{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "f64907f4", "metadata": {}, "outputs": [], "source": [ "# CODE TO GENERATE bias_scatter.png\n", "import numpy as np\n", "from sklearn.linear_model import LinearRegression" ] }, { "cell_type": "code", "execution_count": null, "id": "bf22eb4a", "metadata": {}, "outputs": [], "source": [ "X = np.array([1, 2, 3, 4, 5, 6]).reshape((-1, 1))\n", "y = np.array([6, 7, 8, 8, 9, 11])" ] }, { "cell_type": "code", "execution_count": null, "id": "b185d8b9", "metadata": {}, "outputs": [], "source": [ "model_no_bias = LinearRegression(fit_intercept = False).fit(X, y)\n", "model_with_bias = LinearRegression().fit(X, y)" ] }, { "cell_type": "code", "execution_count": null, "id": "f5076cdc", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "X_with_zero = np.vstack([0, X]) # Added to show the lines passing through Feature=0\n", "plt.scatter(X, y)\n", "plt.plot(X_with_zero, model_no_bias.predict(X_with_zero), color = 'b', label=\"Without bias\")\n", "plt.plot(X_with_zero, model_with_bias.predict(X_with_zero), color = 'r', label=\"With bias\")\n", "plt.ylim(ymin=0)\n", "plt.xlim(xmin=0, xmax=8)\n", "plt.xlabel(\"Feature\")\n", "plt.ylabel(\"Target\")\n", "plt.legend(loc=\"center right\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "e68dd023", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.9" } }, "nbformat": 4, "nbformat_minor": 5 }