feat: st2334 cheatsheet
This commit is contained in:
Binary file not shown.
@@ -1,12 +1,11 @@
|
||||
#import "@preview/cram-snap:0.2.2": *
|
||||
#set page(paper: "a4", flipped: true, margin: 0.5cm, columns: 4)
|
||||
#set text(size: 9pt)
|
||||
#set list(spacing: 1.2em)
|
||||
|
||||
#set page(paper: "a4", flipped: false, margin: 0.5cm)
|
||||
#set text(size: 11pt)
|
||||
|
||||
#show: cram-snap.with(
|
||||
column-number: 2,
|
||||
)
|
||||
- *Mututally Exclusive* - $A inter B = emptyset$
|
||||
- *Union* - $A union B = { x : x in A or x in B }$
|
||||
- *Intersection* - $A inter B = { x : x in A and x in B }$
|
||||
- *Complement* - $A' = { x : x in S and x in.not A }$
|
||||
- $(A inter B)' = (A' union B')$
|
||||
- *Multiplication* - R experiments performed sequentially. Then $n_i dot ... dot n_r$ possible outcomes for $r$ experiments
|
||||
- *Addition* - $e$ can be performed $k$ ways, and $k$ ways do not overlap : total ways: $n_1 + ... + n_k$
|
||||
@@ -27,24 +26,31 @@
|
||||
|
||||
== Conditional Probability
|
||||
- $P(B|A)$ is probability of $B$ given that $A$ has occured
|
||||
- $P(B|A) = P(A inter B) / P(A), P(A inter B) = P(B|A)P(A)$
|
||||
- $P(B|A) = P(A inter B) / P(A)$
|
||||
- $P(A inter B) = P(B|A)P(A)$
|
||||
- $P(A|B) = (P(A)P(B|A)) / P(B)$
|
||||
- $P(A inter B inter C) = P(A)P(B|A)P(C|B inter A)$
|
||||
- *Independent* - $P(A inter B) = P(A)P(B), A perp B$
|
||||
- If $P(A) != 0, A perp B arrow.l.r P(B|A) = P(B)$ (Knowledge of $A$ does not change $B$)
|
||||
- *Independence vs Mutually exclusive* -
|
||||
- $P(A) > 0 and P(B) > 0, A perp B arrow.double.r "not mutually exclusive"$
|
||||
- Partition - $A_i...A_n$ is mutually exclusive and $union.big^n_i=1 A_i = S, A_i...A_n$ is partition of S
|
||||
- $P(B) = sum^n_(i=1) P(B inter A_i) = sum^n_(i=1) P(A_i)P(B|A_i)$
|
||||
- $n = 2, P(B) = P(A)P(B|A) + P(A')P(B|A')$
|
||||
- *Bayes Theorem* - $P(A_k|B) = (P(A_k)P(B|A_k)) / (sum^n_(i=1)P(A_i)P(B|A_i))$
|
||||
- $n = 2, P(A|B) = (P(A)P(B|A)) / (P(A)P(B|A) + P(A')P(B|A'))$
|
||||
- $n = 2, P(A|B) = (P(A)P(B|A)) / (P(A)P(B|A) + P(A')P(B|A'))$
|
||||
|
||||
== Random Variables
|
||||
- PMF of $X - f(x) = cases(P(X=x) "if" x in R_X, 0 "otherwise")$
|
||||
- Notations:
|
||||
- ${X = x} = {s in S : X(s) = x) in S$
|
||||
- ${X in A} = {s in S : X(s) in A) in S$
|
||||
== Probability Distributions
|
||||
- PMF(_Discrete_) of $X - f(x) = cases(P(X=x) "if" x in R_X, 0 "otherwise")$
|
||||
- Properties (*must* satisfy)
|
||||
+ $f(x_i) >= 0, x_i in R_X$
|
||||
+ $f(x_i) = 0, x_i in.not R_X$
|
||||
+ $sum^infinity_(i=1)f(x_i) = 1$
|
||||
- PDF of $X$ is function that satisfies the following
|
||||
- PDF(_Continuous_) of $X$ is function that satisfies the following
|
||||
+ $f(x) >= 0, x in R_X "and" f(x) = 0, x in.not R_X$
|
||||
+ $integral_R_X f(x) dif x = 1$
|
||||
+ $a <= b, P(a <= X <= b) = integral^b_a f(x) dif x$
|
||||
@@ -52,7 +58,8 @@
|
||||
|
||||
- CDF (Discrete) - $F(X) = P(X <=x)$
|
||||
- $P(a<=X<=b) = P(X<=b) - P(X<a) = F(b) - F(a-), a-$ (is largest value in $R_X$ smaller than $a$)
|
||||
- CDF(Continuous) - $F(X) = integral^x_(-infinity)f(t)dif t, f(x) = dif/(dif t) F(x)$
|
||||
- CDF(Continuous) - $F(X) = integral^x_(-infinity)f(t)dif t$
|
||||
- $f(x) = dif/(dif t) F(x)$
|
||||
- $P(a<=X<=b) = F(b) - F(a)$
|
||||
- $F(x)$ is non-decreasing.
|
||||
- PDF/PMF and CDF have 1 to 1 correspondence.
|
||||
@@ -61,38 +68,41 @@
|
||||
- for discrete: $0 <= f(X) <= 1$
|
||||
- for continuous: $f(x) >= 0$, not necessary $f(x) <= 1$
|
||||
|
||||
- Expectation(Discrete): $E(X) = mu_X = sum_(x_i in R_X) x_i f(x_i)$
|
||||
- Expectation(Continuous): $E(X) = mu_X = integral^(infinity)_(-infinity)x_i f(x_i)$
|
||||
== Expectation
|
||||
- Expectation(Discrete): $ E(X) = mu_X = sum_(x_i in R_X) x_i f(x_i) $
|
||||
- Expectation(Continuous): $ E(X) = mu_X = integral^(infinity)_(-infinity)x_i f(x_i) $
|
||||
- *Properties*
|
||||
+ $E(a X + b) = a E(X) + b$
|
||||
+ $E(X + Y) = E(X) + E(Y)$
|
||||
+ Let $g(dot)$ be arbitrary function.
|
||||
- $E[g(X)] = sum g(x)f(x)$
|
||||
- $ E[g(X)] = sum g(x)f(x) \ "or"\ E[g(X)] = integral_R_X g(x)f(x) $
|
||||
- example - $E(X^2) = sum x^2f(x)$
|
||||
- $E[g(X)] = integral_R_X g(x)f(x)$
|
||||
- Variance - $sigma^2_x = V(X) = E(X - mu)^2$
|
||||
- Variance - $ sigma^2_x = V(X) = E(X - mu)^2 = E(X^2) - E(X)^2 $
|
||||
- Discrete - $V(X) = sum (x-mu_x)^2 f(x)$
|
||||
- Continuous - $V(X) = integral^(infinity)_(-infinity) (x-mu_x)^2 f(x)$
|
||||
- Properties
|
||||
- *Properties*
|
||||
+ $V(a X + b) = a^2V(X)$
|
||||
+ $V(X) = E(X^2) - E(X)^2$
|
||||
+ Standard Deviation = $sigma_x = sqrt(V(X))$
|
||||
|
||||
== Joint Distribution
|
||||
- Discrete - $f_(X, Y)(x,y) = P(X = x, Y = y)$
|
||||
== Joint Probability Function
|
||||
- Discrete $ f_(X, Y)(x,y) = P(X = x, Y = y) $
|
||||
- *Properties*
|
||||
+ $f(X,Y)(x, y) >= 0, (x, y) in R_(X,Y)$
|
||||
+ $f(X,Y)(x, y) = 0, (x, y) in.not R_(X,Y)$
|
||||
+ $sum^infinity_(i=1)sum^infinity_(j=1)(x_i,y_i) = 1$
|
||||
- Continuous - $P((X, Y) in D) = integral.double_((x, y) in D) f(x,y) dif y dif x$
|
||||
- Continuous $ P((X, Y) in D) = integral.double_((x, y) in D) f(x,y) dif y dif x $
|
||||
- $P(a<=X<=b, c<=Y<=d) = integral^b_a integral^d_c f(x, y) dif y dif x$
|
||||
- *Properties*
|
||||
+ $f_(X,Y)(x, y) >= 0$, for any $(x,y) in R_(X,Y)$
|
||||
+ $f_(X,Y)(x, y) = 0$, for any $(x,y) in.not R_(X,Y)$
|
||||
+ $integral^infinity_(-infinity)integral^infinity_(-infinity)f_(X,Y)(x, y) dif x dif y= 1$
|
||||
|
||||
- Marginal Probability Distribution
|
||||
=== Marginal Probability Distribution
|
||||
- Discrete - $f_X (x) = sum_y f_(X,Y)(x,y)$
|
||||
- Continuous - $f_X (x) =integral^infinity_(-infinity) f_(X,Y)(x,y) dif y$
|
||||
|
||||
- Conditional Distribution - $f_(Y|X) (y|x) = (f_(X,Y)(x,y)) / (f_X (x))$
|
||||
- Conditional Distribution - $ f_(Y|X) (y|x) = (f_(X,Y)(x,y)) / (f_X (x)) $
|
||||
- If $f_X (x) > 0, f_(X,Y)(x,y) = f_X (x) f_(Y|X) (y|x)$
|
||||
- $P(Y <= y | X = x) = integral^y_(-infinity) f_(Y|X)(y|x) dif y$
|
||||
- $E(Y | X = x) = integral^infinity_(-infinity) y f_(Y|X)(y|x) dif y$
|
||||
|
||||
Reference in New Issue
Block a user