\subsection{Linear Algebra} \begin{itemize} \item \textbf{Linear} The study of items/planes and objects which are flat \item \textbf{Algebra} Objects are not as simple as numbers \end{itemize} \subsection{Linear Systems \& Their Solutions} Points on a straight line are all the points $(x, y)$ on the $xy$ plane satisfying the linear eqn: $ax + by = c$, where $a, b > 0$ \subsubsection{Linear Equation} Linear eqn in $n$ variables (unknowns) is an eqn in the form $$ a_1x_1 + a_2x_2 + ... + a_nx_n = b$$ where $a_1, a_2, ..., a_n, b$ are constants. \begin{note} In a linear system, we don't assume that $a_1, a_2, ..., a_n$ are not all 0 \begin{itemize} \item If $a_1 = ... = a_n = 0$ but $b \neq 0$, it is \textbf{inconsistent} E.g. $0x_1 + 0x_2 = 1$ \item If $a_1 = ... = a_n = b = 0$, it is a \textbf{zero equation} E.g. $0x_1 + 0x_2 = 0$ \item Linear equation which is not a zero equation is a \textbf{nonzero equation} E.g. $2x_1 - 3x_2 = 4$ \item The following are not linear equations \begin{itemize} \item $xy = 2$ \item $\sin\theta + \cos\phi = 0.2$ \item $x_1^2 + x_2^2 + ... + x_n^2 = 1$ \item $x = e^y$ \end{itemize} \end{itemize} \end{note} In the $xyz$ space, linear equation $ax + by + cz = d$ where $a, b, c > 0$ represents a plane \subsubsection{Solutions to a Linear Equation} Let $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ be a linear eqn in n variables \\ For real numbers $s_1+ s_2+ ... + s_n$, if $a_1s_1 + a_2s_2 + ... + a_ns_n = b$, then $x_1 = s_1, x_2 = s_2, x_n = s_n$ is a solution to the linear equation \\ The set of all solutions is the \textbf{solution set}\\ Expression that gives the entire solution set is the \textbf{general solution} \textbf{Zero Equation} is satified by any values of $x_1, x_2,... x_n$ General solution is given by $(x_1, x_2, ..., x_n) = (t_1, t_2, ..., t_n)$ \subsubsection{Examples: Linear equation $4x-2y = 1$} \begin{itemize} \item x can take any arbitary value, say t \item $x = t \Rightarrow y = 2t - \frac{1}{2}$ \item General Solution: $ \begin{cases} x = t & \text{t is a parameter}\\ y = 2t - \frac{1}{2} \end{cases} $ \item y can take any arbitary value, say s \item $y = s \Rightarrow x = \frac{1}{2}s + \frac{1}{4}$ \item General Solution: $ \begin{cases} y = s & \text{s is a parameter}\\ x = \frac{1}{2}s + \frac{1}{4} \end{cases} $ \end{itemize} \subsubsection{Example: Linear equation $x_1 - 4x_2 + 7x_3 = 5$} \begin{itemize} \item $x_2$ and $x_3$ can be chosen arbitarily, $s$ and $t$ \item $x_1 = 5 + 4s -7t$ \item General Solution: $ \begin{cases} x_1 = 5 + 4s -7t \\ x_2 = s & s, t \text{ are arbitrary parameters}\\ x_3 = t \\ \end{cases} $ \end{itemize} \subsection{Linear System} Linear System of m linear equations in n variables is \begin{equation} \begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\ \end{cases} \end{equation} where $a_{ij}, b$ are real constants and $a_{ij}$ is the coeff of $x_j$ in the $i$th equation \begin{note} Linear Systems \begin{itemize} \item If $a_{ij}$ and $b_i$ are zero, linear system is called a \textbf{zero system} \item If $a_{ij}$ and $b_i$ is nonzero, linear system is called a \textbf{nonzero system} \item If $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$ is a solution to \textbf{every equation} in the system, then its a solution to the system \item If every equation has a solution, there might not be a solution to the system \item \textbf{Consistent} if it has at least 1 solution \item \textbf{Inconsistent} if it has no solutions \end{itemize} \end{note} \subsubsection{Example} \begin{equation} \begin{cases} a_1x + b1_y = c_1 \\ a_2x + b2_y = c_2 \\ \end{cases} \end{equation} where $a_1, b_1, a_2, b_2$ not all zero In $xy$ plane, each equation represents a straight line, $L_1, L_2$ \begin{itemize} \item If $L_1, L_2$ are parallel, there is no solution \item If $L_1, L_2$ are not parallel, there is 1 solution \item If $L_1, L_2$ coinside(same line), there are infinitely many solution \end{itemize} \begin{equation} \begin{cases} a_1x + b1_y + c_1z = d_1 \\ a_2x + b2_y + c_2z = d_2 \\ \end{cases} \end{equation} where $a_1, b_1, c_1, a_2, b_2, c_2$ not all zero In $xyz$ space, each equation represents a plane, $P_1, P_2$ \begin{itemize} \item If $P_1, P_2$ are parallel, there is no solution \item If $P_1, P_2$ are not parallel, there is $\infty$ solutions (on the straight line intersection) \item If $P_1, P_2$ coinside(same plane), there are infinitely many solutions \item Same Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2 = d_1: d_2$ \item Parallel Plane $\Leftrightarrow a_1 : a_2 = b_1 : b_2 = c_1 : c_2$ \item Intersect Plane $\Leftrightarrow a_1 : a_2, b_1 : b_2, c_1 : c_2$ are not the same \end{itemize} \subsection{Augmented Matrix} $ \begin{amatrix}{3} a_{11} & a_{12} & a_{1n} & b_1 \\ a_{21} & a_{12} & a_{2n} & b_2 \\ a_{m1} & a_{m2} & a_{mn} & b_m \\ \end{amatrix} $ \subsection{Elementary Row Operations} To solve a linear system we perform operations: \begin{itemize} \item Multiply equation by nonzero constant \item Interchange 2 equations \item add a constant multiple of an equation to another \end{itemize} Likewise, for a augmented matrix, the operations are on the \textbf{rows} of the augmented matrix \begin{itemize} \item Multiply row by nonzero constant \item Interchange 2 rows \item add a constant multiple of a row to another row \end{itemize} To note: all these operations are revertible