Vector Spaces and Associated Matrices

Row Space and Column Space

Let
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

- $r_i = (a_{i1}...a_{in})$
- Row Space of A is the vector space spanned by rows of A: span $\{r_1,...,r_m\}$

•
$$c_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

• Column space of A is vector space spanned by columns of A: span $\{c_1,...,c_n\}$

Example: Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
.

- $$\begin{split} &\textit{Example} : \text{Let } A = \binom{1}{4} \, {2 \atop 5} \, {3 \atop 6}. \\ &\bullet \ r_1 = (1,2,3), r_2 = (4,5,6). \\ &\bullet \ c_1 = (1,4)^T, c_2 = (2,5)^T, c_3 = (3,6)^T \end{split}$$

Example: To find the basis of A

- Row Space of A
 - Gaussian elimination on the row-vectors of A and the non-zero rows of R are basis
- Col space of A
 - Gaussian elimination on row vectors of A and the pivot columns of A are the basis

Row Equivalence

Let A and B be matrices of the same size. A and B are row equivalent if one can be obtained from another by ERO

Theorem: If A and B are row equivalent, then A and B have same row spaces

Remark: Let R be REF of A

- Row space of A = row space of R
- Nonzero rows of R are linearly independent
 - Nonzero rows of R form basis for row space of A
 - No of nonzero rows $R = \dim \text{ of row space of } A$

Row Operations to Columns

- Let A and B be Row Equivalent Matrices : $A \to A_1 \to ... \to A_{k-1} \to B$
- Exists $E_1, ..., E_k$ s.t. $E_k ... E_1 A = B$
- $M = E_k ... E_1$, M is invertible, MA = B, $A = M^{-1}B$

Theorem: Row Equivalence Preserves the linear relations on the columns

- Suppose $A = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}$ and $B = \begin{pmatrix} b_1 & \dots & b_n \end{pmatrix}$
- $\bullet \ a_j = c_1 a_1 + \ldots + c_n a_n \Leftrightarrow b_j = c_1 b_1 + \ldots + c_n b_n$

Remark: Let R be REF of A

- Pivot columns of R form basis for column space of R
- Columns of A which correspond to pivot columns of R form a basis for column space of A
- No of pivot columns of *R* is the dim of column space of *A*

Example: Find basis for a vector space V

Let $V = \text{span}\{v_1, v_2, v_3, v_4, v_5, v_6\}, -v_1 = (1, 2, 2, 1), v_2 = (3, 6, 6, 3), \text{etc}$

- 1. Method 1 (Row Form)
 - View each v_i as a row vector

- V has basis $\{(1,2,2,1),(0,1,1,1),(0,0,1,1)\}$
- $\dim(V) = 3$
- 2. Method 2 (Column Form)

$$\begin{array}{l} \bullet \text{ View each } v_i \text{ as a column vector} \\ \bullet \\ \begin{pmatrix} 1 & 3 & 4 & -2 & 5 & 4 \\ 2 & 6 & 9 & -1 & 8 & 2 \\ 2 & 6 & 9 & -1 & 9 & 7 \\ 1 & 3 & 5 & 1 & 4 & 3 \\ \end{pmatrix} \xrightarrow{\text{Gaussian Elimination}} \begin{pmatrix} 1 & 3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix}$$

- Using Pivot columns (1,3,5), pick the corresponding vectors, (v_1, v_3, v_5)
- V has basis $\{(1,2,2,1),(4,9,9,5),(4,2,7,3)\}$
- $\dim(V) = 3$

Remark: Finding Basis TLDR

- 1. Method 1: View each $v_1, ..., v_k$ as a row vector
- - Nonzero rows of R form basis of V
- 2. Method 2: View each $v_1,...,v_k$ as a column vector
 - Find row echelon form R of $(v_1 \dots v_k)$
 - Find pivot columns of R
 - Corresponding columns v_i form basis for V

Example: Extend S to a basis for \mathbb{R}^n

- Find REF of S as row vectors
- Insert the e_i vectors for each i non-pivot column

Theorem: Consistency

Let A be a $m \times n$ matrix

- Column space of A is $\{Av \mid v \in \mathbb{R}^n\}$
- Linear system Ax = b is consistent
 - \Leftrightarrow b lies in the column space of A

Theorem: Rank

- Let A be a matrix, then $\dim(\text{row space of } A) = \dim(\text{col space of } A)$
- This is the rank of A, denoted by rank(A)

Remark: Let A be an $m \times n$ matrix

- $rank(A) = rank(A^T)$
- $rank(A) = 0 \Leftrightarrow A = 0$
 - $rank(A) \le min\{m, n\}$
 - Full rank if $rank(A) = min\{m, n\}$
- Square Matrix A is full rank $\Leftrightarrow A$ is invertible.

Remark: Rank and Consistency of Linear System

Ax = b be linear system

- Ax = b is consistent
 - $\Leftrightarrow b \in \operatorname{span}\{c_1, ..., c_n\}$
 - $\bullet \Leftrightarrow \operatorname{span}\{c_1,...,c_n\} = \operatorname{span}\{c_1,...,c_n,b$
 - $\bullet \ \Leftrightarrow \dim(\operatorname{span}\{c_1,...,c_n\}) = \dim(\operatorname{span}\{c_1,...,c_n,b\})$
 - $\Leftrightarrow \operatorname{rank}(A) = \operatorname{rank}(A|b)$
- $rank(A) \le rank(A \mid b) \le rank(A) + 1$

If ABx = b has a solution, then Ax = b also has a solution

Theorem: Let $A = m \times n$ matrix and $B = n \times p$

- Column space of $AB \subset \text{column space of } A$
- Row space of $AB \subseteq \text{row space of } B$
- $rank(AB) \le min\{rank(A), rank(B)\}$

Definition: Nullspace and Nullity

- Nullspace of A is the solution space of Ax = 0
 - $v \in \mathbb{R}^n \mid Av = 0$
- Vectors in nullspace are viewed as column vectors
- Let R be a REF of A
 - $Ax = 0 \Leftrightarrow Rx = 0$
 - $\operatorname{nullity}(A) = \operatorname{nullity}(R)$

Theorem: Dimension Theorem Let A be a $m \times n$ matrix

• rank(A) + nullity(B) = n (*n* is the number of columns)