\documentclass[a4paper]{article} \input{../preamble.tex} % ------------------------------------------------------------------------------ \begin{document} % ------------------------------------------------------------------------------ % Cover Page and ToC % ------------------------------------------------------------------------------ \title{\normalsize \textsc{} \\ [2.0cm] \HRule{1.5pt} \\ \LARGE \textbf{\uppercase{MA1522} \HRule{2.0pt} \\ [0.6cm] \LARGE{Assignment 1} \vspace*{10\baselineskip}} } \date{} \author{\textbf{Yadunand Prem}\\ A0253252M} \maketitle \newpage % ------------------------------------------------------------------------------ \section{Question 1} \hr \begin{align*} \begin{amatrix}{3} 4 & 2 & 4 & 0 \\ 5 & 4 & 0 & 1 \\ 4 & 1 & 2 & 5 \\ \end{amatrix} \xrightarrow{\frac{1}{4}R_1} & \begin{amatrix}{3} 1 & \frac{1}{2} & 1 & 0 \\ 5 & 4 & 0 & 1 \\ 4 & 1 & 2 & 5 \\ \end{amatrix} \xrightarrow[R_3 + (-4)R_1]{R_2 + (-5)R_1} \begin{amatrix}{3} 1 & \frac{1}{2} & 1 & 0 \\ 0 & \frac{3}{2} & -5 & 1 \\ 0 & -1 & -2 & 5 \\ \end{amatrix} \\ \xrightarrow{\frac{2}{3}R_2} & \begin{amatrix}{3} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 1 & \frac{-10}{3} & \frac{2}{3} \\ 0 & -1 & -2 & 5 \\ \end{amatrix} \xrightarrow{R_3 + R_2} \begin{amatrix}{3} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 1 & \frac{-10}{3} & \frac{2}{3} \\ 0 & 0 & \frac{-16}{3} & \frac{17}{3} \\ \end{amatrix} \\ \xrightarrow{\frac{-3}{16}R_3} & \begin{amatrix}{3} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 1 & \frac{-10}{3} & \frac{2}{3} \\ 0 & 0 & 1 & \frac{-17}{16} \\ \end{amatrix} \xrightarrow[R_1 + (-1)R_3]{R_2 + \frac{10}{3}R_3} \begin{amatrix}{3} 1 & \frac{1}{2} & 0 & \frac{17}{16} \\ 0 & 1 & 0 & \frac{-23}{8} \\ 0 & 0 & 1 & \frac{-17}{16} \\ \end{amatrix} \\ \xrightarrow{R_1 + \frac{-1}{2}R_2} & \begin{amatrix}{3} 1 & 0 & 0 & \frac{5}{2} \\ 0 & 1 & 0 & \frac{-23}{8} \\ 0 & 0 & 1 & \frac{-17}{16} \\ \end{amatrix} \end{align*} \subsection{1i No of pivot columns} There are 3 pivot columns \subsection{1ii Arbitrary Params needed} 0 arbitrary params needed \subsection{1iii How many solutions are there?} 1 solution for the system \subsection{1iv Solution for system} $x_1 = \frac{5}{2}, x_2 = -\frac{23}{8}, x_3 = -\frac{17}{16}$ \newpage \section{Question 2} \begin{align*} \begin{amatrix}{3} a & 1 & 1 & a^3 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & a \end{amatrix} \xrightarrow{R_1 \leftrightarrow R_3} & \begin{amatrix}{3} 1 & 1 & a & a \\ 1 & a & 1 & 1 \\ a & 1 & 1 & a^3 \\ \end{amatrix} \\ \xrightarrow[R_3 + (-a)R_1]{R_2 + (-1)R_1} & \begin{amatrix}{3} 1 & 1 & a & a \\ 0 & a-1 & 1-a & 1-a \\ 0 & 1-a & 1-a^2 & a^3-a^2 \\ \end{amatrix} \\ \xrightarrow{R_3 + (1)R_2} & \begin{amatrix}{3} 1 & 1 & a & a \\ 0 & a-1 & 1-a & 1-a \\ 0 & 0 & 2-a^2-a & a^3-a^2-a+1 \\ \end{amatrix} \\ = & \begin{amatrix}{3} 1 & 1 & a & a \\ 0 & a-1 & 1-a & 1-a \\ 0 & 0 & (a+2)(1-a) & (a+1)(a-1)(a-1) \\ \end{amatrix} \\ \end{align*} \subsection{2i, system has no solution} The system will have no solution when the last column is the pivot column. This can happen in $R_2$ if $a-1 = 1-a = 0$ and $1-a \neq 0$ $a = 1$ will satisfy the left equation, but it contradicts with the right equation. Thus, $R_2$ is not a possible candidate for no solution For $R_3$, $(a+2)(1-a) = 0$ and $(a+1)(a-1)(a-1) \neq 0$ Left equation: \begin{align*} (a+2)(1-a) = 0 \\ a = 1 \text{ or } a = -2 \end{align*} Right Equation: \begin{align*} (a+1)(a-1)(a-1) \neq 0 \\ a \neq 1 \text{ or }a \neq -1 \end{align*} Therefore, there is no solution to the equation if $a = -2$ \subsection{2ii, system has unique solution} The system has a unique solution when the last column is non pivot and all other columns are pivot columns. $C_1$ is pivot column, $C_2$ is pivot if $a-1 \neq 0$, $C_3$ is pivot if $(a+2)(1-a) \neq 0$ \begin{align*} a - 1 \neq 0\\ a \neq 1 \\ (a+2)(1-a) \neq 0 \\ a \neq -2 \text{ and } a \neq 1 \end{align*} Therefore, the system has a unique solutions when $a \neq 1$ and $a \neq -2$ \subsection{2iii System has infinitely many solutions} The system will have infinitely many solutions when the last column is non-pivot and some other columns are non-pivot columns. if $C_2$ is non pivot, then $C_2R_2$ must be 0. $a-1 = 0, a = 1$ If $C_3$ is non-pivot, then $C_3R_3$ must be zero, but that will cause the last row to be a pivot. Therefore, the system has infinitely many solutions when $a = 1$ % ------------------------------------------------------------------------------ \end{document}