(bl)
» Completeness: No
» Optimality: No
» Ny =0+t + .. +b¢
« Iterative Deepening Search
» Frontier: Stack, DLS with max depth from 0..N'
» Time: O(bd)
» Space: O(bd)
» Completeness: Yes
» Optimality: Yes if step cost is same.
» Ny, = (d+1)b° + (d)b! + ... + (1)b?
« Bidirectional Search

v

v

v

v

v

v

» Search from initial state and goal state at same time
since b? + b% < be.

frontier = []; initial state = x
visited = set() # if graph search
frontier.add(initial state)
while len(frontier) != 0:
state = frontier.pop()
if state in visited: continue # if graph search
visited.add(next_state) # if graph search
for action in actions(state):
next_state = transition(state, action)
if next_state == goal: return solution
frontier.add(next_state)
return failure

2.3 Informed Search Algorithms

Greedy Best Fit Search

» Frontier: Priority Queue(f (n))

» f(n): h(n): Heuristic: estimated cost from n to goal.
» Time: O(b™), Good heuristic improves

» Space: O(b™) Keeps all nodes in memory
» Complete: No
» Optimal: No (Doesn’t consider cost so far)
. A¥
» Frontier: Priority Queue(f(n))
» f(n):g(n) + h(n), g: total cost, h : estimated cost
» Time: O(b™), Good heuristic improves
» Space: O(b™) Keeps all nodes in memory
» Complete: Yes
» Optimal: Yes (Doesn’t consider cost so far)

2.4 Heuristics

2.4.1 Admissible

Admissible if for every node n, h(n) < h*(n), where h*(n)
is the true cost to reach goal state from n. An admissible
heuristic never over-estimates the cost to reach the goal,
i.e. its a conservative estimate

If h(n) is admissible, A* using tree search is optimal

2.4.2 Consistent

If it obeys the triangle inequality, Vn, h(n) < ¢(n,a,n’) +
h(n’), or estimated cost of reaching goal node through
node n is < to the estimated cost of reaching goal node
through n’ + cost of going to node n’ from n.

If our heuristic is consistent, then the first time we visit a
node, the estimated cost to the goal h(n) is guaranteed to be
smallest. Therefore, we do not need to visit the node again
as any other path we might visit it with has a larger overall
cost, and graph search (i.e. tree search with memoisation)
is optimal. However, if our heuristic is not consistent, then
consider a path that we might visit later where h(n) >
¢(n,a,n’) + h(n’). Then, if we have visited h(n) already,

we still need to revisit it as we have found another shorter
path later on in our traversal, hence making graph search
sub-optimal.

2.4.3 Dominance

If Vn, hy(n) > hq(n), then hy dominates h, and hy would
be better for search.

2.4.4 Creating Admissible Heuristics

Cost of an optimal solution to a relaxed problem (problem
with fewer restrictions) is an admissible heuristic for the
original problem

2.5 Local Search
When path to solution not important, state is the solution
(chess, sudoku, bin packing)

Keep the current state, and iteratively try improving using
heuristic we define. Local search can get stuck in local
minima/maxima, so random restarts can help get better
results

2.5.1 Trivial Algorithms

« Random Sampling Random sample a state until solu-
tion is found

« Random walk Go to random neighbours until solution
found

2.5.2 Non-trivial Algorihthms

« Hill Climbing Pick the best among neighbours, repeat

» Simulated Annealing Hill climbing but allows bad
moves

» Beam Search k-kill climbing in parallel

+ Genetic Marry the best, mutate, repeat

2.6 Adversarial Search

When trying to find moves against rational agent.

2.6.1 Minimax
heuristic h(n) that defines “goodness” of current state. We

want to maximise h(n), whereas opponent wants to min-
imise h(n).

We can optimise minimax algo by introducing a/8 prun-
ing, where a is best value for max player, and /3 is best value
for min player. If at any node, a and 3 does not overlap(8 <
«), we can prune that node.

+ Time: O(b™)

« Space: O(bm)

« Complete Yes, if tree is finite

« Optimal Yes, against optimal opponent

def alpha beta search(state):
= max value(state, -INF, INF)
return action in succesors(state) with value v

def max value(state, alpha, beta):

if is terminal(state): return utility(state)

v = -INF

for action, next state in successors(state):
min_v = min value(next_state, alpha, beta)
v = max(v, min_v)
if v >= beta: return v
alpha = max(alpha, v)

return v

def min value(state, alpha, beta):

if is terminal(state): return utility(state)

v = INF

for action, next state in successors(state):
max_v = max_ value(next_state, alpha, beta)
if v <= alpha: return v
beta = min(beta, v)

return v

3 Machine Learning and Decision
Trees

3.1 Supervised Learning

Learns from being given the right answers
« Regression: Predict Continuous outputs
« Classification: Predict discrete outputs

Assumption: y is generated by true mapping function f :
= — y. We want to find a hypothesis h : z — ¢

3.2 Performance Measure
‘We can measure error for regression:
« Absolute Error: |§ — y|

« Squared Error: (§ — y)?

For a set of IV examples, we can compute average error for
regression:

« Mean Squared Error: Zf\i 9 —v)°

+ Mean Absolute Error: 4 i |9 — il

Average correctness for classification: Accuracy =

1 N
N Zi:l lili:yl

Confusion Matrix:

— P4 T
Accuracy = 15y Fp TN
.. _ TP e .
Precision P = 157 p (Maximise if FP is very costly, e.g.

email spam)

Recall R = 7555

(Maximise if FN is bad, e.g. Cancer)

F1 = 2 (Maximise if FN is bad, e.g. Cancer)
(#)+(%)

3.3 Decision Trees

Choosing an attribute to split a decision tree: Ideally, select
attribute that splits all examples into 2 distinct groups

The amount of information at a given node is the entropy,
I(P(vy), .., P(vy,)) = _Z?:l P(v;)logy P(v;), where v,
are the different classifications of the dataset. For a

binary classification, (Positive, Negative), I (erLn’ an) =

n

__p n___n_ _n_
p+n log, p+tn ptn log, p+n

When an attribute is divided into subsets, we can calculate
the Information Gain (reduction in entropy) by
IG(Attrib) =

p v opitn P n
I(P(m) ’ P(WL")) - Zi:l ptn I(p,Jrni T pitn;)

4 Misc

4.1 Minimax Intuition
« In Maximiser:

» When v > a, update a.

» If v > S, prune the rest
« In Minimiser:

» When v < 3, update f.

» If v < @, prune the rest

4.2 Proof of Admissibility

« If a relaxed version of the problem’s optimal solution is
H,, then H, is an admissible heuristic for the current
problem

« Check if h,(Goal) > 0.If it is, then its inadmissible

« Compare cost of moves vs maximum rate of loss of

heuristic. This is the intuition when checking consis-

tency because if one move improves heuristic

much”, it’s likely to be inconsistent. For example, in

the snake question, if the snake can eat the apple and

improve heuristic by 5 when the cost of the move to eat

the apple is only 1, we can immediately say it’s incon-

sistent.

Proof that it fails by counterexample / (contradiction /

contrapositive)

Proof that it passes by contradiction / contrapositive

Proof that it passes by abuse of inequalities

Proof that it passes by proving the correctness for

extreme cases, and proving that everything in between is

therefore correct (dodgy proof technique)

Lemma that guarantees admissibility as long as we have

consistency and h(Goal)=0

Contrapositive of this Lemma: inconsistent as long as

inadmissible and h(Goal)=0

“too

4.3 Proof of InAdmissibility
« Show that 3n, H,(n) > H*(n)

4.4 Proof of Inconsistency
« First show that H,(Goal) =0

« Try show that H,(n) > c(n,a,n’) + H,,, assuming
n’ is goal, and c is the true cost function. Then show
H,(n) > c(n, a,n’), that the cost calculated is >

« If costisalways 1, then try to ensure that H, (n) is always

<=1.

4.5 Information Gain
« Pick the one with the lowest remainder

	Introduction
	Environment
	Structure of Agents

	Solving Problems by Searching
	Problem Formulation
	Search Algorithms
	Uninformed Search / Tree Search

	Informed Search Algorithms
	Heuristics
	Admissible
	Consistent
	Dominance
	Creating Admissible Heuristics

	Local Search
	Trivial Algorithms
	Non-trivial Algorihthms

	Adversarial Search
	Minimax

	Machine Learning and Decision Trees
	Supervised Learning
	Performance Measure
	Decision Trees

	Misc
	Minimax Intuition
	Proof of Admissibility
	Proof of InAdmissibility
	Proof of Inconsistency
	Information Gain

