feat: 0.39 on local
This commit is contained in:
@@ -23,37 +23,29 @@ class CNN3D(nn.Module):
|
|||||||
super(CNN3D, self).__init__()
|
super(CNN3D, self).__init__()
|
||||||
self.conv1 = nn.Conv3d(1, 16, 2, 1, 2)
|
self.conv1 = nn.Conv3d(1, 16, 2, 1, 2)
|
||||||
self.batchnorm3d = nn.BatchNorm3d(16)
|
self.batchnorm3d = nn.BatchNorm3d(16)
|
||||||
self.batchnorm1d = nn.BatchNorm1d(64)
|
|
||||||
|
|
||||||
self.dropout = nn.Dropout(0.5)
|
self.dropout = nn.Dropout(0.5)
|
||||||
self.mp3d = nn.AvgPool3d(2)
|
self.mp3d = nn.AvgPool3d(2)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.LeakyReLU()
|
||||||
|
|
||||||
self.lstm = nn.LSTM(5184, 64, 1, batch_first=True)
|
self.lstm = nn.LSTM(5184, 64, 1, batch_first=True)
|
||||||
self.fc2 = nn.Linear(64, 6)
|
self.fc2 = nn.Linear(64, 6)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = self.conv1(x)
|
x = self.conv1(x)
|
||||||
x = self.mp3d(x)
|
|
||||||
x = self.batchnorm3d(x)
|
|
||||||
x = self.relu(x)
|
x = self.relu(x)
|
||||||
|
x = self.batchnorm3d(x)
|
||||||
|
x = self.mp3d(x)
|
||||||
x = self.dropout(x)
|
x = self.dropout(x)
|
||||||
|
|
||||||
x = x.view(-1, 5184)
|
x = x.view(-1, 5184)
|
||||||
|
|
||||||
# print(x.shape)
|
|
||||||
|
|
||||||
x, _ = self.lstm(x)
|
x, _ = self.lstm(x)
|
||||||
# print(x.shape)
|
|
||||||
x = self.batchnorm1d(x)
|
|
||||||
x = self.relu(x)
|
x = self.relu(x)
|
||||||
x = self.dropout(x)
|
|
||||||
|
|
||||||
x = self.fc2(x)
|
x = self.fc2(x)
|
||||||
return torch.softmax(x, dim=1)
|
return torch.softmax(x, dim=1)
|
||||||
|
|
||||||
|
def train(model, criterion, optimizer, loader, epochs=10):
|
||||||
def train(model, criterion, optimizer, loader, epochs=20):
|
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
for idx, (inputs, labels) in enumerate(loader):
|
for idx, (inputs, labels) in enumerate(loader):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
@@ -82,7 +74,7 @@ def process_data(X, y):
|
|||||||
# Get the indices of each class
|
# Get the indices of each class
|
||||||
indices = [np.argwhere(y == i).squeeze(1) for i in range(6)]
|
indices = [np.argwhere(y == i).squeeze(1) for i in range(6)]
|
||||||
# Get the number of samples to take for each class
|
# Get the number of samples to take for each class
|
||||||
num_samples_to_take = 300
|
num_samples_to_take = 1500
|
||||||
# Get the indices of the samples to take
|
# Get the indices of the samples to take
|
||||||
indices_to_take = [np.random.choice(indices[i], num_samples_to_take, replace=True) for i in range(6)]
|
indices_to_take = [np.random.choice(indices[i], num_samples_to_take, replace=True) for i in range(6)]
|
||||||
# Concatenate the indices
|
# Concatenate the indices
|
||||||
@@ -102,8 +94,8 @@ class Model():
|
|||||||
def fit(self, X, y):
|
def fit(self, X, y):
|
||||||
X, y = process_data(X, y)
|
X, y = process_data(X, y)
|
||||||
train_dataset = torch.utils.data.TensorDataset(X, y)
|
train_dataset = torch.utils.data.TensorDataset(X, y)
|
||||||
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||||
train(self.model, self.criterion, self.optimizer, train_loader, 10)
|
train(self.model, self.criterion, self.optimizer, train_loader, 5)
|
||||||
|
|
||||||
def predict(self, X):
|
def predict(self, X):
|
||||||
self.model.eval()
|
self.model.eval()
|
||||||
|
|||||||
Reference in New Issue
Block a user