\subsection{Review} \begin{align*} I: & cR_i, c \neq 0 \\ II: & R_i \Leftrightarrow R_j \\\ III: & R_i \Rightarrow R_i + cR_j \end{align*} Solving REF: \begin{enumerate} \item Set var -> non-pivot cols as params \item Solve var -> pivot cols backwards \# of nonzero rows = \# pivot pts = \# of pivot cols \end{enumerate} Gaussian Elimination \begin{enumerate} \item Given a matrix $A$, find left most non-zero \textbf{column}. If the leading number is NOT zero, use $II$ to swap rows. \item Ensure the rest of the column is 0 (by subtracting the current row from tht other rows) \item Cover the top row and continue for next rows \end{enumerate} \subsection{Consistency} \begin{defn}[Consistency]\ \\ Suppose that $A$ is the Augmented Matrix of a linear system, and $R$ is a row-echelon form of $A$. \begin{itemize} \item When the system has no solution(inconsistent)? \subitem There is a row in $R$ with the form $(0 0 ... 0 | \otimes)$ where $\otimes \neq 0$ \subitem Or, the last column is a pivot column \item When the system has exactly one solution? \subitem Last column is non-pivot \subitem All other columns are pivot columns \item When the system has infinitely many solutions? \subitem Last column is non-pivot \subitem Some other columns are non-pivot columns. \end{itemize} \end{defn} \begin{note} Notations\ \\ For elementary row operations \begin{itemize} \item Multiply $i$th row by (nonzero) const $k$: $kR_i$ \item Interchange $i$th and $j$th rows: $R_i \leftrightarrow R_j$ \item Add $K$ times $i$th row to $j$th row: $R_j + kR_i$ \end{itemize} \textbf{Note} \begin{itemize} \item $R_1 + R_2$ means "add 2nd row to the 1st row". \item $R_2 + R_1$ means "add 1nd row to the 2st row". \end{itemize} \textbf{Example} $$ \begin{pmatrix} a \\ b \end{pmatrix} \xrightarrow{R_1 + R_2} \begin{pmatrix} a + b \\ b \end{pmatrix} \xrightarrow{R_2 + (-1)R_1} \begin{pmatrix} a + b \\ -a \end{pmatrix} \xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix} \xrightarrow{(-1)R_2}\begin{pmatrix} b \\ a \end{pmatrix} $$ \end{note}