feat: 1522 assignment 2
This commit is contained in:
parent
998e802a99
commit
19ec16430a
BIN
ma1522/assignment/assignment2.pdf
Normal file
BIN
ma1522/assignment/assignment2.pdf
Normal file
Binary file not shown.
176
ma1522/assignment/assignment2.tex
Normal file
176
ma1522/assignment/assignment2.tex
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
\documentclass[a4paper]{article}
|
||||||
|
|
||||||
|
\input{../preamble.tex}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% ------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
% ------------------------------------------------------------------------------
|
||||||
|
% Cover Page and ToC
|
||||||
|
% ------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
\title{\normalsize \textsc{}
|
||||||
|
\\ [2.0cm]
|
||||||
|
\HRule{1.5pt} \\
|
||||||
|
\LARGE \textbf{\uppercase{MA1522}
|
||||||
|
\HRule{2.0pt} \\ [0.6cm] \LARGE{Assignment 2} \vspace*{10\baselineskip}}
|
||||||
|
}
|
||||||
|
\date{}
|
||||||
|
\author{\textbf{Yadunand Prem}\\
|
||||||
|
A0253252M}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
% ------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
\section{Question 1}
|
||||||
|
\hr
|
||||||
|
\begin{align*}
|
||||||
|
\overrightarrow{A} = \begin{pmatrix}
|
||||||
|
2 & -4 & 4 & -2 \\
|
||||||
|
6 & a-12 & 7 & a-6 \\
|
||||||
|
-1 & 2-b & 8 & -b+1 \\
|
||||||
|
\end{pmatrix}
|
||||||
|
\xrightarrow[R_3 + \frac{1}{2}R_1]{R_2 + (-3)R_1}
|
||||||
|
& \begin{pmatrix}
|
||||||
|
2 & -4 & 4 & -2 \\
|
||||||
|
0 & a & -5 & a \\
|
||||||
|
0 & -b & 10 & -b \\
|
||||||
|
\end{pmatrix} \\
|
||||||
|
\xrightarrow{R_3 + \frac{b}{a}R_2}
|
||||||
|
& \begin{pmatrix}
|
||||||
|
2 & -4 & 4 & -2 \\
|
||||||
|
0 & a & -5 & a \\
|
||||||
|
0 & 0 & 10-\frac{5b}{a} & 0 \\
|
||||||
|
\end{pmatrix} = \overrightarrow{U}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\overrightarrow{I} \xrightarrow{R_3 + \frac{-b}{a}R_2} \xrightarrow[R_3 + \frac{-1}{2}R_1]{R_2 + (3)R_1} \overrightarrow{L}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\begin{pmatrix}
|
||||||
|
1 & 0 & 0 \\
|
||||||
|
0 & 1 & 0 \\
|
||||||
|
0 & 0 & 1
|
||||||
|
\end{pmatrix}
|
||||||
|
\xrightarrow{R_3 + (-\frac{b}{a})R_2}
|
||||||
|
\begin{pmatrix}
|
||||||
|
1 & 0 & 0 \\
|
||||||
|
0 & 1 & 0 \\
|
||||||
|
0 & -\frac{b}{a} & 1
|
||||||
|
\end{pmatrix}
|
||||||
|
\xrightarrow[R_3 + \frac{-1}{2}R_1]{R_2 + (3)R_1}
|
||||||
|
\begin{pmatrix}
|
||||||
|
1 & 0 & 0 \\
|
||||||
|
3 & 1 & 0 \\
|
||||||
|
-\frac{1}{2} & -\frac{b}{a} & 1
|
||||||
|
\end{pmatrix} = \overrightarrow{L}
|
||||||
|
\end{align*}
|
||||||
|
If $a = 0$, then in the 1st step of the factorization above, it will cause the array to pivot. Thus, to prevent pivoting, $b = 0$ must be the case also.
|
||||||
|
$a \neq 0$ then $b \neq 0$ also, as $\frac{b}{a}$ will not be defined
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
\section{Question 2}
|
||||||
|
\hr
|
||||||
|
For A to be invertible, $det(A) \neq 0$.
|
||||||
|
|
||||||
|
$A = \begin{vmatrix}
|
||||||
|
1 & 1 & 1 & 1 \\
|
||||||
|
1 & 2 &-1 & c \\
|
||||||
|
1 & 4 & 1 & c^2 \\
|
||||||
|
1 & 8 &-1 & c^3 \\
|
||||||
|
\end{vmatrix}
|
||||||
|
$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
det(A)
|
||||||
|
& = (1)\begin{vmatrix}
|
||||||
|
2 &-1 & c \\
|
||||||
|
4 & 1 & c^2 \\
|
||||||
|
8 &-1 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(-1)\begin{vmatrix}
|
||||||
|
1 &-1 & c \\
|
||||||
|
1 & 1 & c^2 \\
|
||||||
|
1 &-1 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(1)\begin{vmatrix}
|
||||||
|
1 & 2 & c \\
|
||||||
|
1 & 4 & c^2 \\
|
||||||
|
1 & 8 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(-1)\begin{vmatrix}
|
||||||
|
1 & 2 &-1 \\
|
||||||
|
1 & 4 & 1 \\
|
||||||
|
1 & 8 &-1 \\
|
||||||
|
\end{vmatrix} \\
|
||||||
|
& = (1)\left((2)\begin{vmatrix}
|
||||||
|
1 & c^2 \\
|
||||||
|
-1 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(1)\begin{vmatrix}
|
||||||
|
4 & c^2 \\
|
||||||
|
8 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(c)\begin{vmatrix}
|
||||||
|
4 & 1 \\
|
||||||
|
8 &-1 \\
|
||||||
|
\end{vmatrix}\right)\\
|
||||||
|
& + (-1)\left((1)\begin{vmatrix}
|
||||||
|
1 & c^2 \\
|
||||||
|
-1 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(1)\begin{vmatrix}
|
||||||
|
1 & c^2 \\
|
||||||
|
1 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(c)\begin{vmatrix}
|
||||||
|
1 & 1 \\
|
||||||
|
1 &-1 \\
|
||||||
|
\end{vmatrix}\right)\\
|
||||||
|
& + (1)\left((1)\begin{vmatrix}
|
||||||
|
4 & c^2 \\
|
||||||
|
8 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(-2)\begin{vmatrix}
|
||||||
|
1 & c^2 \\
|
||||||
|
1 & c^3 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(c)\begin{vmatrix}
|
||||||
|
1 & 4 \\
|
||||||
|
1 & 8 \\
|
||||||
|
\end{vmatrix}\right)\\
|
||||||
|
& + (-1)\left((1)\begin{vmatrix}
|
||||||
|
4 & 1 \\
|
||||||
|
8 &-1 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(-2)\begin{vmatrix}
|
||||||
|
1 & 1 \\
|
||||||
|
1 &-1 \\
|
||||||
|
\end{vmatrix} +
|
||||||
|
(-1)\begin{vmatrix}
|
||||||
|
1 & 4 \\
|
||||||
|
1 & 8 \\
|
||||||
|
\end{vmatrix}\right)\\
|
||||||
|
& = (2)(c^3+c^2) + (4c^3-8c^2) + (c)(-4-8)\\
|
||||||
|
& + (-1)((c^3+c^2) + (c^3-c^2) + (c)(-1 - 1))\\
|
||||||
|
& + (4c^3-8c^2) + (-2)(c^3-c^2) + (c)(8-4)\\
|
||||||
|
& + (-1)((-4-8) + (-2)(-1-1) + (-1)(8-4)\\
|
||||||
|
& = 6c^3 - 12c^2 - 6c + 12 \\
|
||||||
|
& = 6(c - 2)(c - 1)(c + 1)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Therefore, $det(A) = (c-2)(c-1)(c+1) \neq 0$, \\
|
||||||
|
$c \neq 2, c \neq 1, c \neq -1$
|
||||||
|
|
||||||
|
Actually, this question can be solved by observation. The determinant will be 0 if 2 columns are a multiple of one another. By observation, we can see that if $c = 1$, then the 4th and 1st column will be the same. If $c = 2$, then 2,4 and $c=-1$, then 3,4 will be the same.
|
||||||
|
|
||||||
|
% ------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user