st2334: add midterm

This commit is contained in:
2025-10-10 18:13:34 +08:00
parent 49dfe5971b
commit 8cdfa749c6
2 changed files with 108 additions and 0 deletions

BIN
st2334/midterm.pdf Normal file

Binary file not shown.

108
st2334/midterm.typ Normal file
View File

@@ -0,0 +1,108 @@
#set page(paper: "a4", flipped: true, margin: 0.5cm, columns: 4)
#set text(size: 9pt)
#set list(spacing: 1.2em)
- *Mututally Exclusive* - $A inter B = emptyset$
- *Union* - $A union B = { x : x in A or x in B }$
- *Intersection* - $A inter B = { x : x in A and x in B }$
- *Complement* - $A' = { x : x in S and x in.not A }$
- $(A inter B)' = (A' union B')$
- *Multiplication* - R experiments performed sequentially. Then $n_i dot ... dot n_r$ possible outcomes for $r$ experiments
- *Addition* - $e$ can be performed $k$ ways, and $k$ ways do not overlap : total ways: $n_1 + ... + n_k$
- *Permutation* - Arrangement of $r$ objects out of $n$, _ordered_. $P^n_r = n!/(n-r)!, P^n_n = n!$
- *Combination* - Selection of $r$ objects out of $n$, _unordered_ $vec(n, r) = n!/(r!(n-r)!), vec(n, r) times P^r_r = P^n_r$
== Probability
- Axioms:
+ $0 <=P(A) <= 1$
+ $P(S) = 1$
- Propositions:
+ $P(emptyset) = 0$
+ $A_1 ... A_n$ are mutually exclusive,$P(A_1 union ... union A_n) = P(A_1) + ... + P(A_n)$
+ $P(A') = 1-P(A)$
+ $P(A) = P(A inter B) + P(A inter B')$
+ $P(A union B) = P(A) + P(B) - P(A inter B)$
+ If $A subset B, P(A) <= P(B)$
== Conditional Probability
- $P(B|A)$ is probability of $B$ given that $A$ has occured
- $P(B|A) = P(A inter B) / P(A)$
- $P(A inter B) = P(B|A)P(A)$
- $P(A|B) = (P(A)P(B|A)) / P(B)$
- $P(A inter B inter C) = P(A)P(B|A)P(C|B inter A)$
- *Independent* - $P(A inter B) = P(A)P(B), A perp B$
- If $P(A) != 0, A perp B arrow.l.r P(B|A) = P(B)$ (Knowledge of $A$ does not change $B$)
- *Independence vs Mutually exclusive* -
- $P(A) > 0 and P(B) > 0, A perp B arrow.double.r "not mutually exclusive"$
- Partition - $A_i...A_n$ is mutually exclusive and $union.big^n_i=1 A_i = S, A_i...A_n$ is partition of S
- $P(B) = sum^n_(i=1) P(B inter A_i) = sum^n_(i=1) P(A_i)P(B|A_i)$
- $n = 2, P(B) = P(A)P(B|A) + P(A')P(B|A')$
- *Bayes Theorem* - $P(A_k|B) = (P(A_k)P(B|A_k)) / (sum^n_(i=1)P(A_i)P(B|A_i))$
- $n = 2, P(A|B) = (P(A)P(B|A)) / (P(A)P(B|A) + P(A')P(B|A'))$
== Random Variables
- Notations:
- ${X = x} = {s in S : X(s) = x) in S$
- ${X in A} = {s in S : X(s) in A) in S$
== Probability Distributions
- PMF(_Discrete_) of $X - f(x) = cases(P(X=x) "if" x in R_X, 0 "otherwise")$
- Properties (*must* satisfy)
+ $f(x_i) >= 0, x_i in R_X$
+ $f(x_i) = 0, x_i in.not R_X$
+ $sum^infinity_(i=1)f(x_i) = 1$
- PDF(_Continuous_) of $X$ is function that satisfies the following
+ $f(x) >= 0, x in R_X "and" f(x) = 0, x in.not R_X$
+ $integral_R_X f(x) dif x = 1$
+ $a <= b, P(a <= X <= b) = integral^b_a f(x) dif x$
- To validate, check (1) and (2)
- CDF (Discrete) - $F(X) = P(X <=x)$
- $P(a<=X<=b) = P(X<=b) - P(X<a) = F(b) - F(a-), a-$ (is largest value in $R_X$ smaller than $a$)
- CDF(Continuous) - $F(X) = integral^x_(-infinity)f(t)dif t$
- $f(x) = dif/(dif t) F(x)$
- $P(a<=X<=b) = F(b) - F(a)$
- $F(x)$ is non-decreasing.
- PDF/PMF and CDF have 1 to 1 correspondence.
- Ranges of $F(x)$ and $f(x)$ satisfy:
- $0 <= F(X) <= 1$
- for discrete: $0 <= f(X) <= 1$
- for continuous: $f(x) >= 0$, not necessary $f(x) <= 1$
== Expectation
- Expectation(Discrete): $ E(X) = mu_X = sum_(x_i in R_X) x_i f(x_i) $
- Expectation(Continuous): $ E(X) = mu_X = integral^(infinity)_(-infinity)x_i f(x_i) $
- *Properties*
+ $E(a X + b) = a E(X) + b$
+ $E(X + Y) = E(X) + E(Y)$
+ Let $g(dot)$ be arbitrary function.
- $ E[g(X)] = sum g(x)f(x) \ "or"\ E[g(X)] = integral_R_X g(x)f(x) $
- example - $E(X^2) = sum x^2f(x)$
- Variance - $ sigma^2_x = V(X) = E(X - mu)^2 = E(X^2) - E(X)^2 $
- Discrete - $V(X) = sum (x-mu_x)^2 f(x)$
- Continuous - $V(X) = integral^(infinity)_(-infinity) (x-mu_x)^2 f(x)$
- *Properties*
+ $V(a X + b) = a^2V(X)$
+ $V(X) = E(X^2) - E(X)^2$
+ Standard Deviation = $sigma_x = sqrt(V(X))$
== Joint Probability Function
- Discrete $ f_(X, Y)(x,y) = P(X = x, Y = y) $
- *Properties*
+ $f(X,Y)(x, y) >= 0, (x, y) in R_(X,Y)$
+ $f(X,Y)(x, y) = 0, (x, y) in.not R_(X,Y)$
+ $sum^infinity_(i=1)sum^infinity_(j=1)(x_i,y_i) = 1$
- Continuous $ P((X, Y) in D) = integral.double_((x, y) in D) f(x,y) dif y dif x $
- $P(a<=X<=b, c<=Y<=d) = integral^b_a integral^d_c f(x, y) dif y dif x$
- *Properties*
+ $f_(X,Y)(x, y) >= 0$, for any $(x,y) in R_(X,Y)$
+ $f_(X,Y)(x, y) = 0$, for any $(x,y) in.not R_(X,Y)$
+ $integral^infinity_(-infinity)integral^infinity_(-infinity)f_(X,Y)(x, y) dif x dif y= 1$
=== Marginal Probability Distribution
- Discrete - $f_X (x) = sum_y f_(X,Y)(x,y)$
- Continuous - $f_X (x) =integral^infinity_(-infinity) f_(X,Y)(x,y) dif y$
- Conditional Distribution - $ f_(Y|X) (y|x) = (f_(X,Y)(x,y)) / (f_X (x)) $
- If $f_X (x) > 0, f_(X,Y)(x,y) = f_X (x) f_(Y|X) (y|x)$
- $P(Y <= y | X = x) = integral^y_(-infinity) f_(Y|X)(y|x) dif y$
- $E(Y | X = x) = integral^infinity_(-infinity) y f_(Y|X)(y|x) dif y$