217 lines
7.3 KiB
Python
217 lines
7.3 KiB
Python
import copy
|
|
import dataclasses
|
|
import pathlib
|
|
from dataclasses import MISSING
|
|
from types import NoneType, UnionType
|
|
from typing import (
|
|
Annotated,
|
|
Any,
|
|
Literal,
|
|
TypeVar,
|
|
Union,
|
|
get_args,
|
|
get_origin,
|
|
)
|
|
|
|
|
|
class JSchemaTypeError(Exception):
|
|
pass
|
|
|
|
|
|
# Inspect the fields of the parameterized type
|
|
def inspect_dataclass_fields(t: type) -> dict[TypeVar, type]:
|
|
"""
|
|
Returns a map of type variables to actual types for a parameterized type.
|
|
"""
|
|
origin = get_origin(t)
|
|
type_args = get_args(t)
|
|
if origin is None:
|
|
return {}
|
|
|
|
type_params = origin.__parameters__
|
|
# Create a map from type parameters to actual type arguments
|
|
type_map = dict(zip(type_params, type_args, strict=False))
|
|
|
|
return type_map
|
|
|
|
|
|
def apply_annotations(schema: dict[str, Any], annotations: list[Any]) -> dict[str, Any]:
|
|
"""
|
|
Add metadata from typing.annotations to the json Schema.
|
|
The annotations can be a dict, a tuple, or a string and is directly applied to the schema as shown below.
|
|
No further validation is done, the caller is responsible for following json-schema.
|
|
|
|
Examples
|
|
|
|
```python
|
|
# String annotation
|
|
Annotated[int, "This is an int"] -> {"type": "integer", "description": "This is an int"}
|
|
|
|
# Dict annotation
|
|
Annotated[int, {"minimum": 0, "maximum": 10}] -> {"type": "integer", "minimum": 0, "maximum": 10}
|
|
|
|
# Tuple annotation
|
|
Annotated[int, ("minimum", 0)] -> {"type": "integer", "minimum": 0}
|
|
```
|
|
"""
|
|
for annotation in annotations:
|
|
if isinstance(annotation, dict):
|
|
# Assuming annotation is a dict that can directly apply to the schema
|
|
schema.update(annotation)
|
|
elif isinstance(annotation, tuple) and len(annotation) == 2:
|
|
# Assuming a tuple where first element is a keyword (like 'minLength') and the second is the value
|
|
schema[annotation[0]] = annotation[1]
|
|
elif isinstance(annotation, str):
|
|
# String annotations can be used for description
|
|
schema.update({"description": f"{annotation}"})
|
|
return schema
|
|
|
|
|
|
def type_to_dict(
|
|
t: Any, scope: str = "", type_map: dict[TypeVar, type] | None = None
|
|
) -> dict:
|
|
if type_map is None:
|
|
type_map = {}
|
|
if t is None:
|
|
return {"type": "null"}
|
|
|
|
if dataclasses.is_dataclass(t):
|
|
fields = dataclasses.fields(t)
|
|
properties = {
|
|
f.metadata.get("alias", f.name): type_to_dict(
|
|
f.type, f"{scope} {t.__name__}.{f.name}", type_map
|
|
)
|
|
for f in fields
|
|
if not f.name.startswith("_")
|
|
}
|
|
|
|
required = set()
|
|
for pn, pv in properties.items():
|
|
if pv.get("type") is not None:
|
|
if "null" not in pv["type"]:
|
|
required.add(pn)
|
|
|
|
elif pv.get("oneOf") is not None:
|
|
if "null" not in [i["type"] for i in pv.get("oneOf", [])]:
|
|
required.add(pn)
|
|
|
|
required_fields = {
|
|
f.name
|
|
for f in fields
|
|
if f.default is MISSING and f.default_factory is MISSING
|
|
}
|
|
|
|
# Find intersection
|
|
intersection = required & required_fields
|
|
|
|
return {
|
|
"type": "object",
|
|
"properties": properties,
|
|
"required": list(intersection),
|
|
# Dataclasses can only have the specified properties
|
|
"additionalProperties": False,
|
|
}
|
|
|
|
elif type(t) is UnionType:
|
|
return {
|
|
"oneOf": [type_to_dict(arg, scope, type_map) for arg in t.__args__],
|
|
}
|
|
|
|
if isinstance(t, TypeVar):
|
|
# if t is a TypeVar, look up the type in the type_map
|
|
# And return the resolved type instead of the TypeVar
|
|
resolved = type_map.get(t)
|
|
if not resolved:
|
|
msg = f"{scope} - TypeVar {t} not found in type_map, map: {type_map}"
|
|
raise JSchemaTypeError(msg)
|
|
return type_to_dict(type_map.get(t), scope, type_map)
|
|
|
|
elif hasattr(t, "__origin__"): # Check if it's a generic type
|
|
origin = get_origin(t)
|
|
args = get_args(t)
|
|
|
|
if origin is None:
|
|
# Non-generic user-defined or built-in type
|
|
# TODO: handle custom types
|
|
msg = f"{scope} Unhandled Type: "
|
|
raise JSchemaTypeError(msg, origin)
|
|
|
|
elif origin is Literal:
|
|
# Handle Literal values for enums in JSON Schema
|
|
return {
|
|
"type": "string",
|
|
"enum": list(args), # assumes all args are strings
|
|
}
|
|
|
|
elif origin is Annotated:
|
|
base_type, *metadata = get_args(t)
|
|
schema = type_to_dict(base_type, scope) # Generate schema for the base type
|
|
return apply_annotations(schema, metadata)
|
|
|
|
elif origin is Union:
|
|
union_types = [type_to_dict(arg, scope, type_map) for arg in t.__args__]
|
|
return {
|
|
"oneOf": union_types,
|
|
}
|
|
|
|
elif origin in {list, set, frozenset}:
|
|
return {
|
|
"type": "array",
|
|
"items": type_to_dict(t.__args__[0], scope, type_map),
|
|
}
|
|
|
|
elif issubclass(origin, dict):
|
|
value_type = t.__args__[1]
|
|
if value_type is Any:
|
|
return {"type": "object", "additionalProperties": True}
|
|
else:
|
|
return {
|
|
"type": "object",
|
|
"additionalProperties": type_to_dict(value_type, scope, type_map),
|
|
}
|
|
# Generic dataclass with type parameters
|
|
elif dataclasses.is_dataclass(origin):
|
|
# This behavior should mimic the scoping of typeVars in dataclasses
|
|
# Once type_to_dict() encounters a TypeVar, it will look up the type in the type_map
|
|
# When type_to_dict() returns the map goes out of scope.
|
|
# This behaves like a stack, where the type_map is pushed and popped as we traverse the dataclass fields
|
|
new_map = copy.deepcopy(type_map)
|
|
new_map.update(inspect_dataclass_fields(t))
|
|
return type_to_dict(origin, scope, new_map)
|
|
|
|
msg = f"{scope} - Error api type not yet supported {t!s}"
|
|
raise JSchemaTypeError(msg)
|
|
|
|
elif isinstance(t, type):
|
|
if t is str:
|
|
return {"type": "string"}
|
|
if t is int:
|
|
return {"type": "integer"}
|
|
if t is float:
|
|
return {"type": "number"}
|
|
if t is bool:
|
|
return {"type": "boolean"}
|
|
if t is object:
|
|
return {"type": "object"}
|
|
if t is Any:
|
|
msg = f"{scope} - Usage of the Any type is not supported for API functions. In: {scope}"
|
|
raise JSchemaTypeError(msg)
|
|
if t is pathlib.Path:
|
|
return {
|
|
# TODO: maybe give it a pattern for URI
|
|
"type": "string",
|
|
}
|
|
if t is dict:
|
|
msg = f"{scope} - Generic 'dict' type not supported. Use dict[str, Any] or any more expressive type."
|
|
raise JSchemaTypeError(msg)
|
|
|
|
# Optional[T] gets internally transformed Union[T,NoneType]
|
|
if t is NoneType:
|
|
return {"type": "null"}
|
|
|
|
msg = f"{scope} - Error primitive type not supported {t!s}"
|
|
raise JSchemaTypeError(msg)
|
|
else:
|
|
msg = f"{scope} - Error type not supported {t!s}"
|
|
raise JSchemaTypeError(msg)
|