\documentclass[a4paper]{article} \input{../preamble.tex} % ------------------------------------------------------------------------------ \begin{document} % ------------------------------------------------------------------------------ % Cover Page and ToC % ------------------------------------------------------------------------------ \title{\normalsize \textsc{} \\ [2.0cm] \HRule{1.5pt} \\ \LARGE \textbf{\uppercase{MA1522} \HRule{2.0pt} \\ [0.6cm] \LARGE{Assignment 2} \vspace*{10\baselineskip}} } \date{} \author{\textbf{Yadunand Prem}\\ A0253252M} \maketitle \newpage % ------------------------------------------------------------------------------ \section{Question 1} \hr \begin{align*} \overrightarrow{A} = \begin{pmatrix} 2 & -4 & 4 & -2 \\ 6 & a-12 & 7 & a-6 \\ -1 & 2-b & 8 & -b+1 \\ \end{pmatrix} \xrightarrow[R_3 + \frac{1}{2}R_1]{R_2 + (-3)R_1} & \begin{pmatrix} 2 & -4 & 4 & -2 \\ 0 & a & -5 & a \\ 0 & -b & 10 & -b \\ \end{pmatrix} \\ \xrightarrow{R_3 + \frac{b}{a}R_2} & \begin{pmatrix} 2 & -4 & 4 & -2 \\ 0 & a & -5 & a \\ 0 & 0 & 10-\frac{5b}{a} & 0 \\ \end{pmatrix} = \overrightarrow{U} \end{align*} \begin{align*} \overrightarrow{I} \xrightarrow{R_3 + \frac{-b}{a}R_2} \xrightarrow[R_3 + \frac{-1}{2}R_1]{R_2 + (3)R_1} \overrightarrow{L} \end{align*} \begin{align*} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 + (-\frac{b}{a})R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{b}{a} & 1 \end{pmatrix} \xrightarrow[R_3 + \frac{-1}{2}R_1]{R_2 + (3)R_1} \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -\frac{1}{2} & -\frac{b}{a} & 1 \end{pmatrix} = \overrightarrow{L} \end{align*} If $a = 0$, then in the 1st step of the factorization above, it will cause the array to pivot. Thus, to prevent pivoting, $b = 0$ must be the case also. $a \neq 0$ then $b \neq 0$ also, as $\frac{b}{a}$ will not be defined \newpage \section{Question 2} \hr For A to be invertible, $det(A) \neq 0$. $A = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 &-1 & c \\ 1 & 4 & 1 & c^2 \\ 1 & 8 &-1 & c^3 \\ \end{vmatrix} $ \begin{align*} det(A) & = (1)\begin{vmatrix} 2 &-1 & c \\ 4 & 1 & c^2 \\ 8 &-1 & c^3 \\ \end{vmatrix} + (-1)\begin{vmatrix} 1 &-1 & c \\ 1 & 1 & c^2 \\ 1 &-1 & c^3 \\ \end{vmatrix} + (1)\begin{vmatrix} 1 & 2 & c \\ 1 & 4 & c^2 \\ 1 & 8 & c^3 \\ \end{vmatrix} + (-1)\begin{vmatrix} 1 & 2 &-1 \\ 1 & 4 & 1 \\ 1 & 8 &-1 \\ \end{vmatrix} \\ & = (1)\left((2)\begin{vmatrix} 1 & c^2 \\ -1 & c^3 \\ \end{vmatrix} + (1)\begin{vmatrix} 4 & c^2 \\ 8 & c^3 \\ \end{vmatrix} + (c)\begin{vmatrix} 4 & 1 \\ 8 &-1 \\ \end{vmatrix}\right)\\ & + (-1)\left((1)\begin{vmatrix} 1 & c^2 \\ -1 & c^3 \\ \end{vmatrix} + (1)\begin{vmatrix} 1 & c^2 \\ 1 & c^3 \\ \end{vmatrix} + (c)\begin{vmatrix} 1 & 1 \\ 1 &-1 \\ \end{vmatrix}\right)\\ & + (1)\left((1)\begin{vmatrix} 4 & c^2 \\ 8 & c^3 \\ \end{vmatrix} + (-2)\begin{vmatrix} 1 & c^2 \\ 1 & c^3 \\ \end{vmatrix} + (c)\begin{vmatrix} 1 & 4 \\ 1 & 8 \\ \end{vmatrix}\right)\\ & + (-1)\left((1)\begin{vmatrix} 4 & 1 \\ 8 &-1 \\ \end{vmatrix} + (-2)\begin{vmatrix} 1 & 1 \\ 1 &-1 \\ \end{vmatrix} + (-1)\begin{vmatrix} 1 & 4 \\ 1 & 8 \\ \end{vmatrix}\right)\\ & = (2)(c^3+c^2) + (4c^3-8c^2) + (c)(-4-8)\\ & + (-1)((c^3+c^2) + (c^3-c^2) + (c)(-1 - 1))\\ & + (4c^3-8c^2) + (-2)(c^3-c^2) + (c)(8-4)\\ & + (-1)((-4-8) + (-2)(-1-1) + (-1)(8-4)\\ & = 6c^3 - 12c^2 - 6c + 12 \\ & = 6(c - 2)(c - 1)(c + 1) \end{align*} Therefore, $det(A) = (c-2)(c-1)(c+1) \neq 0$, \\ $c \neq 2, c \neq 1, c \neq -1$ Actually, this question can be solved by observation. The determinant will be 0 if 2 columns are a multiple of one another. By observation, we can see that if $c = 1$, then the 4th and 1st column will be the same. If $c = 2$, then 2,4 and $c=-1$, then 3,4 will be the same. % ------------------------------------------------------------------------------ \end{document}