
1 Introduction
Agent percepts the environment using sensors, when then
go into functions, which map into actions and actuators
perform actions that modify the environment. A rational
agent will choose the action that maximises its perfor�
mance measure.

1.1 Environment
• Fully Observable vs Partially Observable Agent sen�

sors has access to the complete state of the environment
• Deterministic vs Stochastic Next state is determined

by current state and action. If deterministic but there is
another agent, then strategic

• Episodic vs Sequential Each episode consists of agent
perceiving and performing action, and choice of action
depends only on episode. In sequential, current action
affects all future actions

• Static vs Dynamic Environment doesn’t change while
agent is delibertaing. Semi dynamic if performance score
changes with time

• Discrete vs Continuous Limited no of distinct, defined
percepts and actions

• Single Agent vs Multi Agent Agent operating by itself.

1.2 Structure of Agents
• Reflex Agents Select actions on current percept, condi�

tion to action mapping
• Model Based Tracks world it can’t see and updated

through transitions
• Goal Based Tracks goals and picks action that brings it

closer to goal
• Utility Based Score the next state, and pick the most

optimal score

Agent must choose between
• Exploitation Maximising utility according to knowl�

edge of the world
• Explore Learn more about the world

2 Solving Problems by Searching
Problem Solving Agents Plan ahead to consider sequence
of actions that form a path to a goal, through search

2.1 Problem Formulation
• States Set of possible states for the environment to be in
• Initial State Starting State
• Goal State End State
• Actions Given State s, actions(s) returns finite set of

actions that can be executed in s.
• Transition Model transition(s, a) returns the next

state when the action has been applied on state

• Action cost function cost(s, a, s') gives the cost of
applying action a to state s to reach state s'

2.2 Search Algorithms
Evaluation Criteria
• Time Complexity No of nodes expanded
• Space Complexity Max no of nodes in memory
• Completeness Does it always return a solution?
• Optimality Does it always find least cost solution?

Measure the above using: branching factor b, depth d, max
depth m

f(n) f is the evaluation function, n is the node.

2.2.1 Uninformed Search / Tree Search
• Breadth First Search

‣ Frontier: Queue
‣ f(n): d (depth of next node)
‣ Time: 𝑂(𝑏𝑑)
‣ Space: 𝑂(𝑏𝑑)
‣ Completeness: Yes if 𝐵 is finite
‣ Optimality: Yes, if step cost is same

• Uniform Cost Search (Dijkstra)
‣ Frontier: Priority Queue(cost from root to state)
‣ f(n): tc + c(s, a, s') (total cost + cost to next node)
‣ Time: 𝑂(𝑏𝐶∗/𝑒), 𝐶 ∗ is the optimal cost, 𝑒 is the min

edge cost
‣ Space: 𝑂(𝑏𝐶∗/𝑒), 𝐶 ∗
‣ Completeness: Yes if 𝑒 > 0 and 𝐶 ∗ is finite
‣ Optimality: Yes, if 𝑒 > 0

• Depth First Search
‣ Frontier: Stack
‣ Time: 𝑂(𝑏𝑚)
‣ Space: 𝑂(𝑏𝑚)
‣ Completeness: No, if depth is incomplete / loops
‣ Optimality: No

• Depth Limited Search
‣ Frontier: Stack, backtrack when depth limit l is

reached
‣ Time: 𝑂(𝑏𝑙)
‣ Space: 𝑂(𝑏𝑙)
‣ Completeness: No
‣ Optimality: No
‣ 𝑁𝑑𝑙𝑠 = 𝑏0 + 𝑏1 + … + 𝑏𝑑

• Iterative Deepening Search
‣ Frontier: Stack, DLS with max depth from 0..𝑁
‣ Time: 𝑂(𝑏𝑑)
‣ Space: 𝑂(𝑏𝑑)
‣ Completeness: Yes
‣ Optimality: Yes if step cost is same.
‣ 𝑁𝑖𝑑𝑠 = (𝑑 + 1)𝑏0 + (𝑑)𝑏1 + … + (1)𝑏𝑑

• Bidirectional Search

‣ Search from initial state and goal state at same time
since 𝑏𝑑

2 + 𝑏𝑑
2 < 𝑏𝑑.

frontier = []; initial_state = x
visited = set() # if graph search
frontier.add(initial_state)
while len(frontier) != 0:
 state = frontier.pop()
 if state in visited: continue # if graph search
 visited.add(next_state) # if graph search
 for action in actions(state):
 next_state = transition(state, action)
 if next_state == goal: return solution
 frontier.add(next_state)
return failure

2.3 Informed Search Algorithms
• Greedy Best Fit Search

‣ Frontier: Priority Queue(f(n))
‣ f(n): h(n): Heuristic: estimated cost from n to goal.
‣ Time: 𝑂(𝑏𝑚), Good heuristic improves
‣ Space: 𝑂(𝑏𝑚) Keeps all nodes in memory
‣ Complete: No
‣ Optimal: No (Doesn’t consider cost so far)

• A*
‣ Frontier: Priority Queue(f(n))
‣ f(n): g(n) + h(n), g : total cost, h : estimated cost
‣ Time: 𝑂(𝑏𝑚), Good heuristic improves
‣ Space: 𝑂(𝑏𝑚) Keeps all nodes in memory
‣ Complete: Yes
‣ Optimal: Yes (Doesn’t consider cost so far)

2.4 Heuristics

2.4.1 Admissible
Admissible if for every node 𝑛, ℎ(𝑛) ≤ ℎ*(𝑛), where ℎ*(𝑛)
is the true cost to reach goal state from n. An admissible
heuristic never over�estimates the cost to reach the goal,
i.e. its a conservative estimate

If ℎ(𝑛) is admissible, A* using tree search is optimal

2.4.2 Consistent
If it obeys the triangle inequality, ∀𝑛, ℎ(𝑛) ≤ 𝑐(𝑛, 𝑎, 𝑛′) +
ℎ(𝑛′), or estimated cost of reaching goal node through
node 𝑛 is ≤ to the estimated cost of reaching goal node
through 𝑛′ + cost of going to node 𝑛′ from 𝑛.

If our heuristic is consistent, then the first time we visit a
node, the estimated cost to the goal ℎ(𝑛) is guaranteed to be
smallest. Therefore, we do not need to visit the node again
as any other path we might visit it with has a larger overall
cost, and graph search (i.e. tree search with memoisation)
is optimal. However, if our heuristic is not consistent, then
consider a path that we might visit later where ℎ(𝑛) ≥
𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′). Then, if we have visited ℎ(𝑛) already,

we still need to revisit it as we have found another shorter
path later on in our traversal, hence making graph search
sub�optimal.

2.4.3 Dominance
If ∀𝑛, ℎ2(𝑛) ≥ ℎ1(𝑛), then ℎ2 dominates ℎ1 and ℎ2 would
be better for search.

2.4.4 Creating Admissible Heuristics
Cost of an optimal solution to a relaxed problem (problem
with fewer restrictions) is an admissible heuristic for the
original problem

2.5 Local Search
When path to solution not important, state is the solution
(chess, sudoku, bin packing)

Keep the current state, and iteratively try improving using
heuristic we define. Local search can get stuck in local
minima/maxima, so random restarts can help get better
results

2.5.1 Trivial Algorithms
• Random Sampling Random sample a state until solu�

tion is found
• Random walk Go to random neighbours until solution

found

2.5.2 Non-trivial Algorihthms
• Hill Climbing Pick the best among neighbours, repeat
• Simulated Annealing Hill climbing but allows bad

moves
• Beam Search k�kill climbing in parallel
• Genetic Marry the best, mutate, repeat

2.6 Adversarial Search
When trying to find moves against rational agent.

2.6.1 Minimax
heuristic ℎ(𝑛) that defines “goodness” of current state. We
want to maximise ℎ(𝑛), whereas opponent wants to min

imise ℎ(𝑛).

We can optimise minimax algo by introducing 𝛼/𝛽 prun�
ing, where 𝛼 is best value for max player, and 𝛽 is best value
for min player. If at any node, 𝛼 and 𝛽 does not overlap(𝛽 ≤
𝛼), we can prune that node.

• Time: 𝑂(𝑏𝑚)
• Space: 𝑂(𝑏𝑚)
• Complete Yes, if tree is finite
• Optimal Yes, against optimal opponent

def alpha_beta_search(state):
 _ = max_value(state, -INF, INF)
 return action in succesors(state) with value v

1

def max_value(state, alpha, beta):
 if is_terminal(state): return utility(state)
 v = -INF
 for action, next_state in successors(state):
 min_v = min_value(next_state, alpha, beta)
 v = max(v, min_v)
 if v >= beta: return v
 alpha = max(alpha, v)
 return v

def min_value(state, alpha, beta):
 if is_terminal(state): return utility(state)
 v = INF
 for action, next_state in successors(state):
 max_v = max_value(next_state, alpha, beta)
 if v <= alpha: return v
 beta = min(beta, v)
 return v

3 Machine Learning and Decision
Trees

3.1 Supervised Learning
Learns from being given the right answers
• Regression: Predict Continuous outputs
• Classification: Predict discrete outputs

Assumption: 𝑦 is generated by true mapping function 𝑓 :
𝑥 → 𝑦. We want to find a hypothesis ℎ : 𝑥 → 𝑦

3.2 Performance Measure
We can measure error for regression:
• Absolute Error: |𝑦 − 𝑦|
• Squared Error: (𝑦 − 𝑦)2

For a set of 𝑁 examples, we can compute average error for
regression:
• Mean Squared Error: 1

𝑁 ∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2

• Mean Absolute Error: 1
𝑁 ∑𝑁

𝑖=1|𝑦𝑖 − 𝑦𝑖|

Average correctness for classification: Accuracy =
1
𝑁 ∑𝑁

𝑖=1 1𝑦𝑖=𝑦𝑖

Confusion Matrix:

Accuracy = TP + TN
TP + FN + FP + TN

Precision P = TP
TP + FP (Maximise if FP is very costly, e.g.

email spam)

Recall R = TP
TP + FN (Maximise if FN is bad, e.g. Cancer)

F1 = 2
(1

𝑃)+(1
𝑅) (Maximise if FN is bad, e.g. Cancer)

3.3 Decision Trees
Choosing an attribute to split a decision tree: Ideally, select
attribute that splits all examples into 2 distinct groups

The amount of information at a given node is the entropy,
𝐼(𝑃 (𝑣1), …, 𝑃 (𝑣𝑛)) = − ∑𝑛

𝑖=1 𝑃(𝑣𝐼) log2 𝑃(𝑣𝑖), where 𝑣𝑖
are the different classifications of the dataset. For a
binary classification, (Positive, Negative), 𝐼(𝑝

𝑝+𝑛 , 𝑛
𝑝+𝑛) =

− 𝑝
𝑝+𝑛 log2

𝑛
𝑝+𝑛 − 𝑛

𝑝+𝑛 log2
𝑛

𝑝+𝑛

When an attribute is divided into subsets, we can calculate
the Information Gain (reduction in entropy) by

IG(Attrib) =
𝐼(𝑃(𝑝

𝑝+𝑛), 𝑃(𝑛
𝑝+𝑛)) − ∑𝑣

𝑖=1
𝑝𝑖+𝑛𝑖
𝑝+𝑛 𝐼(𝑝𝑖

𝑝𝑖+𝑛𝑖
, 𝑛𝑖

𝑝𝑖+𝑛𝑖
)

4 Misc
4.1 Minimax Intuition
• In Maximiser:

‣ When 𝑣 ≥ 𝛼, update α.
‣ If 𝑣 ≥ 𝛽, prune the rest

• In Minimiser:
‣ When 𝑣 ≤ 𝛽, update β.
‣ If 𝑣 ≤ 𝛼, prune the rest

4.2 Proof of Admissibility
• If a relaxed version of the problem’s optimal solution is

𝐻𝑎, then 𝐻𝑎 is an admissible heuristic for the current
problem

• Check if ℎ𝑎(Goal) > 0. If it is, then its inadmissible
• Compare cost of moves vs maximum rate of loss of

heuristic. This is the intuition when checking consis�
tency because if one move improves heuristic “too
much”, it’s likely to be inconsistent. For example, in
the snake question, if the snake can eat the apple and
improve heuristic by 5 when the cost of the move to eat
the apple is only 1, we can immediately say it’s incon�
sistent.

• Proof that it fails by counterexample / (contradiction /
contrapositive)

• Proof that it passes by contradiction / contrapositive
• Proof that it passes by abuse of inequalities
• Proof that it passes by proving the correctness for

extreme cases, and proving that everything in between is
therefore correct (dodgy proof technique)

• Lemma that guarantees admissibility as long as we have
consistency and h(Goal)=0

• Contrapositive of this Lemma: inconsistent as long as
inadmissible and h(Goal)=0

4.3 Proof of InAdmissibility
• Show that ∃𝑛, 𝐻𝑎(𝑛) > 𝐻*(𝑛)

4.4 Proof of Inconsistency
• First show that 𝐻𝑎(Goal) = 0

• Try show that 𝐻𝑎(𝑛) > 𝑐(𝑛, 𝑎, 𝑛′) + 𝐻𝑎(𝑛′), assuming
𝑛′ is goal, and 𝑐 is the true cost function. Then show
𝐻𝑎(𝑛) > 𝑐(𝑛, 𝑎, 𝑛′), that the cost calculated is >

• If cost is always 1, then try to ensure that 𝐻𝑎(𝑛) is always
<=1.

4.5 Information Gain
• Pick the one with the lowest remainder

2

	Introduction
	Environment
	Structure of Agents

	Solving Problems by Searching
	Problem Formulation
	Search Algorithms
	Uninformed Search / Tree Search

	Informed Search Algorithms
	Heuristics
	Admissible
	Consistent
	Dominance
	Creating Admissible Heuristics

	Local Search
	Trivial Algorithms
	Non-trivial Algorihthms

	Adversarial Search
	Minimax

	Machine Learning and Decision Trees
	Supervised Learning
	Performance Measure
	Decision Trees

	Misc
	Minimax Intuition
	Proof of Admissibility
	Proof of InAdmissibility
	Proof of Inconsistency
	Information Gain

