feat: reformat and add series

This commit is contained in:
2023-04-25 15:55:32 +08:00
parent aca3f94b3d
commit 9b6d6c5476
2 changed files with 321 additions and 252 deletions

Binary file not shown.

View File

@@ -108,6 +108,7 @@
\item $\lim\limits_{x\to c}\frac{tan(g(x))}{g(x)} = 1$
\item $\lim\limits_{x\to 0}\frac{sin(x)}{x} = 1$
\item $\lim\limits_{x\to 0}\frac{tan(x)}{x} = 1$
\item $\lim\limits_{n \to \infty} \frac{n!}{n^{n}} = 0$
\end{itemize}
@@ -186,8 +187,6 @@ about x axis
\item Vol Shell: $V = 2\pi\int^b_a x|f(x)-g(x)|dx$ (absolute!!)
\item Length of curve: $\int^b_a \sqrt{1+f'(x)^2}dx$
\end{itemize}
\section{Series}
TODO!!
\section{Vectors}
unit vector: $\hat{p} = \frac{p}{|p|}$, $\VV{AB} = \VV{OB} - \VV{OA}$
@@ -220,12 +219,11 @@ unit vector: $\hat{p} = \frac{p}{|p|}$, $\VV{AB} = \VV{OB} - \VV{OA}$
\end{itemize}
\subsection{Cross Product}
$\vv{a} \times \vv{b} = \begin{vmatrix}
\vv{i} & \vv{j} & \vv{k} \\
a_i & a_2 & a_3 \\
b_i & b_2 & b_3
\end{vmatrix} = \begin{pmatrix} (a_2b_3 - a_3b_2) \\ -(a_1b_3 - a_3b_1) \\ (a_1b_2 - a_2b_1) \end{pmatrix}$
$
\vv{a} \times \vv{b} =
\begin{vmatrix} \vv{i} & \vv{j} & \vv{k} \\ a_i & a_2 & a_3 \\ b_i & b_2 & b_3 \end{vmatrix} =
\begin{pmatrix} (a_2b_3 - a_3b_2) \\ -(a_1b_3 - a_3b_1) \\ (a_1b_2 - a_2b_1) \end{pmatrix}
$
\begin{center}
\begin{multicols}{2}
$|\vv{a} \times \vv{b}| = |\vv{a}||\vv{b}|\sin\theta$
@@ -375,6 +373,77 @@ $S = \iint_R\sqrt{f_x^2 + f_y^2 + 1} dA$
\subsection{Uranium Decay into Thorium}
$U(t) = U_{0}e^{-k_ut}$, $k = \frac{\ln2}{\text{halflife}}, \frac{dU}{dt} = -k_{u}U$\\
Thorium: $T(t) = \frac{K_{u}U_{0}}{K_{t}-K_{u}}(e^{-k_{u}t} - e^{-k_{t}t}), \frac{dT}{dt} = k_{u}U - k_{T}T$
\end{multicols*}
\newpage
\begin{multicols*}{4}
\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\section{Series}
\subsection{Geometric Series}
$\sum_{n=1}^{\infty}ar^{n-1}, a \ne 0$ converges to $\frac{a}{1-r}$ when $|r| < 1$, diverges otherwise
If series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim\limits_{n \to \infty} a_{n} = 0$
\subsection{Tests}
Decreasing function -> differentiate and see the range where $x < 0$
\begin{center}
\begin{tabular}{|>{\color{black}}p{0.2\linewidth} | >{\color{black}}p{0.7\linewidth}|}
\hline
Test & Method \\\hline
$n^{th}$ term & $\lim\limits_{n \to \infty} a_{n} \ne 0$ or does not exist, then divergent \\\hline
Integral & $f(n)=a_{n}$ is continuous, positive, decreasing function $\forall x\geq 1$ and $\int_{1}^{\infty}f(x)dx$ converges else divergent \\\hline
p-series & $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$convergent $\leftrightarrow p > 1$ \\\hline
Ratio & $0 \geq \lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_{n}}|=L < 1$ abs. convergent, $> 1$ divergent, $= 1$ inconclusive \\\hline
Root & $0 \geq \lim\limits_{n \to \infty} \sqrt[n]{a_{n}}=L < 1$ abs. convergent, $> 1$ divergent, $= 1$ inconclusive \\\hline
Alternating series & $b_{n}$ decreasing, $\lim\limits_{n \to \infty}b_{n} = 0$, then $\sum_{n=1}^{\infty}(-1)^{n-1}b_{n} = b_{1}-b_{2}+b_{3}... $ is convergent \\\hline
Power Series & $b_{n}$ decreasing, $\lim\limits_{n \to \infty}b_{n} = 0$, then $\sum_{n=1}^{\infty}(-1)^{n-1}b_{n} = b_{1}-b_{2}+b_{3}... $ is convergent \\\hline
\end{tabular}
\end{center}
\subsection{Power Series}
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges at \textbf{ONE OF}
\begin{itemize}
\item $x=a$
\item For all $x$
\item converges if $|x-a| < R$ and diverges if $|x-a| > R$ (R is radius of convergence)
\end{itemize}
If $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_{n}} = L \right|$ or $\lim_{n \to \infty} \sqrt[n]{|c_{n}|}=L$, $L \in \mathbb{R}$ or $\infty$, then $R = \frac{1}{L}$
\subsection{Taylor and Maclaurin Series}
If f has power series repr @ $f = a$, $f(x) = \sum_{n=0}^{\infty} c_{n}(x-a)^{n}, |x-a| < R, R > 0$, then $c_{n} = \frac{f^{(n)}(a)}{n!}$. \\
\columnbreak
Maclaurin Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!}x^{n}$
For $-\infty < x < \infty$
\\ \; % spacing
\setlength\tabcolsep{1.5pt} % default value: 6pt
\begin{tabular}{rl}
$\sin x$ & $= \sum\limits^\infty_{n = 0} \frac{(-1)^nx^{2n + 1}}{(2n+1)!} $
\\ $\cos x$ & $= \sum\limits^\infty_{n = 0} \frac{(-1)^nx^{2n}}{(2n)!}$
\\ $e^x$ & $= \sum\limits^\infty_{n = 0} \frac{x^n}{n!}$
\end{tabular}
For $-1 < x < 1$
\\ \; % spacing
\setlength\tabcolsep{1.5pt} % default value: 6pt
\begin{tabular}{rl}
$\frac{1}{1 - x}$ & $= \sum\limits^\infty_{n = 0} x^n $
\\ $\frac{1}{1 + x}$ & $= \sum\limits^\infty_{n = 0} (-1)^nx^n $
\\ $\frac{1}{1 + x^2}$ & $= \sum\limits^\infty_{n = 0} (-1)^nx^{2n} $
\\ $\ln(1 + x)$ & $= \sum\limits^\infty_{n = 1} \frac{(-1)^{n - 1}x^n}{n} $
\\ $\tan^{-1}x$ & $= \sum\limits^\infty_{n = 0} \frac{(-1)^n}{2n + 1} x^{2n+1}$
\\ $\frac{1}{(1+x)^2}$ & $= \sum\limits^\infty_{n = 1} (-1)^{n-1}nx^{n-1}$
\\ $\frac{1}{(1-x)^2}$ & $= \sum\limits^\infty_{n = 1} nx^{n-1}$
\\ $\frac{1}{(1-x)^3}$ & $= \frac{1}{2} \sum\limits^\infty_{n = 2} n(n - 1)x^{n-2}$
\\ $(1 + x)^k$ & $= \sum\limits^\infty_{n = 0} \binom{k}{n}x^n$
\\ & $= 1 + kx + \frac{k(k-1)}{2!}x^2 + \dots$
\end{tabular}
\end{multicols*}